JPH05253795A - Alignment adjusting method for non-circular shaped work in cylindrical coordinate type three-dimensional measuring device - Google Patents

Alignment adjusting method for non-circular shaped work in cylindrical coordinate type three-dimensional measuring device

Info

Publication number
JPH05253795A
JPH05253795A JP8762392A JP8762392A JPH05253795A JP H05253795 A JPH05253795 A JP H05253795A JP 8762392 A JP8762392 A JP 8762392A JP 8762392 A JP8762392 A JP 8762392A JP H05253795 A JPH05253795 A JP H05253795A
Authority
JP
Japan
Prior art keywords
adjustment
measuring device
error
axis
dimensional measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8762392A
Other languages
Japanese (ja)
Other versions
JP2665574B2 (en
Inventor
Hiroki Endo
弘樹 遠藤
Toshiro Kagawa
敏朗 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP8762392A priority Critical patent/JP2665574B2/en
Publication of JPH05253795A publication Critical patent/JPH05253795A/en
Application granted granted Critical
Publication of JP2665574B2 publication Critical patent/JP2665574B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method by which aligning adjustment in a cylindrical coordinate type three-dimensional measuring device for a cam shaped work W being hitherto difficult as for aligning adjustment by a coordinate transformation computing process can be performed quickly and surely. CONSTITUTION:The whole form due to the measured point group data obtained by sampling a work W on a rotary table 4 by means of a detector 22, and the whole form due to the ideal form point group data on design input from a keyboard input part 31, are piled up on the same axis of coordinates and displayed as a picture for rough adjustment, the picture and a picture for fine adjustment displaying a form error curve due to difference between the measured point group data and the ideal form data are selectively displayed, and an angle adjusting quantity and/or an eccentricity adjusting quantity which are set by an operator from these displays, are input so as to make the error to a minimum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は真円測定器等の円筒座標
型三次元測定装置における非真円形状ワークの芯出し調
整方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for centering and adjusting a non-round work in a cylindrical coordinate type three-dimensional measuring device such as a perfect circle measuring device.

【0002】[0002]

【従来の技術】従来、図11に示すような円筒座標型三
次元測定装置において円筒形状ワークの測定を行う場
合、ロータリテーブル101の回転軸と測定ワーク10
2の中心軸とを一致させる必要がある。仮想線にて示す
心押台103の使用が可能なセンタ支持ワークの場合は
芯出しの必要がないが、チャック加工ワークの場合には
芯出し調整を行う必要が生じる。このチャック加工ワー
ク芯出し方法には、ロータリテーブル101上に芯出し
専用のX・Y二軸直線移動形クロススライドを設けて、
実際にワーク中心軸をロータリテーブルの回転軸と一致
させる方法と、ロータリテーブル上に芯ずれのまま載置
されたワークを極座標(r,θ)上で測定し、計算処理
により座標変換を行って、実質的にワークを移動させた
と同じ効果を得るようにした方法とがある。後者の方法
は計算のみで芯出しが可能であり、前者の方法に比べる
と芯出しの迅速化が可能なため、一般に後者の方法が多
く用いられている。
2. Description of the Related Art Conventionally, when a cylindrical workpiece is measured by a cylindrical coordinate type three-dimensional measuring apparatus as shown in FIG. 11, a rotary shaft of a rotary table 101 and the measuring workpiece 10 are used.
It is necessary to match the center axes of the two. In the case of a center-supported work that can use the tailstock 103 indicated by a virtual line, centering is not necessary, but in the case of a chucked work, centering adjustment needs to be performed. In this chucking work centering method, an X / Y biaxial linear movement type cross slide dedicated to centering is provided on the rotary table 101,
A method of actually aligning the center axis of the work with the rotary axis of the rotary table and a method of measuring the work placed on the rotary table with misalignment on polar coordinates (r, θ) and performing coordinate conversion by calculation processing. There is a method in which the same effect as when the work is moved is obtained. The latter method is generally used because the latter method can perform centering only by calculation and can speed up the centering as compared with the former method.

【0003】[0003]

【発明が解決しようとする課題】従来の技術の座標変換
演算処理による芯出し調整方法は、計測された点群から
ワーク中心を算出するため、円筒形状ワークの真円度測
定のように半径差の小さい場合には最小誤差円を求めて
この円中心を使用しているが、カム形状ワークのように
半径差の大きいワークの場合には中心の算出が難しいと
いう問題点を有していた。本発明は従来の技術の有する
このような問題点に鑑みなされたものであり、その目的
とするところは座標変換演算処理による非真円形状ワー
クの芯出し調整方法を提供しようとするものである。
The centering adjustment method by the coordinate conversion calculation processing of the prior art calculates the center of the work from the measured point group, so that the difference in radius is measured as in the roundness measurement of a cylindrical work. In the case of small, the minimum error circle is obtained and the center of this circle is used. However, in the case of a work having a large radius difference such as a cam-shaped work, there is a problem that it is difficult to calculate the center. The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a centering adjustment method for a non-perfect circular shape work by coordinate conversion calculation processing. .

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明における円筒座標型三次元装置における非真円
形状ワークの芯出し調整方法は、ロータリテーブル(C
軸)と直交二直線案内軸(X・Z軸)からなる三次元測
定装置の前記ロータリテーブル上のほぼ旋回中心位置の
非真円形状ワークをサンプリングして測定点群データを
作成した後に座標変換計算処理によい芯出し調整する方
法において、前記測定点群データによる第1全体形状と
予め入力された理想形状点群データによる第2全体形状
とを同一座標軸上に重ねて表示した粗調整用画面と、前
記測定点群データと理想形状点群データとの差による形
状曲線を表示した微細調整用画面とを選択表示し、操作
者が前記調整用画面又は微細調整用画面を見ながら設定
した調整量により角度調整と偏心調整とを行い誤差を最
小化させるものである。
In order to achieve the above object, the method for centering and adjusting a non-round work in a cylindrical coordinate type three-dimensional apparatus according to the present invention is a rotary table (C).
(Axis) and two orthogonal linear guide axes (X / Z axes), the coordinate conversion is performed after sampling the non-round work on the rotary table at the approximate turning center position to create measurement point group data. In a method of performing a centering adjustment suitable for calculation processing, a rough adjustment screen in which a first overall shape based on the measurement point cloud data and a second overall shape based on previously input ideal shape point cloud data are superimposed and displayed on the same coordinate axis. And a fine adjustment screen displaying a shape curve based on the difference between the measurement point cloud data and the ideal shape point cloud data, and the adjustment set by the operator while looking at the adjustment screen or the fine adjustment screen. The angle is adjusted and the eccentricity is adjusted according to the amount to minimize the error.

【0005】[0005]

【作用】非真円形状ワークをロータリテーブル上に載せ
てサンプリングを行い測定点群データを作成し、この測
定点群データによる第1全体形状と、設計上との理想形
状点群データによる第2全体形状とを重ねて表示した粗
調整用画面を見て、角度調整量と偏心調整量とをそれぞ
れ設定し、これを入力して座標変換を行い誤差を小さく
する。こうして誤差が或る程度小さくなった時点で、測
定点群データと理想形状点群データとの差の形状誤差曲
線の微細調整用画面を見て、角度調整量と偏心調整量と
をそれぞれ設定し、これを入力して座標変換を行い次第
に最小誤差に近づける。
[Operation] A non-round work is placed on a rotary table, sampling is performed to create measurement point cloud data, and a first overall shape based on this measurement point cloud data and a second based on ideal shape point cloud data for design purposes. Looking at the coarse adjustment screen where the overall shape is displayed in an overlapping manner, the angle adjustment amount and the eccentricity adjustment amount are set respectively, and these are input to perform coordinate conversion to reduce the error. When the error becomes small to some extent in this way, the angle adjustment amount and the eccentricity adjustment amount are set by looking at the screen for fine adjustment of the shape error curve of the difference between the measurement point group data and the ideal shape point group data. , Inputting this and performing coordinate conversion gradually approaches the minimum error.

【0006】[0006]

【実施例】実施例について図1〜図10を参照して説明
する。図1,図2の円筒座標型三次元測定装置におい
て、枠体1にエアベアリング2により回転可能に支持さ
れた垂直方向の旋回中心軸3の上端にロータリテーブル
4が同心に固着されており、旋回中心軸3の下端にC軸
ロータリエンコーダ5の回転軸が同心に嵌着されてい
る。ロータリテーブル4は枠体内に固着のC軸パルスモ
ータ6によりベルト7を介して回転され、ロータリテー
ブル4上に台8を介して評価用のカム形状ワークWが載
置されている。枠体1の後側上にコラム9が立設されて
おり、コラム9の前面に設けられたZ軸方向のガイド1
1に沿って移動可能にサドル12が設けられている。サ
ドル12はコラム9に固着のZ軸パルスモータ14によ
りボールねじ13を介して移動位置決めされ、ガイド1
1と平行に設けられたZ軸リニアエンコーダ15により
位置検出が行われるようになっている。
EXAMPLES Examples will be described with reference to FIGS. In the cylindrical coordinate type three-dimensional measuring apparatus of FIGS. 1 and 2, a rotary table 4 is concentrically fixed to the upper end of a vertical center axis 3 of rotation which is rotatably supported by an air bearing 2 on a frame 1. The rotation shaft of the C-axis rotary encoder 5 is concentrically fitted to the lower end of the turning center shaft 3. The rotary table 4 is rotated by a C-axis pulse motor 6 fixed inside the frame via a belt 7, and an evaluation cam-shaped work W is placed on the rotary table 4 via a table 8. A column 9 is erected on the rear side of the frame body 1, and a guide 1 in the Z-axis direction is provided on the front surface of the column 9.
A saddle 12 is provided so as to be movable along 1. The saddle 12 is moved and positioned via the ball screw 13 by the Z-axis pulse motor 14 fixed to the column 9, and the guide 1
The position is detected by the Z-axis linear encoder 15 provided in parallel with 1.

【0007】サドル12の前面にX軸方向のガイド16
が設けられており、このガイド16に沿って移動可能に
スライダ17が設けられている。スライダ17はサドル
12に固着のX軸パルスモータ18によりX軸ボールね
じ19を介して移動位置決めされ、ガイド16と平行に
設けられX軸リニアエンコーダ21により位置検出が行
われるようになっている。スライダ17に取付けられて
いる検出器22は差動トランス型変位形(電気マイク
ロ)が使用され、スライダ17のX軸移動とは別にX軸
方向の直線微小変位を検出する。更に枠体1の近傍に演
算用パソコン23が設置されている。
A guide 16 in the X-axis direction is provided on the front surface of the saddle 12.
Is provided, and a slider 17 is provided so as to be movable along the guide 16. The slider 17 is moved and positioned by an X-axis pulse motor 18 fixed to the saddle 12 via an X-axis ball screw 19, and is provided in parallel with the guide 16 so that position detection is performed by an X-axis linear encoder 21. A differential transformer type displacement type (electric micro) is used as the detector 22 attached to the slider 17, and detects a linear minute displacement in the X-axis direction separately from the X-axis movement of the slider 17. Further, a computing personal computer 23 is installed near the frame 1.

【0008】図3は一部三次元測定装置の構成図を含む
制御システムのブロック線図である。三次元測定装置側
の制御装置24には、C軸パルスモータ6を駆動するC
軸ドライバ25、検出器22の出力信号の受け渡しをす
る検出器インタフェイス26、X軸パルスモータ18を
駆動するX軸ドライバ27、X軸リニアエンコーダ21
の出力信号の受け渡しを行うX軸リニアエンコーダイン
タフェイス28、C軸ロータリエンコーダ5の出力信号
の受け渡しをするC軸ロータリエンコーダインタフェイ
ス29がそれぞれ内蔵されている。制御計測用パソコン
23には、指令及び情報を入力するキーボード入力部3
1、後述の各演算を行う演算処理部32、演算結果等を
表示する演算結果表示部33、前記制御装置24と演算
処理部32間の信号制御を行う制御処理部34がそれぞ
れ内蔵されている。
FIG. 3 is a block diagram of a control system including a configuration diagram of a partial three-dimensional measuring device. The control device 24 on the side of the three-dimensional measuring device has a C for driving the C-axis pulse motor 6.
Axis driver 25, detector interface 26 for passing output signals of detector 22, X-axis driver 27 for driving X-axis pulse motor 18, X-axis linear encoder 21
The X-axis linear encoder interface 28 for delivering the output signal of the C-axis rotary encoder 5 and the C-axis rotary encoder interface 29 for delivering the output signal of the C-axis rotary encoder 5 are respectively incorporated. The control input personal computer 23 has a keyboard input section 3 for inputting commands and information.
1, a calculation processing unit 32 that performs each calculation described below, a calculation result display unit 33 that displays a calculation result, etc., and a control processing unit 34 that controls signals between the control device 24 and the calculation processing unit 32, respectively. ..

【0009】続いて本実施例の作用について説明する。
最初にカム形状ワークWのサンプリング手順について図
4のフローチャートに従って説明する。ステップS1に
おいて、ロータリテーブル回転指令が出て、ロータリテ
ーブル4に単位角度(1°)の回転を実施させ、C軸ロ
ータリエンコーダ5により回転角を検出する。ステップ
S2において、電気マイクロ(検出器)22の検出範囲
(±0.2 mm)内かが確認され、NOの場合はステップ
S3において、再び遠いかが確認され、NOの(近い)
場合にはステップS4において、X軸基準量(0.36m
m)だけスライダ17を遠ざけ、YESの場合にはステ
ップS5において、X軸基準量だけ近づけて検出器の測
定範囲内とする。またステップS2において、YESの
場合にはステップS3〜S5を飛ばす。
Next, the operation of this embodiment will be described.
First, the sampling procedure of the cam-shaped work W will be described with reference to the flowchart of FIG. In step S1, a rotary table rotation command is issued to cause the rotary table 4 to rotate by a unit angle (1 °), and the C-axis rotary encoder 5 detects the rotation angle. In step S2, it is confirmed whether or not it is within the detection range (± 0.2 mm) of the electric micro (detector) 22, and in the case of NO, it is confirmed again in step S3 that it is far (NO) (near).
In this case, in step S4, the X-axis reference amount (0.36 m
If the answer is YES, the slider 17 is moved closer by the X-axis reference amount so as to be within the measuring range of the detector in step S5. If YES in step S2, steps S3 to S5 are skipped.

【0010】次いでステップS6において、電気マイク
ロ22の値を検出器インタフェイス26を経て制御処理
部34に読み込み、ステップS7において、X軸リニア
エンコーダ21の値をインタフェイス28を経て制御処
理部34に読み込む。ステップS8において、演算処理
部32にて電気マイクロ22の値とX軸リニアエンコー
ダ21の和を求めて検出点中心X座標を算出する。次い
でステップS9において、ロータリエンコーダ5の値即
ちワークテーブル4の回転角を読み込み、ステップS1
0において点群(X,C)の値を登録する。ステップS
11において、1回転(180°)完了したかが確認さ
れ、NOの場合にはステップS1に戻され、YESの場
合にはサンプリング終了となる。
Next, in step S6, the value of the electric micro 22 is read into the control processing section 34 via the detector interface 26, and in step S7, the value of the X-axis linear encoder 21 is read into the control processing section 34 via the interface 28. Read. In step S8, the arithmetic processing unit 32 calculates the sum of the value of the electric micro 22 and the X-axis linear encoder 21 to calculate the detection point center X coordinate. Next, in step S9, the value of the rotary encoder 5, that is, the rotation angle of the work table 4 is read, and step S1
At 0, the value of the point cloud (X, C) is registered. Step S
In 11, it is confirmed whether or not one rotation (180 °) has been completed. If NO, the process returns to step S1, and if YES, the sampling ends.

【0011】次にワークの芯出し調整手順について図5
のフローチャートに従って説明する。ステップS12に
おいて、キーボード入力部31よりの入力指令が粗調整
用画面であるかが確認され、YESの場合にはステップ
S13において、予め入力された理想形状データにより
理想形状点群の画面を出力し、ステップS14におい
て、前述のサンプリングにて求めた計測データにより計
測点群の画面を出力して例えばCRT画面上に図6に示
すような同一X・Y座標軸線上に理想形状と実測形状を
重ねて表示する。そして操作者はこの画面表示を見てス
テップS15において、角度調整するかを判断し、YE
Sの場合にはステップS16において、図7に示すよう
に理想形状と実測形状の芯出し誤差のうち位相のずれだ
けに着目して、取付誤差角θcの見当を付け、これに近
いと思われる角度調整量をキーボード入力部31より入
力する。ステップS17において、演算処理部32内で
テーブル旋回角度θiに、この入力された角度調整量が
加算され、この演算処理により芯出し角度誤差が小さく
なる。またステップS15においてNOと判断した場合
にはステップS16,17は飛ばされる。
Next, referring to FIG.
It will be described in accordance with the flowchart of. In step S12, it is confirmed whether or not the input command from the keyboard input unit 31 is the rough adjustment screen, and if YES, the screen of the ideal shape point group is output based on the ideal shape data input in advance in step S13. In step S14, the screen of the measurement point group is output based on the measurement data obtained by the above-described sampling, and the ideal shape and the measured shape are superposed on the same XY coordinate axis line as shown in FIG. 6 on the CRT screen, for example. indicate. Then, the operator looks at this screen display and determines in step S15 whether or not to adjust the angle.
In the case of S, in step S16, as shown in FIG. 7, focusing on only the phase shift among the centering errors of the ideal shape and the actually measured shape, the mounting error angle θc is registered, and it is considered that it is close to this. The angle adjustment amount is input from the keyboard input unit 31. In step S17, the input angle adjustment amount is added to the table turning angle θi in the arithmetic processing unit 32, and the centering angle error is reduced by this arithmetic processing. If NO in step S15, steps S16 and S17 are skipped.

【0012】次いでステップS18において、偏心調整
するかを判断して、YESの場合にはステップS19に
おいて、図8に示すように芯出し誤差のうち偏心誤差だ
けに着目して、芯ずれ量εX,εYの見当を付け、調整
量εX´,εY´を入力する。次いでステップS20に
おいて、第1計測点群座標変換を行って極座標r,θを
X,Y座標に変換し、ステップS21において、次式 Xi´=Xi+εx´ Yi´=Yi+εY´ により図9に示すようにX,Y座標の点群Xi,Yiに
対して入力された調整量εX´,εY´だけ計測点群の
平行移動を行う。但しXi´,Yi´は平行移動後のX
Y座標値。
Next, in step S18, it is judged whether or not the eccentricity is adjusted. If YES, in step S19, as shown in FIG. 8, focusing only on the eccentricity error among the centering errors, the misalignment amount εX, With the register of εY, the adjustment amounts εX ′ and εY ′ are input. Next, in step S20, the first measurement point group coordinate conversion is performed to convert the polar coordinates r, θ into X, Y coordinates. Then, the measurement point group is translated by the adjustment amounts εX ′ and εY ′ input to the point groups Xi and Yi of the X and Y coordinates. However, Xi 'and Yi' are X after translation
Y coordinate value.

【0013】次いでステップS22において、第2計測
点群座標軸受変換が行われ、平行移動後の座標軸Xi
´,Yi´を次式 ri=√(Xi´2 +Yi´ 2) θi=tan -1(Yi´/Xi´) により極座標(r,θ)に戻す。但し極座標の点群数を
nとすれば、1≦i<nとなる。またステップS18に
おいて、NOの場合はステップS9〜S22の間が飛ば
される。
Next, in step S22, the second measurement point group coordinate bearing conversion is performed, and the coordinate axis Xi after the parallel movement is performed.
′, Yi ′ is returned to polar coordinates (r, θ) by the following equation: ri = √ (Xi ′ 2 + Yi ′ 2 ) θi = tan −1 (Yi ′ / Xi ′). However, if the number of point groups in polar coordinates is n, then 1 ≦ i <n. If NO at step S18, the process between steps S9 and S22 is skipped.

【0014】ステップS23において、誤差最小かが確
認され、YESのときは終了する。またNOの場合はス
テップS12に戻され再び粗調整用画面が必要かが確認
される。そして微細調整用画面が所望の場合にはNOと
なりステップS24において、入力された理想形状デー
タとスキャニングして得られた実測形状の差即ち理想値
と実測値の誤差を算出し、ステップS25において、こ
の誤差を図10に示すような形状誤差曲線として表示す
る。次いでステップS15において、操作者はこの表示
を見て角度調整が必要かを判断し、以下前述と同様の調
整を行い、ステップS23において誤差最小と確認され
るまで繰り返し調整が行われる。
In step S23, it is confirmed whether or not the error is minimum. If YES, the process ends. On the other hand, in the case of NO, the process returns to step S12, and it is confirmed again whether the rough adjustment screen is required. If the fine adjustment screen is desired, the answer is NO, and in step S24, the difference between the input ideal shape data and the actually measured shape obtained by scanning, that is, the error between the ideal value and the actually measured value is calculated, and in step S25, This error is displayed as a shape error curve as shown in FIG. Next, in step S15, the operator looks at this display and determines whether the angle adjustment is necessary, and thereafter, the same adjustment as described above is performed, and the adjustment is repeatedly performed until the error is confirmed to be minimum in step S23.

【0015】[0015]

【発明の効果】本発明は上述のとおり構成されているの
で次に記載する効果を奏する。粗調整用画面と微細調整
用画面とを選択表示し、画面を見ながら調整量を設定し
て入力し、角度調整と偏心調整をそれぞれ行うようにし
たので、半径差の大きいカム形状の芯出しが迅速かつ確
実に実施できる。また連続してワーク測定を行う場合、
次のワーク測定時に平行してワーク芯出し誤差調整を行
うことができ能率が向上する。
Since the present invention is configured as described above, it has the following effects. The coarse adjustment screen and the fine adjustment screen are selected and displayed, the adjustment amount is set and entered while looking at the screen, and the angle adjustment and the eccentricity adjustment are performed respectively. Can be implemented quickly and reliably. When measuring workpieces continuously,
The work centering error can be adjusted in parallel during the next work measurement, improving the efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の円筒座標型三次元測定装置の斜視姿
図である。
FIG. 1 is a perspective view of a cylindrical coordinate type three-dimensional measuring apparatus of this embodiment.

【図2】円筒座標型三次元測定装置の構造図である。FIG. 2 is a structural diagram of a cylindrical coordinate type three-dimensional measuring device.

【図3】一部測定装置の構成図を含む制御システムのブ
ロック線図である。
FIG. 3 is a block diagram of a control system including a configuration diagram of a partial measuring device.

【図4】本実施例のサンプリング動作説明用のフローチ
ャート図である。
FIG. 4 is a flow chart for explaining the sampling operation of the present embodiment.

【図5】本実施例の芯出し調整動作説明用フローチャー
ト図である。
FIG. 5 is a flow chart for explaining the centering adjustment operation of the present embodiment.

【図6】実測形状と理想形状とを重ねて表示した粗調整
用画面の例を示す説明図である。
FIG. 6 is an explanatory diagram showing an example of a rough adjustment screen in which an actually measured shape and an ideal shape are displayed in an overlapping manner.

【図7】実測形状と理想形状の誤差のうち角度誤差だけ
に着目した想定図である。
FIG. 7 is an assumed diagram focusing only on an angular error of the errors between the actually measured shape and the ideal shape.

【図8】実測形状と理想形状の誤差のうち偏心誤差だけ
に着目した想定図である。
FIG. 8 is an assumed diagram focusing only on an eccentricity error of an error between a measured shape and an ideal shape.

【図9】偏心誤差調整時の入力調整量によるX,Y座標
値の平行移動の説明図である。
FIG. 9 is an explanatory diagram of parallel movement of X and Y coordinate values depending on an input adjustment amount when adjusting an eccentricity error.

【図10】誤差を表示した微細調整用画面の例を示す説
明図である。
FIG. 10 is an explanatory diagram showing an example of a fine adjustment screen displaying an error.

【図11】従来の技術の円筒座標形三次元測定装置の斜
視姿図である。
FIG. 11 is a perspective view of a conventional cylindrical coordinate type three-dimensional measuring device.

【符合の説明】[Explanation of sign]

4 ロータリテーブル 5 ロー
タリエンコーダ 6 C軸パルスモータ 17 ス
ライダ 18 X軸パルスモータ 22 検
出器 23 演算用パソコン 24 制
御装置 W カム形状ワーク
4 rotary table 5 rotary encoder 6 C-axis pulse motor 17 slider 18 X-axis pulse motor 22 detector 23 computing PC 24 controller W cam shape work

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ロータリテーブル(C軸)と直交二直線
案内軸(X・Z軸)からなる三次元測定装置の前記ロー
タリテーブル上のほぼ旋回中心位置の非真円形状ワーク
をサンプリングして測定点群データを作成した後に座標
変換計算処理により芯出し調整する方法において、前記
測定点群データによる第1全体形状と予め入力された理
想形状点群データによる第2全体形状とを同一座標軸上
に重ねて表示した粗調整用画面と、前記測定点群データ
と理想形状点群データとの差による形状誤差曲線を表示
した微細調整用画面とを選択表示し、操作者が前記粗調
整用画面又は微細調整用画面を見ながら設定した調整量
により角度調整と偏心調整とを行い誤差を最小化させる
ことを特徴とする円筒座標型三次元測定装置における非
真円形状ワークの芯出し調整方法。
1. A non-round work which is approximately at the center of turning on the rotary table of a three-dimensional measuring device comprising a rotary table (C axis) and two orthogonal linear guide axes (X and Z axes) is sampled and measured. In the method of performing centering adjustment by coordinate conversion calculation processing after creating the point cloud data, the first overall shape based on the measurement point group data and the second overall shape based on the ideal shape point group data previously input are placed on the same coordinate axis. The coarse adjustment screen displayed in an overlapping manner and the fine adjustment screen displaying the shape error curve due to the difference between the measurement point cloud data and the ideal shape point cloud data are selectively displayed, and the operator displays the coarse adjustment screen or A non-round work center in a cylindrical coordinate type three-dimensional measuring device characterized by performing an angle adjustment and an eccentricity adjustment according to an adjustment amount set while looking at a fine adjustment screen to minimize an error. Adjusting method.
JP8762392A 1992-03-11 1992-03-11 Centering adjustment method for non-round work in cylindrical coordinate three-dimensional measuring device Expired - Lifetime JP2665574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8762392A JP2665574B2 (en) 1992-03-11 1992-03-11 Centering adjustment method for non-round work in cylindrical coordinate three-dimensional measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8762392A JP2665574B2 (en) 1992-03-11 1992-03-11 Centering adjustment method for non-round work in cylindrical coordinate three-dimensional measuring device

Publications (2)

Publication Number Publication Date
JPH05253795A true JPH05253795A (en) 1993-10-05
JP2665574B2 JP2665574B2 (en) 1997-10-22

Family

ID=13920105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8762392A Expired - Lifetime JP2665574B2 (en) 1992-03-11 1992-03-11 Centering adjustment method for non-round work in cylindrical coordinate three-dimensional measuring device

Country Status (1)

Country Link
JP (1) JP2665574B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165066A (en) * 2010-02-12 2011-08-25 Jtekt Corp Error display device of machine tool
CN103394970A (en) * 2012-09-26 2013-11-20 上海埃斯凯变压器有限公司 Servo cutting feed system of curve cutting machine for direct-driven R-type transformer
CN107363285A (en) * 2017-07-12 2017-11-21 邓干平 A kind of large-sized numerical control combination drilling machine and coordinate transformation method
CN112454011A (en) * 2019-09-09 2021-03-09 苏州微创骨科医疗工具有限公司 Method and device for correcting coordinate offset of workpiece of multi-axis machine tool, computer equipment and medium
CN113523903A (en) * 2021-07-27 2021-10-22 山东亿佰通机械股份有限公司 Valve processing platform with adjustable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100470186C (en) * 2007-09-28 2009-03-18 淮阴工学院 Three-dimensional working table contact pin type three-dimensional roughness measurement instrument

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165066A (en) * 2010-02-12 2011-08-25 Jtekt Corp Error display device of machine tool
CN103394970A (en) * 2012-09-26 2013-11-20 上海埃斯凯变压器有限公司 Servo cutting feed system of curve cutting machine for direct-driven R-type transformer
CN107363285A (en) * 2017-07-12 2017-11-21 邓干平 A kind of large-sized numerical control combination drilling machine and coordinate transformation method
CN107363285B (en) * 2017-07-12 2019-06-07 邓干平 A kind of large-sized numerical control combination drilling machine and coordinate transformation method
CN112454011A (en) * 2019-09-09 2021-03-09 苏州微创骨科医疗工具有限公司 Method and device for correcting coordinate offset of workpiece of multi-axis machine tool, computer equipment and medium
CN113523903A (en) * 2021-07-27 2021-10-22 山东亿佰通机械股份有限公司 Valve processing platform with adjustable
CN113523903B (en) * 2021-07-27 2022-05-13 山东亿佰通机械股份有限公司 Valve processing platform with adjustable

Also Published As

Publication number Publication date
JP2665574B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
CN100404201C (en) Control method of digitized precise curved grinding
US4519167A (en) Process and apparatus for the automatic control of movement of an edge grinding machine
JPS5841980B2 (en) Numerical control wire cut electrical discharge machine
CN106643466B (en) Bridge cylindricity measuring instrument and working method thereof
JPH0360956A (en) Non-contact profile control device
GB2288758A (en) Apparatus for machining workpiece to non-revolute symmetric or aspherical surface with rotating grinding wheel, trueing device and wheel measuring device
CN108871234A (en) Non-contact 3-D automatic scanning test macro
JP2665574B2 (en) Centering adjustment method for non-round work in cylindrical coordinate three-dimensional measuring device
JP3880030B2 (en) V-groove shape measuring method and apparatus
JPH03121754A (en) Noncontact tracing control device
JPH02190247A (en) Lens grinding method and its device
JP2758810B2 (en) Shape measurement method
CN110293471A (en) The processing method of a kind of curve surface work pieces and for the equipment in this method
JPS61156022A (en) Automatic spectacle lens grinder
JPS5997873A (en) Method of correcting positional displacement of work in robot
JPS63128219A (en) Aspherical shape measuring machine
JPS62215814A (en) Apparatus for measuring shape of lens fixing mold of frame of spectacles
JPH07106540B2 (en) Lens grinding method and apparatus therefor
JP2572936B2 (en) Shape measuring instruments
JP2001088002A (en) Optical profile grinding method and device
JPH0740163A (en) Table transfer device and control therefor
JP2612285B2 (en) Lens grinding method and apparatus therefor
JPH0192055A (en) Grinding of lens and device thereof
JPH05127729A (en) Cnc controller
JPH079364A (en) Method and device for marking work off