JPH05251932A - Temperature compensation type crystal oscillator - Google Patents

Temperature compensation type crystal oscillator

Info

Publication number
JPH05251932A
JPH05251932A JP4500192A JP4500192A JPH05251932A JP H05251932 A JPH05251932 A JP H05251932A JP 4500192 A JP4500192 A JP 4500192A JP 4500192 A JP4500192 A JP 4500192A JP H05251932 A JPH05251932 A JP H05251932A
Authority
JP
Japan
Prior art keywords
temperature
temperature compensation
crystal
element section
control voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4500192A
Other languages
Japanese (ja)
Inventor
Kazunari Matsumoto
一成 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP4500192A priority Critical patent/JPH05251932A/en
Publication of JPH05251932A publication Critical patent/JPH05251932A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high frequency stability over a wide temperature range by devising the oscillator such that a temperature compensation element section makes analog temperature compensation and a variable capacitive element section whose capacitance is varied with a control voltage added to the temperature compensation element section makes digital temperature compensation in addition. CONSTITUTION:When temperature around a crystal vibrator 33 changes, a temperature sensor detects the change and a temperature compensation element section 32 also detects it. The temperature compensation element section 32 makes analog temperature compensation so that a frequency fluctuation of the crystal vibrator 33 is set within a range from + or -2ppm to + or -3ppm (at -30 deg.C to +80 deg.C). Then a control voltage is applied to a variable capacitive element section 31 via a digital circuit network according to the temperature information detected by the temperature sensor. Since the variable capacitance element section 31 is controlled by the control voltage, the frequency fluctuation of the crystal vibrator 33 is set within a range of + or -0.15ppm (at -30 deg.C to +80 deg.C).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は温度補償形水晶発振器
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature compensated crystal oscillator.

【0002】[0002]

【従来の技術】最近、移動通信が脚光を浴びている。そ
の中で、自動車電話で代表される移動通信システムでは
広い温度範囲に亘って周波数安定度が高いことが要求さ
れている。現在、この種、移動通信システムにおいて
は、アナログタイプの温度補償形水晶発振器(以下AT
CXOと称す)とデジタルタイプの温度補償形水晶発振
器(以下DTCXOと称す)が使用されている。これら
両発振器は次のような性能になっている。
2. Description of the Related Art Recently, mobile communication has been in the limelight. Among them, mobile communication systems represented by car telephones are required to have high frequency stability over a wide temperature range. Currently, in this type of mobile communication system, an analog type temperature-compensated crystal oscillator (hereinafter referred to as AT
CXO) and a digital temperature-compensated crystal oscillator (hereinafter referred to as DTCXO) are used. Both of these oscillators have the following performance.

【0003】(a)移動局用のATCXOの周波数f安
定度は、温度が−30℃から+80℃の範囲内で±2p
pmから±3ppmの性能であり、(b)移動局用のD
TCXOの周波数f安定度は、温度が−30℃から+8
0℃の範囲内で±1ppmから±1.5ppmの性能で
あり、(c)固定局用のDTCXOの周波数安定度は、
温度が−10℃から+60℃の範囲内で±0.1ppm
から±0.5ppmの性能である。
(A) The frequency f stability of the ATCXO for mobile stations is ± 2 p within the temperature range of -30 ° C to + 80 ° C.
Performance of ± 3 ppm from pm, (b) D for mobile station
The frequency f stability of TCXO is +8 from -30 ° C.
The performance is from ± 1ppm to ± 1.5ppm within the range of 0 ° C, and the frequency stability of (c) DTCXO for fixed station is
± 0.1ppm in the temperature range of -10 ℃ to + 60 ℃
To ± 0.5 ppm performance.

【0004】[0004]

【発明が解決しようとする課題】移動局用ATCXOの
水晶振動子単体の温度−周波数特性を示すと図3のよう
になる。この図3から明らかなように水晶振動子単体で
あると温度に対する周波数変動が約25ppmとなり、
かなり大きい。
FIG. 3 shows the temperature-frequency characteristics of a single crystal unit of the ATCXO for mobile stations. As is clear from FIG. 3, the frequency fluctuation with respect to temperature is about 25 ppm when the crystal unit is alone,
Quite big.

【0005】そこで、図4に示すようにサーミスタ1
1,12とコンデンサ13,14を図示のように並列接
続した温度補償部15を水晶振動子16と直列接続する
と、ATCXOの周波数安定度は図5に示すように、±
2ppm以内になる。しかし、ATCXOではこれ以上
に安定度を高めることはサーミスタやコンデンサのバラ
ツキのために調整が難しい問題がある。
Therefore, as shown in FIG. 4, the thermistor 1
When the temperature compensator 15 in which the capacitors 1 and 12 and the capacitors 13 and 14 are connected in parallel as shown in the figure is connected in series with the crystal oscillator 16, the frequency stability of the ATCXO is ±, as shown in FIG.
Within 2 ppm. However, in the ATCXO, there is a problem that it is difficult to adjust the stability more than this due to variations in the thermistor and the capacitor.

【0006】このため、最近、図6に示すように、温度
センサ21で水晶振動子の周囲の温度を検知し、この検
知した温度情報をアナログーデジタル変換器22,RO
M23およびデジタルーアナログ変換器24からなるデ
ジタル回路網に供給し、このデジタル回路網から出力さ
れる制御電圧で電圧制御形水晶発振器VCXOの温度補
償を行うDTCXO手段を採用するようになってきてい
る。ここで、デジタル回路網の動作について述べる。ア
ナログーデジタル変換器22は温度情報をデジタル信号
に変換した後、温度補償データに対する温度アドレスと
してROM23に供給される。ROM23は予め温度補
償データの情報を記憶しており、温度アドレスに応じた
データを逐次読み出し、読み出された信号はデジタルー
アナログ変換器24でアナログ電圧に変換される。この
アナログ電圧が制御電圧としてVCXOに供給され、温
度変化に応じて水晶振動子の周波数が制御される。
For this reason, recently, as shown in FIG. 6, the temperature sensor 21 detects the temperature around the crystal unit, and the detected temperature information is converted into analog-digital converters 22 and RO.
DTCXO means for supplying temperature to a digital circuit consisting of M23 and digital-analog converter 24 and compensating the temperature of the voltage-controlled crystal oscillator VCXO with a control voltage output from this digital circuit has come to be adopted. .. Here, the operation of the digital circuit network will be described. The analog-to-digital converter 22 converts the temperature information into a digital signal and then supplies it to the ROM 23 as a temperature address for the temperature compensation data. The ROM 23 stores in advance information of temperature compensation data, data corresponding to the temperature address is sequentially read, and the read signal is converted into an analog voltage by the digital-analog converter 24. This analog voltage is supplied to the VCXO as a control voltage, and the frequency of the crystal unit is controlled according to the temperature change.

【0007】図7AはVCXOの水晶振動子単体の温度
−周波数特性図で、温度補償を行わないときにはVCX
Oは±10ppmの周波数変動があることを示してい
る。また、図7BはVCXOの単位温度当たりの周波数
変化量を示し、図7Cは温度補償(図6に示すブロック
図のように)を行ったときの温度−周波数特性図であ
る。図7Cにおいて符号C1で示す部分はサンプリング
に起因する周波数偏差が生ずることを示すものである。
FIG. 7A is a temperature-frequency characteristic diagram of a single crystal unit of the VCXO. When temperature compensation is not performed, the VCXO is a VCXO.
O indicates that there is a frequency variation of ± 10 ppm. 7B shows the amount of frequency change per unit temperature of VCXO, and FIG. 7C is a temperature-frequency characteristic diagram when temperature compensation (as in the block diagram shown in FIG. 6) is performed. In FIG. 7C, the portion indicated by reference numeral C 1 indicates that a frequency deviation due to sampling occurs.

【0008】図6に示すDTCXOでは広い温度範囲に
て周波数安定度を高く保つにはアナログーデジタル変換
器22とデジタルーアナログ変換器24のビット数を増
加させれば、温度補償の情報量が増加し、高精度となる
反面、コストが高くなるとともに小形化が困難となる問
題がある。また、DTCXOはデジタルサンプリングに
よる階段状の制御補償を行うため、温度補償の結果、鋸
歯状の周波数偏差が生じてしまう問題もある。
In the DTCXO shown in FIG. 6, in order to keep the frequency stability high in a wide temperature range, if the number of bits of the analog-digital converter 22 and the digital-analog converter 24 is increased, the information amount of temperature compensation is increased. Although the number is increased and the accuracy is increased, there is a problem that cost is increased and miniaturization is difficult. Further, since the DTCXO performs stepwise control compensation by digital sampling, there is also a problem that a temperature deviation causes a sawtooth frequency deviation.

【0009】この発明は上記の事情に鑑みてなされたも
ので、広い温度範囲に亘って周波数安定度を高くするこ
とができるようにした温度補償形水晶発振器を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a temperature-compensated crystal oscillator capable of increasing frequency stability over a wide temperature range.

【0010】[0010]

【課題を解決するための手段】この発明は上記の目的を
達成するために、水晶振動子の周囲温度を検知する温度
センサと、この温度センサで検知した温度情報をアナロ
グーデジタル変換して温度補償データに対する温度アド
レスとして与えられるROMと、このROMに記憶され
ている温度補償データを、前記温度アドレスに応じて逐
次読み出して与えられるデジタルーアナログ変換器と、
この変換器から送出される制御電圧が供給され、この制
御電圧により周囲の温度変化に対して安定な周波数出力
を得る電圧制御水晶発振回路とを備えた水晶発振器にお
いて、前記電圧制御水晶発振回路は水晶振動子と、制御
電圧に応じて容量が変化する可変容量素子部と、この可
変容量素子部と前記水晶振動子の一端とを接続する電路
に介挿される温度補償素子部と、前記水晶振動子の他端
に接続され、出力に発振出力を得る発振回路部とを備え
てなることを特徴とするものである。
In order to achieve the above object, the present invention provides a temperature sensor for detecting the ambient temperature of a crystal unit and a temperature information obtained by analog-digital conversion of temperature information detected by the temperature sensor. A ROM provided as a temperature address for the compensation data, and a digital-analog converter provided by sequentially reading the temperature compensation data stored in the ROM according to the temperature address,
In a crystal oscillator provided with a control voltage sent from this converter, and a voltage control crystal oscillation circuit that obtains a stable frequency output with respect to ambient temperature changes by the control voltage, the voltage control crystal oscillation circuit is A crystal unit, a variable capacitance element unit whose capacitance changes according to a control voltage, a temperature compensation element unit inserted in an electric path connecting the variable capacitance unit unit and one end of the crystal unit, and the crystal vibration unit. It is characterized in that it is provided with an oscillating circuit section which is connected to the other end of the child and obtains an oscillating output as an output.

【0011】[0011]

【作用】この発明の電圧制御水晶発振回路では温度補償
素子部でアナログ温度補償を行って±2ppmから±3
ppmを得る。これに制御電圧で可変される可変容量素
子部を備えたデジタル温度補償を加えることで水晶振動
子の周波数の安定度を高める。
In the voltage controlled crystal oscillating circuit of the present invention, analog temperature compensation is performed in the temperature compensating element section, and ± 2 ppm to ± 3
to obtain ppm. The frequency stability of the crystal unit is increased by adding digital temperature compensation including a variable capacitance element unit that is variable by the control voltage.

【0012】[0012]

【実施例】以下この発明の一実施例を図面に基づいて説
明する。図1において、31は電圧可変容量素子31a
とコンデンサ31bおよび抵抗31cからなる可変容量
素子部で、この素子部31の抵抗31cの一端には図6
に示したデジタルーアナログ変換器24の制御電圧が印
加される。32は温度補償素子部で、この素子部32は
サーミスタ32aとコンデンサ32bおよびサーミスタ
32cとコンデンサ32dからなる各々の並列回路を直
列接続したもので、一端が可変容量素子部31に接続さ
れ、他端が水晶振動子33を介して発振回路部34を構
成するトランジスタ34aのベースに接続される。発振
回路部34において、34bは抵抗、34cはコンデン
サである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 31 is a voltage variable capacitance element 31a.
A variable capacitance element section including a capacitor 31b and a resistor 31c is provided at one end of the resistor 31c of the element section 31 as shown in FIG.
The control voltage of the digital-analog converter 24 shown in is applied. Reference numeral 32 denotes a temperature compensating element portion. This element portion 32 is a series connection of parallel circuits each including a thermistor 32a and a capacitor 32b and a thermistor 32c and a capacitor 32d. One end is connected to the variable capacitance element portion 31 and the other end Is connected to the base of a transistor 34a forming the oscillation circuit section 34 via the crystal oscillator 33. In the oscillator circuit section 34, 34b is a resistor and 34c is a capacitor.

【0013】上記のように構成された電圧制御水晶発振
回路は図6に示すVCXOに置き換えて接続される。い
ま、水晶振動子33の周囲の温度に変化があると、温度
センサ21がこれを検知するとともに温度補償素子部3
2もこれを検知する。温度補償素子部32はアナログ温
度補償を行って水晶振動子33の周波数変動が±2pp
mから±3ppm(−30℃〜+80℃)に入るように
温度補償する。その後、温度センサ21が検知した温度
情報に従ってデジタル回路網を介して制御電圧が可変容
量素子部31に印加される。この電圧により素子部31
は制御されるため、水晶振動子33の周波数変動が±
0.15ppm(−30℃から+80℃)になる。
The voltage controlled crystal oscillating circuit configured as described above is replaced with the VCXO shown in FIG. Now, if there is a change in the temperature around the crystal unit 33, the temperature sensor 21 detects this and the temperature compensation element unit 3
2 also detects this. The temperature compensating element unit 32 performs analog temperature compensation so that the frequency fluctuation of the crystal unit 33 is ± 2 pp.
Temperature compensation is performed so as to be within ± 3 ppm (−30 ° C. to + 80 ° C.) from m. Then, according to the temperature information detected by the temperature sensor 21, the control voltage is applied to the variable capacitance element section 31 via the digital circuit network. By this voltage, the element portion 31
Is controlled, the frequency fluctuation of the crystal unit 33 is ±
It becomes 0.15 ppm (-30 ° C to + 80 ° C).

【0014】図2Aは上記実施例の電圧制御水晶発振回
路において温度補償素子部だけにおける発振回路の温度
−周波数特性図、図2Bは同発振回路の単位温度当たり
の周波数変化量を示す特性図、図2Cは上記実施例の電
圧制御水晶発振回路を温度補償素子部32(アナログ温
度補償)と可変容量素子部31(デジタル温度補償)の
両方で温度制御したときの温度−周波数特性図である。
この図2Cの温度−周波数特性図は、この実施例におけ
る発振回路における周波数変動が±0.15ppmの範
囲に入っていることを示しているとともに、従来サンプ
リングに起因する周波数偏差が生じないことも示してい
る。
FIG. 2A is a temperature-frequency characteristic diagram of the oscillator circuit in the temperature-controlled crystal oscillator circuit of the above-mentioned embodiment only, and FIG. 2B is a characteristic diagram showing the frequency change amount per unit temperature of the oscillator circuit. FIG. 2C is a temperature-frequency characteristic diagram when the temperature control of the voltage controlled crystal oscillation circuit of the above embodiment is controlled by both the temperature compensation element section 32 (analog temperature compensation) and the variable capacitance element section 31 (digital temperature compensation).
The temperature-frequency characteristic diagram of FIG. 2C shows that the frequency fluctuation in the oscillation circuit in this embodiment is within the range of ± 0.15 ppm, and the frequency deviation due to the conventional sampling does not occur. Shows.

【0015】一般にDTCXOにおいてはROM等に記
憶されている情報が正確なものであれば、DTCXOの
周波数偏差量δfd(ppm)は次式で表される。
Generally, in the DTCXO, if the information stored in the ROM or the like is accurate, the frequency deviation amount δfd (ppm) of the DTCXO is expressed by the following equation.

【0016】[0016]

【数1】 [Equation 1]

【0017】上記式に、この実施例と図6の従来例のD
TCXOにより得られる値を代入した結果を次表に示
す。
In the above equation, D of this embodiment and the conventional example of FIG.
The following table shows the results of substituting the values obtained by TCXO.

【0018】[0018]

【表1】 [Table 1]

【0019】上記表からDTCXOでは被補償対象とな
るVCXOの単位温度当たりの周波数変化量に比例して
DTCXOの最大周波数偏差も大きくなる。従って、上
記周波数変化量を小さくすると、鋸歯状の周波数偏差を
小さくすることができるので、予めアナログ温度補償を
行ってあるこの発明の実施例を従来のVCXOに置換す
れば上記表の概算値のように±0.15ppm(−30
℃から+80℃)の電圧制御水晶発振回路を得ることが
できる。
From the above table, in the DTCXO, the maximum frequency deviation of the DTCXO also increases in proportion to the amount of frequency change per unit temperature of the VCXO to be compensated. Therefore, if the frequency change amount is reduced, the sawtooth frequency deviation can be reduced. Therefore, if the embodiment of the present invention in which analog temperature compensation is performed is replaced with a conventional VCXO, the estimated values in the above table can be obtained. So ± 0.15ppm (-30
It is possible to obtain a voltage controlled crystal oscillating circuit of ℃ to + 80 ℃.

【0020】[0020]

【発明の効果】以上述べたように、この発明によれば、
広い温度範囲に亘って、周波数の高安定化を図ることが
できる利点がある。
As described above, according to the present invention,
There is an advantage that the frequency can be highly stabilized over a wide temperature range.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の要部を示す結線図。FIG. 1 is a connection diagram showing a main part of an embodiment of the present invention.

【図2】Aはこの発明の実施例に使用されるアナログ温
度補償のみの温度−周波数特性図、Bは単位温度当たり
の周波数変化量特性図、Cはアナログ,デジタル温度補
償を行ったこの発明の実施例の温度−周波数特性図。
FIG. 2A is a temperature-frequency characteristic diagram only for analog temperature compensation used in the embodiment of the present invention, B is a frequency change amount characteristic diagram per unit temperature, and C is the present invention in which analog and digital temperature compensation is performed. 3 is a temperature-frequency characteristic diagram of the example of FIG.

【図3】ATCXO用水晶振動子の温度−周波数特性
図。
FIG. 3 is a temperature-frequency characteristic diagram of a crystal unit for ATCXO.

【図4】アナログ温度補償回路網を示す結線図。FIG. 4 is a connection diagram showing an analog temperature compensation network.

【図5】ATCXOの温度補償後の特性図。FIG. 5 is a characteristic diagram of ATCXO after temperature compensation.

【図6】DTCXOの従来例を示すブロック図。FIG. 6 is a block diagram showing a conventional example of DTCXO.

【図7】AはVCXOの温度−周波数特性図、BはVC
XOの単位温度当たりの周波数変化量特性図、Cは従来
のDTCXOの温度−周波数特性図。
FIG. 7A is a temperature-frequency characteristic diagram of VCXO, and B is VC.
Frequency change amount characteristic chart of XO per unit temperature, C is temperature-frequency characteristic chart of conventional DTCXO.

【符号の説明】[Explanation of symbols]

21…温度センサ、22…アナログーデジタル変換器、
23…ROM、24…デジタル−アナログ変換器、31
…可変容量素子部、32…温度補償素子部、33…水晶
振動子、34…発振回路部。
21 ... Temperature sensor, 22 ... Analog-digital converter,
23 ... ROM, 24 ... Digital-analog converter, 31
... Variable capacitance element section, 32 ... Temperature compensation element section, 33 ... Crystal oscillator, 34 ... Oscillation circuit section.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水晶振動子の周囲温度を検知する温度セ
ンサと、この温度センサで検知した温度情報をアナログ
ーデジタル変換して温度補償データに対する温度アドレ
スとして与えられるROMと、このROMに記憶されて
いる温度補償データを、前記温度アドレスに応じて逐次
読み出して与えられるデジタルーアナログ変換器と、こ
の変換器から送出される制御電圧が供給され、この制御
電圧により周囲の温度変化に対して安定な周波数出力を
得る電圧制御水晶発振回路とを備えた水晶発振器におい
て、 前記電圧制御水晶発振回路は水晶振動子と、制御電圧に
応じて容量が変化する可変容量素子部と、この可変容量
素子部と前記水晶振動子の一端とを接続する電路に介挿
される温度補償素子部と、前記水晶振動子の他端に接続
され、出力に発振出力を得る発振回路部とを備えてなる
ことを特徴とする温度補償形水晶発振器。
1. A temperature sensor for detecting an ambient temperature of a crystal unit, a ROM which is subjected to analog-digital conversion of temperature information detected by the temperature sensor to be given as a temperature address for temperature compensation data, and stored in this ROM. The temperature-compensated data is read out sequentially according to the temperature address, and the digital-analog converter and the control voltage sent from this converter are supplied. This control voltage stabilizes the ambient temperature. In a crystal oscillator including a voltage control crystal oscillation circuit that obtains a variable frequency output, the voltage control crystal oscillation circuit includes a crystal resonator, a variable capacitance element unit whose capacitance changes according to a control voltage, and the variable capacitance element unit. And a temperature compensation element section inserted in an electric path connecting one end of the crystal unit and the other end of the crystal unit, Temperature compensated crystal oscillator characterized in that it comprises an oscillation circuit portion for obtaining a vibration output.
JP4500192A 1992-03-03 1992-03-03 Temperature compensation type crystal oscillator Pending JPH05251932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4500192A JPH05251932A (en) 1992-03-03 1992-03-03 Temperature compensation type crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4500192A JPH05251932A (en) 1992-03-03 1992-03-03 Temperature compensation type crystal oscillator

Publications (1)

Publication Number Publication Date
JPH05251932A true JPH05251932A (en) 1993-09-28

Family

ID=12707175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4500192A Pending JPH05251932A (en) 1992-03-03 1992-03-03 Temperature compensation type crystal oscillator

Country Status (1)

Country Link
JP (1) JPH05251932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277917A (en) * 2004-03-25 2005-10-06 Nippon Dempa Kogyo Co Ltd Crystal oscillator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277917A (en) * 2004-03-25 2005-10-06 Nippon Dempa Kogyo Co Ltd Crystal oscillator
JP4499457B2 (en) * 2004-03-25 2010-07-07 日本電波工業株式会社 Crystal oscillator

Similar Documents

Publication Publication Date Title
JP2001522185A5 (en)
US6882835B2 (en) Oscillator and communication apparatus
JP6567403B2 (en) Frequency calibration circuit and frequency calibration method
JPH104318A (en) Temperature compensation type crystal oscillator
US20020005765A1 (en) Digital indirectly compensated crystal oscillators
JPH11220327A (en) Temperature compensation circuit for oscillator
CN108512546B (en) Circuit device, oscillator, electronic apparatus, moving object, and method for manufacturing circuit device
Griffith et al. A crystal-less bluetooth low energy radio using a MEMS-based frequency reference system
JPH05251932A (en) Temperature compensation type crystal oscillator
JPH06276020A (en) Temperature compensated crystal oscillator
JPH0469450B2 (en)
JPH05218738A (en) Digital temperature compensation oscillator
JP3272659B2 (en) Temperature compensated piezoelectric oscillator with frequency correction circuit
JPH10290118A (en) Digital temperature compensation crystal oscillator
JP2000183648A (en) Piezo-oscillator having frequency correcting function
JP2931595B2 (en) Digital temperature compensated oscillator
JPH1168461A (en) Piezoelectric oscillation circuit
JPH06252642A (en) Control circuit for frequency characteristic of digitally controlled temperature compensation type crystal oscillator
JPH026243B2 (en)
JP2001168640A (en) Temperature compensation type oscillator, radio communication equipment and electronic equipment
JP2001257531A (en) Crystal oscillator
JP3243680B2 (en) Frequency correction method for digitally controlled oscillator
JPH09321621A (en) Frequency synthesizer
JPH03126304A (en) Temperature compensation crystal oscillator
KR880001367B1 (en) Frequency stabilizing circuit