JPH05251976A - Method for manufacturing electrode of surface acoustic wave element - Google Patents

Method for manufacturing electrode of surface acoustic wave element

Info

Publication number
JPH05251976A
JPH05251976A JP8031592A JP8031592A JPH05251976A JP H05251976 A JPH05251976 A JP H05251976A JP 8031592 A JP8031592 A JP 8031592A JP 8031592 A JP8031592 A JP 8031592A JP H05251976 A JPH05251976 A JP H05251976A
Authority
JP
Japan
Prior art keywords
film thickness
metal film
electrode
acoustic wave
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8031592A
Other languages
Japanese (ja)
Inventor
Yoshifumi Sakamoto
芳文 坂本
Masaaki Narita
正明 成田
Koji Asano
宏二 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP8031592A priority Critical patent/JPH05251976A/en
Publication of JPH05251976A publication Critical patent/JPH05251976A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To suppress a deviation in the electrode film thickness small when the electrode of an interdigital transducer and reflector of a surface acoustic wave element with a low frequency is made by the electronic beam vacuum vapor-deposition. CONSTITUTION:A metal film is added and formed in the step 1 when the film thickness is smaller than a permissible deviation in steps 31, 32 of a metal film thickness check process 3, and when the thickness is thicker than the permissible deviation, after the film thickness is made thin by the ion milling or the like in th etching step 5, the processing is restored to the film thickness check process 3 and an electrode of a prescribed pattern is formed to the film whose thickness is within the permissible deviation in the photo-lithography step 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として通信機器に用
いられる弾性表面波素子の電極製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode of a surface acoustic wave device mainly used for communication equipment.

【0002】[0002]

【従来の技術】図8は従来の電極製造方法のフローチャ
ートであり、図9は従来の弾性表面波素子の平面図とA
A’断面図である。図8の1〜4はそれぞれの工程のス
テップ番号であり、図9の10は圧電基板、20はすだ
れ状電極変換器の電極、30はグレーティング反射器の
電極を示す。約280MHzの弾性表面波素子の電極膜
厚は約3000Å程度であり、許容偏差を±2%とする
と歩留りは約50〜60%である。図8,9によって圧
電基板10上に設けるすだれ状電極及び反射器電極など
の電極20,30の製造方法を説明する。圧電基板10
の表面を洗浄工程1でアセトン・イソプロピルアルコー
ルなどの有機溶剤による超音波洗浄で清浄にした後、金
属膜形成工程2で圧電基板10の全面に電極の材料とし
て金(Au)またはアルミニウム(Al)などの導電率
の高い金属膜を電子ビーム真空蒸着などにより薄膜形成
する。膜厚検査工程3で金属膜厚を検査した後、フォト
リソグラフィ工程4により所望の電極パターンを作り上
げる。
2. Description of the Related Art FIG. 8 is a flow chart of a conventional electrode manufacturing method, and FIG. 9 is a plan view of a conventional surface acoustic wave device and FIG.
It is an A'sectional view. The numbers 1 to 4 in FIG. 8 are the step numbers of the respective steps, 10 in FIG. 9 is the piezoelectric substrate, 20 is the electrode of the interdigital transducer, and 30 is the electrode of the grating reflector. The electrode film thickness of the surface acoustic wave device of about 280 MHz is about 3000 Å, and the yield is about 50 to 60% when the allowable deviation is ± 2%. A method of manufacturing the electrodes 20, 30 such as interdigital electrodes and reflector electrodes provided on the piezoelectric substrate 10 will be described with reference to FIGS. Piezoelectric substrate 10
After cleaning the surface of the substrate by ultrasonic cleaning with an organic solvent such as acetone / isopropyl alcohol in a cleaning step 1, gold (Au) or aluminum (Al) is used as an electrode material on the entire surface of the piezoelectric substrate 10 in a metal film forming step 2. A metal film having high conductivity such as is formed into a thin film by electron beam vacuum deposition or the like. After inspecting the metal film thickness in the film thickness inspecting step 3, a desired electrode pattern is created in the photolithography step 4.

【0003】[0003]

【発明が解決しようとする課題】しかし、一般にこのよ
うにして作られた弾性表面波素子の特性は電極膜厚のば
らつきにより変動する。電子ビーム真空蒸着により電極
を形成した場合は、所望の電極膜厚に対して±2〜5%
のばらつきがあり、周波数が低い89MHzの弾性表面
波素子の場合は膜厚が約8700Åとなり、しかも許容
偏差が±2%とすると歩留りが約10%に低下する。そ
こで許容偏差を±1%にして歩留りを上げる必要があ
る。本発明の目的は、上述の問題点を解決し、電極膜厚
の偏差が小さく、歩留りの高い弾性表面波素子の電極製
造方法を提供することにある。
However, in general, the characteristics of the surface acoustic wave element manufactured in this way vary depending on the variation in the electrode film thickness. When the electrode is formed by electron beam vacuum deposition, ± 2% to the desired electrode film thickness
In the case of a surface acoustic wave element of 89 MHz having a low frequency, the film thickness is about 8700 Å, and the yield decreases to about 10% when the allowable deviation is ± 2%. Therefore, it is necessary to increase the yield by setting the allowable deviation to ± 1%. An object of the present invention is to solve the above-mentioned problems, and to provide an electrode manufacturing method of a surface acoustic wave device having a small deviation in electrode film thickness and a high yield.

【0004】[0004]

【課題を解決するための手段】本発明の電極製造方法
は、電極用全面金属膜形成後に膜厚を測定し、所望膜厚
に対するばらつきを検査し、許容偏差を超えるものにつ
いて再度の膜形成あるいはエッチングを行う膜厚調整工
程により膜厚偏差の小さい金属膜を形成したのちフォト
リソグラフィ工程によって所定の電極を形成するように
したことを特徴とするものである。
According to the electrode manufacturing method of the present invention, the film thickness is measured after the formation of the entire surface metal film for electrodes and the variation with respect to the desired film thickness is inspected. The present invention is characterized in that a metal film having a small film thickness deviation is formed by a film thickness adjusting process for performing etching, and then a predetermined electrode is formed by a photolithography process.

【0005】[0005]

【実施例】以下図面により本発明を詳細に説明する。図
1は本発明の実施例を示すフローチャートである。図2
〜図7は本発明の加工方法を説明する断面図である。圧
電基板10上に従来の洗浄工程1,金属膜形成工程2に
より弾性表面波素子の電極用金属膜を薄膜形成する。次
に、膜厚検査工程3で金属膜厚を測定する。ステップ3
1で膜厚を検出し、膜厚が許容偏差の範囲内にあれば次
のフォトリソグラフィ工程4で所定の電極パターンを作
り上げる。許容偏差の範囲を超えているときはステップ
32で所望の範囲より大きいか小さいかを判定し、図2
に示すように所望の範囲より薄い場合は再度洗浄工程1
と金属膜形成工程2により不足膜厚分の金属膜22を電
子ビーム真空蒸着などにより付加金属膜を密着形成す
る。金属膜21の表面が清浄で、洗浄工程1を実施しな
いで再形成した金属膜22が金属膜21と十分な付着力
が得られる場合は、金属膜形成工程2から実施してもよ
い。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a flow chart showing an embodiment of the present invention. Figure 2
7 to 7 are cross-sectional views for explaining the processing method of the present invention. A thin metal film for electrodes of the surface acoustic wave device is formed on the piezoelectric substrate 10 by the conventional cleaning process 1 and metal film forming process 2. Next, in the film thickness inspection step 3, the metal film thickness is measured. Step 3
The film thickness is detected in 1 and if the film thickness is within the allowable deviation range, a predetermined electrode pattern is created in the next photolithography process 4. If it exceeds the allowable deviation range, it is determined in step 32 whether the deviation is larger or smaller than the desired range.
If it is thinner than the desired range as shown in step 1, the cleaning step 1 is performed again.
Then, in the metal film forming step 2, the additional metal film is formed in close contact with the metal film 22 having an insufficient film thickness by electron beam vacuum deposition or the like. When the surface of the metal film 21 is clean and the metal film 22 re-formed without performing the cleaning step 1 can obtain sufficient adhesion force with the metal film 21, the metal film forming step 2 may be performed.

【0006】図3に示すように膜厚の許容偏差より厚い
場合は、エッチング工程5によりオーバー膜厚分の金属
膜23をイオンミリングなどにより除去する。図4,図
5,図6,図7は、その他の一様でない電極膜厚分布状
態を示す断面図である。この様な分布状態のときはエッ
チング角度,イオンビーム電流密度などを調整しイオン
ミリングなどにより許容偏差を超える部分を除去して平
坦にする。イオンミリングは、フォトリソグラフィ工程
4でも行うので新たな設備投資は不要である。以上の工
程後、再度膜厚検査工程3で金属膜厚を測定し、膜厚が
許容偏差の範囲内になったらフォトリソグラフィ工程4
により所望のパターンを作り上げる。
When the film thickness is thicker than the allowable deviation as shown in FIG. 3, the metal film 23 having an over film thickness is removed by ion milling or the like in the etching step 5. 4, FIG. 5, FIG. 6 and FIG. 7 are sectional views showing other non-uniform electrode film thickness distribution states. In such a distribution state, the etching angle, the ion beam current density, etc. are adjusted and the portion exceeding the allowable deviation is removed by ion milling or the like to flatten it. Ion milling is also performed in the photolithography process 4, so new capital investment is not required. After the above steps, the metal film thickness is measured again in the film thickness inspection step 3, and when the film thickness falls within the allowable deviation range, the photolithography step 4 is performed.
To create the desired pattern.

【0007】[0007]

【発明の効果】本発明を実施することにより、弾性表面
波素子の電極膜厚の偏差(ばらつき)を小さくでき、特
性ばらつきの小さい、高歩留りの弾性表面波素子を製造
することができる。
By implementing the present invention, it is possible to reduce the deviation (variation) in the electrode film thickness of the surface acoustic wave element, and to manufacture the surface acoustic wave element with a small yield and a high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すフローチャートである。FIG. 1 is a flow chart showing an embodiment of the present invention.

【図2】金属膜厚が薄いときに追加金属膜を形成する場
合の断面図である。
FIG. 2 is a cross-sectional view when an additional metal film is formed when the metal film thickness is thin.

【図3】金属膜厚が厚いときにエッチングする場合の断
面図である。
FIG. 3 is a cross-sectional view when etching is performed when the metal film thickness is large.

【図4】金属膜厚分布状態を示す断面図である。FIG. 4 is a cross-sectional view showing a metal film thickness distribution state.

【図5】金属膜厚分布状態を示す断面図である。FIG. 5 is a cross-sectional view showing a metal film thickness distribution state.

【図6】金属膜厚分布状態を示す断面図である。FIG. 6 is a cross-sectional view showing a metal film thickness distribution state.

【図7】金属膜厚分布状態を示す断面図である。FIG. 7 is a cross-sectional view showing a metal film thickness distribution state.

【図8】従来の弾性表面波素子の電極製造方法を示すフ
ローチャートである。
FIG. 8 is a flowchart showing a conventional method for manufacturing an electrode of a surface acoustic wave device.

【図9】弾性表面波素子の構造例を示す平面図と断面図
である。
9A and 9B are a plan view and a cross-sectional view showing a structural example of a surface acoustic wave element.

【符号の説明】[Explanation of symbols]

1 洗浄工程 2 金属膜形成工程 3 膜厚検査工程 4 フォトリソグラフィ工程 5 エッチング工程 10 圧電基板 20,30 電極 21 金属膜 22 再形成金属膜 23 エッチング金属膜 1 Cleaning Process 2 Metal Film Forming Process 3 Film Thickness Inspection Process 4 Photolithography Process 5 Etching Process 10 Piezoelectric Substrate 20, 30 Electrode 21 Metal Film 22 Reformed Metal Film 23 Etching Metal Film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧電基板上に所定の膜厚を有するすだれ
状電極変換器および反射器の電極を形成するために、 前記圧電基板の表面を洗浄したのち電子ビーム真空蒸着
により表面の全面に金属膜を形成し、該金属膜の膜厚を
測定して膜厚が所望の偏差の範囲内か否かを判定し、 所望の偏差の範囲内にあるときは、フォトリソグラフィ
によって所定の電極パターンを作り上げ、 所望の偏差の範囲より小さいときは、その上から前記電
子ビーム真空蒸着により付加金属膜を密着形成して前記
膜厚の測定を行い、 所望の偏差の範囲より大きいときは、エッチングによっ
て膜厚を薄くして前記膜厚の測定を行うようにした弾性
表面波素子の電極製造方法。
1. A metal film is formed on the entire surface of the piezoelectric substrate by electron beam vacuum deposition after cleaning the surface of the piezoelectric substrate in order to form electrodes of the interdigital transducer and the reflector having a predetermined film thickness on the piezoelectric substrate. A film is formed and the film thickness of the metal film is measured to determine whether the film thickness is within a desired deviation range. When the film thickness is within the desired deviation range, a predetermined electrode pattern is formed by photolithography. If it is smaller than the desired deviation range, the additional metal film is closely formed on it by the electron beam vacuum deposition to measure the film thickness. If it is larger than the desired deviation range, the film is etched by etching. A method for manufacturing an electrode of a surface acoustic wave device, wherein the thickness is reduced and the film thickness is measured.
JP8031592A 1992-03-03 1992-03-03 Method for manufacturing electrode of surface acoustic wave element Pending JPH05251976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8031592A JPH05251976A (en) 1992-03-03 1992-03-03 Method for manufacturing electrode of surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8031592A JPH05251976A (en) 1992-03-03 1992-03-03 Method for manufacturing electrode of surface acoustic wave element

Publications (1)

Publication Number Publication Date
JPH05251976A true JPH05251976A (en) 1993-09-28

Family

ID=13714832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8031592A Pending JPH05251976A (en) 1992-03-03 1992-03-03 Method for manufacturing electrode of surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPH05251976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853685A (en) * 1988-04-29 1989-08-01 Baker Industries, Inc. Switch monitoring arrangement with remote adjustment capability having debounce circuitry for accurate state determination

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853685A (en) * 1988-04-29 1989-08-01 Baker Industries, Inc. Switch monitoring arrangement with remote adjustment capability having debounce circuitry for accurate state determination

Similar Documents

Publication Publication Date Title
US7485238B2 (en) Etching method, etched product formed by the same, and piezoelectric vibration device, method for producing the same
CN111869103A (en) Method for forming aluminum nitride layer
JP2007201772A (en) Manufacturing method of acoustic wave element, manufacturing method of electronic device, mask and manufacturing method of mask
Visser et al. Surface acoustic wave filters in ZnO-SiO/sub 2/-Si layered structures
JPH05251976A (en) Method for manufacturing electrode of surface acoustic wave element
JP3140767B2 (en) Manufacturing method of surface acoustic wave device
JPS61236207A (en) Manufacture of surface acoustic wave resonator
US11575081B2 (en) MEMS structures and methods of forming MEMS structures
JPH06232671A (en) Manufacture of surface acoustic wave element
JP3351119B2 (en) Manufacturing method of piezoelectric resonator
JPS6038891B2 (en) Manufacturing method of ultra-small crystal unit
JPS62149138A (en) Manufacture of semiconductor device
JP3382038B2 (en) Manufacturing method of surface acoustic wave device
JP3140759B2 (en) Manufacturing method of surface acoustic wave device
JPH07273582A (en) Manufacture of surface acoustic wave resonator
JPS59165425A (en) Pattern formation
JPH04235404A (en) Manufacture method for surface acoustic wave element
JPH10107569A (en) Manufacture of surface acoustic wave device
JPH07193450A (en) Surface acoustic wave element and manufacture of the same
JPH03272212A (en) Manufacture of surface acoustic wave element
JPS60256205A (en) Manufacture of surface wave filter
CN115395912A (en) Surface acoustic wave filter and method for manufacturing same
JPH01103010A (en) Manufacture of surface acoustic wave device
JPS6116527A (en) Manufacture of metallic electrode
JPH08162880A (en) Surface acoustic wave element