JPH05250737A - Magneto-optical recording medium - Google Patents
Magneto-optical recording mediumInfo
- Publication number
- JPH05250737A JPH05250737A JP4544892A JP4544892A JPH05250737A JP H05250737 A JPH05250737 A JP H05250737A JP 4544892 A JP4544892 A JP 4544892A JP 4544892 A JP4544892 A JP 4544892A JP H05250737 A JPH05250737 A JP H05250737A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- intermediate layer
- magneto
- recording medium
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は光磁気記録媒体に係り、
特に記録層とメモリ層を備え、光変調方式でオーバーラ
イトが可能な光磁気記録媒体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium,
In particular, the present invention relates to a magneto-optical recording medium that includes a recording layer and a memory layer and can be overwritten by an optical modulation method.
【0002】[0002]
【従来の技術】従来より光変調方式でオーバーライトが
可能な光磁気記録媒体として、ポリカーボネイト、或い
はガラス基板のような透明基板上に、例えばテルビウム
−鉄−コバルト(Tb-Fe-Co)等の希土類−遷移金属非晶質
合金より成る記録層とメモリ層を積層して設ける。そし
て上記記録層はメモリ層に比較して室温で保磁力が大き
く、かつキュリー温度が低くなるように、前記記録層と
メモリ層を構成する元素の組成を変動させて形成する。2. Description of the Related Art Conventionally, as a magneto-optical recording medium which can be overwritten by an optical modulation method, a transparent substrate such as polycarbonate or a glass substrate, for example, terbium-iron-cobalt (Tb-Fe-Co) is used. A recording layer made of a rare earth-transition metal amorphous alloy and a memory layer are laminated and provided. The recording layer is formed by changing the composition of the elements forming the recording layer and the memory layer so that the coercive force is higher at room temperature and the Curie temperature is lower than that of the memory layer.
【0003】そして、更に記録層とメモリ層との間の交
換結合力を制御するために、記録層とメモリ層間に、該
記録層とメモリ層を形成する希土類−遷移金属非晶質合
金の窒化膜より成る中間層を設けて形成したオーバーラ
イト可能な光磁気記録媒体が開発されている。In order to further control the exchange coupling force between the recording layer and the memory layer, the rare earth-transition metal amorphous alloy forming the recording layer and the memory layer is nitrided between the recording layer and the memory layer. Overwritable magneto-optical recording media formed by providing an intermediate layer made of a film have been developed.
【0004】[0004]
【発明が解決しようとする課題】上記した中間層に用い
る希土類−遷移金属合金を窒化した窒化膜は、記録層と
メモリ層間の交換結合力を所定の値に制御できる効果は
ある。然し、オーバーライト試験を多数回繰り返す過程
で、レーザパワーの照射により記録媒体が加熱され、こ
の加熱によって中間層の希土類−遷移金属合金の窒化膜
の中の窒素が分離する恐れがある。The nitride film obtained by nitriding the rare earth-transition metal alloy used for the intermediate layer has the effect of controlling the exchange coupling force between the recording layer and the memory layer to a predetermined value. However, in the process of repeating the overwrite test many times, the recording medium is heated by the irradiation of the laser power, and this heating may separate nitrogen in the nitride film of the rare earth-transition metal alloy of the intermediate layer.
【0005】そしてこの分離した窒素は、中間層より記
録層やメモリ層に移動して拡散し、そのため、中間層の
構成成分に変動を生じるので、記録層とメモリ層の間の
交換結合力が変動し、光磁気記録媒体の特性に変動を及
ぼすように成る。Then, the separated nitrogen moves from the intermediate layer to the recording layer or the memory layer and diffuses, so that the constituent components of the intermediate layer fluctuate, so that the exchange coupling force between the recording layer and the memory layer is increased. It fluctuates and affects the characteristics of the magneto-optical recording medium.
【0006】このような不都合を除去するため、中間層
には、オーバーライト試験を繰り返しても、メモリ層と
記録層の間で交換結合力が変化しない材料を用いること
が望ましい。In order to eliminate such inconvenience, it is desirable to use, for the intermediate layer, a material whose exchange coupling force does not change between the memory layer and the recording layer even when the overwrite test is repeated.
【0007】本発明は上記した問題を解決し、オーバー
ライト試験を繰り返しても、メモリ層と記録層の交換結
合力が変動しないような中間層を有する光磁気記録媒体
の提供を目的とする。An object of the present invention is to solve the above problems and to provide a magneto-optical recording medium having an intermediate layer in which the exchange coupling force between the memory layer and the recording layer does not fluctuate even if the overwrite test is repeated.
【0008】[0008]
【課題を解決するための手段】本発明の光磁気記録媒体
は、請求項1に示すように希土類−遷移金属非晶質合金
薄膜を記録層、メモリ層として設け、該記録層とメモリ
層間の交換結合力を制御する中間層を備えた光磁気記録
媒体に於いて、前記中間層に非磁性希土類元素のイット
リウム、スカンジウム、或いはランタンの元素の内の少
なくとも一元素で形成されたスパッタ膜を用い、該中間
層の膜厚を5 〜10Åの範囲としたことを特徴とするもの
である。According to a first aspect of the present invention, a magneto-optical recording medium is provided with a rare earth-transition metal amorphous alloy thin film as a recording layer and a memory layer, and between the recording layer and the memory layer. In a magneto-optical recording medium having an intermediate layer for controlling exchange coupling force, a sputtered film formed of at least one element of nonmagnetic rare earth elements yttrium, scandium, or lanthanum is used for the intermediate layer. The film thickness of the intermediate layer is in the range of 5 to 10Å.
【0009】また本発明の光磁気記録媒体は、請求項2
に示すように前記中間層に非磁性希土類元素のイットリ
ウム、スカンジウム、或いはランタンの内の少なくとも
一元素と、希土類遷移金属非晶質合金膜との合金膜で形
成されたスパッタ膜を用い、該中間層の膜厚を50〜150
Åの範囲とし、前記合金膜の内で前記非磁性希土類元素
の添加量を30〜40原子%としたことを特徴とするもので
ある。Further, the magneto-optical recording medium of the present invention comprises:
As shown in FIG. 4, a sputtered film formed of an alloy film of at least one element of nonmagnetic rare earth elements yttrium, scandium, or lanthanum and a rare earth transition metal amorphous alloy film is used as the intermediate layer, Layer thickness 50-150
It is characterized in that the range is Å, and the addition amount of the nonmagnetic rare earth element in the alloy film is 30 to 40 atom%.
【0010】[0010]
【作用】イットリウム(Y) 、スカンジウム(Sc)およびラ
ンタン(La)等の元素は、磁性を全く有しない非磁性希土
類元素である。そこで、Y 、Sc、La等の元素の単体、或
いはこれらの元素を2種類以上組み合わせて合金とし、
中間層として記録層とメモリ層の間に形成すると、記録
層とメモリ層間の交換結合力がこの中間層によって弱め
られる。そしてこの中間層は単体、或いは金属間化合物
であるので従来の窒化物の中間層と異なり、オーバーラ
イト時の加熱によっても分解しない。[Function] Elements such as yttrium (Y), scandium (Sc) and lanthanum (La) are non-magnetic rare earth elements having no magnetism. Therefore, a simple substance of elements such as Y, Sc, and La, or a combination of two or more of these elements is formed into an alloy,
When the intermediate layer is formed between the recording layer and the memory layer, the exchange coupling force between the recording layer and the memory layer is weakened by the intermediate layer. Since this intermediate layer is a simple substance or an intermetallic compound, unlike the conventional nitride intermediate layer, it does not decompose even when heated during overwriting.
【0011】また、この中間層の厚さを所定の値に制御
すると、記録層とメモリ層間の交換結合力が所定の値に
制御できる。また、この他にY 、Sc、La等の元素を、記
録層やメモリ層を形成する希土類-遷移金属合金に混合
して合金化すると、希土類- 遷移金属合金が本来持って
いる磁性が、上記したY 、Sc、La等の元素の添加によっ
て弱められるので、垂直磁気異方性が小さくなる。When the thickness of the intermediate layer is controlled to a predetermined value, the exchange coupling force between the recording layer and the memory layer can be controlled to a predetermined value. In addition, if other elements such as Y, Sc, La, etc. are mixed with the rare earth-transition metal alloy forming the recording layer or the memory layer to form an alloy, the magnetism originally possessed by the rare earth-transition metal alloy becomes Since it is weakened by the addition of such elements as Y, Sc, and La, the perpendicular magnetic anisotropy becomes small.
【0012】従って、これ等の非磁性希土類元素を、記
録層やメモリ層を形成する希土類-遷移金属合金に添加
して形成した合金を中間層に用い、この非磁性希土類元
素を希土類- 遷移金属合金に添加する割合や、中間層の
膜厚を調整することで、記録層とメモリ層間の交換結合
力を所定の値に制御することが可能となる。Therefore, an alloy formed by adding these nonmagnetic rare earth elements to the rare earth-transition metal alloy forming the recording layer or the memory layer is used for the intermediate layer, and the nonmagnetic rare earth element is used as the rare earth-transition metal alloy. The exchange coupling force between the recording layer and the memory layer can be controlled to a predetermined value by adjusting the ratio of addition to the alloy and the thickness of the intermediate layer.
【0013】また、この非磁性希土類元素を、希土類−
遷移金属合金に添加して形成した合金より成る中間層
は、従来の窒化物の中間層と異なって金属間化合物であ
るために、オーバーライト試験の過程で窒化物の中間層
のように窒素が分離して組成変動を生じることが無くな
り、そのため、メモリ層と記録層の間の交換結合力が変
化するような現象が発生し無くなる。Further, the non-magnetic rare earth element is
Unlike the conventional nitride intermediate layer, the intermediate layer made of the alloy formed by adding to the transition metal alloy is an intermetallic compound. The separation does not cause compositional fluctuations, so that the phenomenon of changing the exchange coupling force between the memory layer and the recording layer does not occur.
【0014】[0014]
【実施例】以下、図面を用いて本発明の実施例につき詳
細に説明する。図1(a)は本発明の第1実施例の光磁気記
録媒体の断面図で、図示するように、ポリカーボネイト
製の透明プラスチックの基板1上に、厚さが1600Åのテ
ルビウム- 二酸化シリコン( Tb- SiO2) より成る下部保
護膜2が設けられ、その上に厚さが600 Åの重軽希土類
−遷移金属非晶質合金であるネオジウム- ジスプロシウ
ム- 鉄- コバルト(Nd-Dy-Fe-Co) よりなる記録層3が設
けられている。Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 (a) is a sectional view of a magneto-optical recording medium according to a first embodiment of the present invention. As shown in the figure, on a transparent plastic substrate 1 made of polycarbonate, terbium-silicon dioxide (Tb -SiO 2 ) is provided on the lower protective film 2, and 600 Å is a heavy and light rare earth-transition metal amorphous alloy, neodymium-dysprosium-iron-cobalt (Nd-Dy-Fe-Co). 2) is provided.
【0015】更に該記録層3上に厚さが5Åのイットリ
ウム(Y) より成る中間層4-1 が設けられ、更にその上に
厚さが300 Åのテルビウム- 鉄- コバルト(Tb-Fe-Co)よ
り成るメモリ層5が設けられ、更に最上層には、厚さが
1600Åのテルビウム- 二酸化シリコン( Tb- SiO2) より
成る上部保護膜6が設けられている。Further, an intermediate layer 4-1 made of yttrium (Y) having a thickness of 5 Å is provided on the recording layer 3, and terbium-iron-cobalt (Tb-Fe-) having a thickness of 300 Å is further provided thereon. A memory layer 5 made of Co) is provided, and the uppermost layer has a thickness of
An upper protective film 6 made of 1600Å terbium-silicon dioxide (Tb-SiO 2 ) is provided.
【0016】このような光磁気記録媒体を形成するに
は、図1(a)、および図2に示すように、スパッタ容器11
内の排気管12に連なる排気ポンプ( 図示せず) を用いて
スパッタ容器11内を5 ×10-5Pa程度の真空度になる迄排
気した後、ガス導入管13のバルブ14を開いてアルゴン(A
r)ガスを、0.2Pa の圧力迄導入し、この圧力でTb- SiO2
よりなる保護膜形成用ターゲット15と基板1間に高周波
電力を印加し、マグネトロンスパッタ法により基板1上
にTb- SiO2よりなる下部保護膜2を1600Åの厚さに形成
する。To form such a magneto-optical recording medium, as shown in FIG. 1 (a) and FIG.
After exhausting the inside of the sputter chamber 11 to a vacuum degree of about 5 × 10 -5 Pa using an exhaust pump (not shown) connected to the exhaust pipe 12 inside, open the valve 14 of the gas introduction pipe 13 and argon. (A
r) Gas is introduced up to a pressure of 0.2 Pa, at which pressure Tb-SiO 2
A high-frequency power is applied between the target 15 for forming a protective film and the substrate 1 to form a lower protective film 2 made of Tb-SiO 2 on the substrate 1 by magnetron sputtering to a thickness of 1600Å.
【0017】次いでNd-Dy-Fe-Co よりなる記録層形成用
ターゲット16を用いて基板上にNd-Dy-Fe-Co よりなる記
録層3を600 Åの厚さで形成する。次いでYよりなる中
間層形成用ターゲット17-1を用いて記録層3上にYより
なる中間層4-1 を5Åの厚さで形成する。Next, the recording layer 3 made of Nd-Dy-Fe-Co is formed on the substrate using the recording layer forming target 16 made of Nd-Dy-Fe-Co to a thickness of 600 Å. Next, the intermediate layer 4-1 made of Y is formed on the recording layer 3 by using the intermediate layer forming target 17-1 made of Y with a thickness of 5Å.
【0018】次いでTb-Fe-Coよりなるメモリ層形成用タ
ーゲット18を用いて、中間層4上にTb-Fe-Coよりなるメ
モリ層5を300 Åの厚さで形成する。次いで前記したTb
- SiO2よりなる保護膜形成用ターゲット15を用いてメモ
リ層5上に、Tb- SiO2よりなる上部保護膜6を1600Åの
厚さで形成する。Then, using the memory layer forming target 18 made of Tb-Fe-Co, the memory layer 5 made of Tb-Fe-Co is formed on the intermediate layer 4 to a thickness of 300 Å. Then the above Tb
- on the memory layer 5 using the protective film formation target 15 made of SiO 2, to form the upper protective layer 6 made of Tb-SiO 2 in a thickness of 1600 Å.
【0019】ここで中間層の膜厚を最適な厚さに保つた
めに、上記した成膜方法で中間層の膜厚を変化させた光
磁気記録媒体を形成し、この光磁気記録媒体に於ける中
間層の膜厚と、記録層とメモリ層間の界面磁壁エネルギ
ーσW の関係を検討した結果を図3(a)に示す。Here, in order to keep the film thickness of the intermediate layer at an optimum value, a magneto-optical recording medium in which the film thickness of the intermediate layer is changed by the above-described film forming method is formed, and in this magneto-optical recording medium. The relationship between the film thickness of the intermediate layer and the magnetic domain wall energy σ W between the recording layer and the memory layer is examined, and the result is shown in FIG. 3 (a).
【0020】図3(a) の横軸は中間層の膜厚を示し、縦
軸は記録層とメモリ層間の界面磁壁エネルギーσW を示
す。図示するように中間層の膜厚が厚い程、記録層とメ
モリ層の間の交換結合力が弱くなることを示している。In FIG. 3A, the horizontal axis represents the film thickness of the intermediate layer, and the vertical axis represents the interfacial domain wall energy σ W between the recording layer and the memory layer. As shown in the figure, the thicker the intermediate layer, the weaker the exchange coupling force between the recording layer and the memory layer.
【0021】また中間層の厚さを変化させた場合の第1
実施例の光磁気記録媒体の中間層の厚さと、オーバーラ
イトに於けるC/N の関係を表1に示す。The first method when the thickness of the intermediate layer is changed
Table 1 shows the relationship between the thickness of the intermediate layer of the magneto-optical recording medium of the example and the C / N upon overwriting.
【0022】[0022]
【表1】 [Table 1]
【0023】表1より中間層の膜厚が5〜10Åの範囲で
あると、オーバーライトに於けるC/N の値が45dB以上と
なり、充分実用になることが判明した。図1(b)は本発明
の第2実施例の光磁気記録媒体の断面図で、図示するよ
うに、ポリカーボネイト製の透明プラスチックの基板1
上に、厚さが1600Åのテルビウム- 二酸化シリコン( Tb
- SiO2) より成る下部保護膜2が設けられ、その上に厚
さが600 Åのネオジウム- ジスプロシウム- 鉄- コバル
ト(Nd-Dy-Fe-Co) よりなる記録層3が設けられ、その上
にイットリウム−ネオジウム−ジスプロシウム−鉄−コ
バルト(Y-Nd-Dy-Fe-Co) より成る中間層4-2 が100 Åの
厚さで設けられている。From Table 1, it has been found that when the thickness of the intermediate layer is in the range of 5 to 10Å, the C / N value in overwriting becomes 45 dB or more, which is sufficiently practical. FIG. 1 (b) is a sectional view of a magneto-optical recording medium according to a second embodiment of the present invention. As shown, a transparent plastic substrate 1 made of polycarbonate is used.
On top, 1600Å thick terbium-silicon dioxide (Tb
A lower protective film 2 made of SiO 2 ), and a recording layer 3 made of neodymium-dysprosium-iron-cobalt (Nd-Dy-Fe-Co) having a thickness of 600 Å formed on the lower protective film 2. An intermediate layer 4-2 made of yttrium-neodymium-dysprosium-iron-cobalt (Y-Nd-Dy-Fe-Co) is provided at a thickness of 100Å.
【0024】更にその上に厚さが300 Åのテルビウム-
鉄- コバルト(Tb-Fe-Co)より成るメモリ層5が設けら
れ、更に最上層には、厚さが1600Åのテルビウム- 二酸
化シリコン( Tb- SiO2) より成る上部保護膜6が設けら
れている。On top of that, terbium with a thickness of 300 Å-
A memory layer 5 made of iron-cobalt (Tb-Fe-Co) is provided, and an upper protective film 6 made of terbium-silicon dioxide (Tb-SiO 2 ) having a thickness of 1600Å is provided on the uppermost layer. There is.
【0025】このような光磁気記録媒体を形成するに
は、図1(b)、および図2(b)に示すように、スパッタ容器
11内の排気管12に連なる排気ポンプ( 図示せず) を用い
てスパッタ容器11内を5 ×10-5Pa程度の真空度になる迄
排気した後、ガス導入管13のバルブ14を開いてアルゴン
(Ar)ガスを、0.2Pa の圧力迄導入し、この圧力でTb- Si
O2よりなる保護膜形成用ターゲット15と基板1間に高周
波電力を印加し、マグネトロンスパッタ法により基板1
上にTb- SiO2よりなる下部保護膜2を1600Åの厚さに形
成する。To form such a magneto-optical recording medium, as shown in FIGS. 1 (b) and 2 (b), a sputtering container is used.
After exhausting the inside of the sputter chamber 11 to a vacuum degree of about 5 × 10 -5 Pa using an exhaust pump (not shown) connected to the exhaust pipe 12 inside 11, open the valve 14 of the gas introduction pipe 13. Argon
(Ar) gas is introduced up to the pressure of 0.2Pa, and at this pressure, Tb-Si
High frequency power is applied between the protective film forming target 15 made of O 2 and the substrate 1, and the substrate 1 is formed by the magnetron sputtering method.
A lower protective film 2 made of Tb-SiO 2 is formed thereon with a thickness of 1600Å.
【0026】次いでNd-Dy-Fe-Co よりなる記録層形成用
ターゲット16を用いて基板上にNd-Dy-Fe-Co よりなる記
録層3を600 Åの厚さで形成する。次いでY-Nd-Dy-Fe-C
o よりなる第2実施例の中間層形成用ターゲット17-2を
用いて記録層3上にY-Nd-Dy-Fe-Co よりなる中間層4-2
を100 Åの厚さで形成する。この第2実施例の中間層形
成用ターゲット17-2は、Nd-Dy-Fe-Co よりなる記録層形
成用ターゲット16とYとの合金のターゲットである。Next, a recording layer 3 made of Nd-Dy-Fe-Co is formed on the substrate using a recording layer forming target 16 made of Nd-Dy-Fe-Co to a thickness of 600 Å. Then Y-Nd-Dy-Fe-C
The intermediate layer 4-2 made of Y-Nd-Dy-Fe-Co is formed on the recording layer 3 by using the intermediate layer forming target 17-2 of the second embodiment.
Is formed with a thickness of 100 Å. The intermediate layer forming target 17-2 of the second embodiment is an alloy target of the recording layer forming target 16 made of Nd-Dy-Fe-Co and Y.
【0027】次いでTb-Fe-Coよりなるメモリ層形成用タ
ーゲット18を用いて、中間層4-2 上にTb-Fe-Coよりなる
メモリ層5を300 Åの厚さで形成する。次いで前記した
Tb- SiO2よりなる保護膜形成用ターゲット15を用いてメ
モリ層5上に、Tb- SiO2よりなる上部保護膜6を1600Å
の厚さで形成する。Next, using the memory layer forming target 18 made of Tb-Fe-Co, the memory layer 5 made of Tb-Fe-Co is formed on the intermediate layer 4-2 to a thickness of 300 Å. Then described above
On the memory layer 5 with Tb- protective film forming target 15 made of SiO 2, 1600 Å upper protective layer 6 made of Tb- SiO 2
Formed with a thickness of.
【0028】ここで中間層の膜厚を最適な厚さに保つた
めに、上記した成膜方法で中間層の膜厚を変化させた第
2実施例の光磁気記録媒体を形成し、この第2実施例の
光磁気記録媒体に於ける中間層の膜厚と、記録層とメモ
リ層間の界面磁壁エネルギーσW の関係を図3(b)に示
す。Here, in order to keep the thickness of the intermediate layer at an optimum value, the magneto-optical recording medium of the second embodiment is formed in which the thickness of the intermediate layer is changed by the above-mentioned film forming method. The relationship between the film thickness of the intermediate layer and the interfacial domain wall energy σ W between the recording layer and the memory layer in the magneto-optical recording medium of Example 2 is shown in FIG. 3 (b).
【0029】図3(b)の横軸は第2実施例のY-Nd-Dy-Fe-C
o よりなる中間層の膜厚を示し、縦軸は記録層とメモリ
層間の界面磁壁エネルギーσW を示す。図示するように
中間層の膜厚が厚い程、記録層とメモリ層の間の交換結
合力が弱くなることを示している。The horizontal axis of FIG. 3 (b) is Y-Nd-Dy-Fe-C of the second embodiment.
The film thickness of the intermediate layer consisting of o is shown, and the vertical axis shows the interface wall energy σ W between the recording layer and the memory layer. As shown in the figure, the thicker the intermediate layer, the weaker the exchange coupling force between the recording layer and the memory layer.
【0030】また、この第2実施例の光磁気記録媒体の
オーバーライト試験の結果を図4に示す。図4より第2
実施例のY-Nd-Dy-Fe-Co よりなる中間層の膜厚が50〜15
0 Åの範囲であると、オーバーライト時のC/N の値が45
dB以上となり、この範囲の膜厚の中間層を用いると実用
的な光磁気記録媒体が得られることが判明した。The results of the overwrite test of the magneto-optical recording medium of the second embodiment are shown in FIG. Second from FIG.
The thickness of the intermediate layer made of Y-Nd-Dy-Fe-Co in the example is 50 to 15
When it is in the range of 0 Å, the C / N value during overwriting is 45
It was found that a practical magneto-optical recording medium could be obtained by using an intermediate layer having a film thickness in the range of dB or more.
【0031】次いで図1(b)の第2実施例に於けると同様
に、基板上に下部保護膜2を形成後、厚さが600 Åのネ
オジウム- ジスプロシウム- 鉄- コバルト(Nd-Dy-Fe-C
o) よりなる記録層3を設け、その上にイットリウム−
ネオジウム−ジスプロシウム−鉄−コバルト(Y-Nd-Dy-F
e-Co) より成る中間層4-2 を100 Åの厚さで設け、更に
その上に厚さが300 Åのテルビウム- 鉄- コバルト(Tb-
Fe-Co)より成るメモリ層5 、並びに上部保護膜6を形成
した光磁気記録媒体を準備する。Then, as in the second embodiment of FIG. 1 (b), after forming the lower protective film 2 on the substrate, neodymium-dysprosium-iron-cobalt (Nd-Dy-cobalt) having a thickness of 600 Å is formed. Fe-C
The recording layer 3 consisting of o) is provided, and yttrium-
Neodymium-Dysprosium-Iron-Cobalt (Y-Nd-Dy-F
An intermediate layer 4-2 made of e-Co) is provided with a thickness of 100 Å, and further terbium-iron-cobalt (Tb-
A magneto-optical recording medium having a memory layer 5 made of Fe-Co) and an upper protective film 6 is prepared.
【0032】そして第2実施例のY-Nd-Dy-Fe-Co よりな
る中間層の厚さを、100 Åと一定にした光磁気記録媒体
を用い、この中間層に含有されるYの最適な含有量を検
知するために、この中間層に含有されるYの原子%を変
化させて、このYの原子%に対し、記録層とメモリ層間
の界面磁壁エネルギーとの関係について実験した結果を
図5に示す。The magneto-optical recording medium in which the thickness of the intermediate layer of Y-Nd-Dy-Fe-Co of the second embodiment is kept constant at 100 Å is used, and the optimum content of Y contained in this intermediate layer is used. In order to detect the specific content, the atomic% of Y contained in this intermediate layer is changed, and the result of an experiment on the relationship between the atomic% of Y and the interfacial domain wall energy between the recording layer and the memory layer is shown. As shown in FIG.
【0033】図5の横軸はY-Nd-Dy-Fe-Co よりなる中間
層に含有されるYの原子%で、縦軸は記録層とメモリ層
間の界面磁壁エネルギーである。図6に示すようにYの
含有量が増加すると、記録層とメモリ層間の交換結合力
は低下する傾向にある。The horizontal axis of FIG. 5 is the atomic% of Y contained in the intermediate layer made of Y-Nd-Dy-Fe-Co, and the vertical axis is the interfacial domain wall energy between the recording layer and the memory layer. As shown in FIG. 6, when the Y content increases, the exchange coupling force between the recording layer and the memory layer tends to decrease.
【0034】またY-Nd-Dy-Fe-Co よりなる中間層に含有
されるYの原子%と、形成された光磁気記録媒体のオー
バーライト時のC/N の値との関係を図6に示す。図6の
横軸はY-Nd-Dy-Fe-Co よりなる中間層に含有されるYの
原子%で、縦軸はオーバーライトに於けるC/N の値であ
る。FIG. 6 shows the relationship between the atomic percentage of Y contained in the intermediate layer of Y-Nd-Dy-Fe-Co and the C / N value at the time of overwriting of the formed magneto-optical recording medium. Shown in. The horizontal axis of FIG. 6 is the atomic% of Y contained in the intermediate layer made of Y-Nd-Dy-Fe-Co, and the vertical axis is the C / N value in overwrite.
【0035】図6よりY-Nd-Dy-Fe-Co よりなる中間層に
含有されるYの原子%が30〜40%の時に、オーバーライ
ト時のC/N が実用的な光磁気記録媒体の目安となる45dB
値を越えることが判る。As shown in FIG. 6, when the atomic percentage of Y contained in the intermediate layer of Y-Nd-Dy-Fe-Co is 30 to 40%, the C / N at the time of overwriting is practical. 45 dB as a guide for
It turns out that the value is exceeded.
【0036】なお、第1実施例の変形例として、中間層
の構成元素のYの代わりに、ScやLaのような軽希土類元
素で非磁性の元素のスパッタ膜を用いて中間層を形成し
ても良い。As a modification of the first embodiment, the intermediate layer is formed by using a sputtered film of a light rare earth element such as Sc or La and a non-magnetic element instead of Y which is a constituent element of the intermediate layer. May be.
【0037】また第1実施例の変形例として上記Y 、S
c、Laの元素を2種類以上、適宜、組み合わせて合金膜
とした中間層を形成しても良い。また第1実施例の変形
例として記録層にNd-Dy-Fe-Co 、メモリ層にTb-Fe-Coの
希土類- 遷移金属の非晶質金属合金を用いる代わりに、
ガドリニウム(Gd)以外の希土類金属元素、例えばジスプ
ロシウム(Dy)や、テルビウム(Tb)、ネオジウム(Nd)等の
元素を、鉄やコバルトのような遷移金属と適宜、組み合
わせて記録層や、メモリ層を形成しても良い。As a modification of the first embodiment, the above Y, S
Two or more elements of c and La may be appropriately combined to form an intermediate layer as an alloy film. As a modification of the first embodiment, instead of using Nd-Dy-Fe-Co for the recording layer and Tb-Fe-Co rare earth-transition metal amorphous metal alloy for the memory layer,
Rare earth metal elements other than gadolinium (Gd), for example, dysprosium (Dy), terbium (Tb), neodymium (Nd) and other elements, a recording layer, a memory layer by appropriately combining with a transition metal such as iron or cobalt. May be formed.
【0038】また第2実施例の変形例として、中間層と
して希土類- 遷移金属の非晶質合金であるネオジウム-
ジスプロシウム- 鉄- コバルト(Nd-Dy-Fe-Co) 合金にY
を添加する代わりに、その他、ScやLaのような軽希土類
元素で非磁性の元素をY と同様な添加割合で、前記ネオ
ジウム- ジスプロシウム- 鉄- コバルト(Nd-Dy-Fe-Co)
合金に添加して合金膜を形成しても良い。As a modification of the second embodiment, neodymium which is an amorphous alloy of rare earth-transition metal is used as the intermediate layer.
Dysprosium-iron-cobalt (Nd-Dy-Fe-Co) alloy with Y
Instead of adding, other non-magnetic elements such as light rare earth elements such as Sc and La are added in the same proportion as Y, and the neodymium-dysprosium-iron-cobalt (Nd-Dy-Fe-Co) is added.
It may be added to the alloy to form an alloy film.
【0039】また第2実施例の変形例として、中間層と
して希土類- 遷移金属の非晶質合金であるネオジウム-
ジスプロシウム- 鉄- コバルト(Nd-Dy-Fe-Co) 合金にY
を添加する代わりに、Y 、Sc、Laの元素を2 種類以上適
宜、組み合わせてネオジウム- ジスプロシウム- 鉄- コ
バルト(Nd-Dy-Fe-Co) 合金に添加しても良い。As a modification of the second embodiment, neodymium, which is an amorphous alloy of rare earth-transition metal, is used as the intermediate layer.
Dysprosium-iron-cobalt (Nd-Dy-Fe-Co) alloy with Y
Instead of adding, two or more elements of Y, Sc, and La may be appropriately combined and added to a neodymium-dysprosium-iron-cobalt (Nd-Dy-Fe-Co) alloy.
【0040】また第2実施例の変形例として、記録層に
Nd-Dy-Fe-Co 、メモリ層にTb-Fe-Coの希土類- 遷移金属
の非晶質金属合金を用いる代わりに、ガドリニウム(Gd)
以外の希土類金属元素、例えばジスプロシウム(Dy)や、
テルビウム(Tb)、ネオジウム(Nd)等の元素を、鉄やコバ
ルトのような遷移金属と適宜、組み合わせて記録層や、
メモリ層を形成しても良い。As a modification of the second embodiment, the recording layer is
Nd-Dy-Fe-Co, instead of using Tb-Fe-Co rare earth-transition metal amorphous metal alloy for the memory layer, gadolinium (Gd)
Rare earth metal elements other than, for example, dysprosium (Dy),
An element such as terbium (Tb) and neodymium (Nd) is appropriately combined with a transition metal such as iron or cobalt to form a recording layer,
A memory layer may be formed.
【0041】[0041]
【発明の効果】以上述べたように、本発明の光磁気記録
媒体によれば、オーバーライト試験を繰り返しても、メ
モリ層と記録層の交換結合力が変動しないような中間層
を有する高信頼度の光磁気記録媒体が得られる効果があ
る。As described above, according to the magneto-optical recording medium of the present invention, a highly reliable medium having an intermediate layer in which the exchange coupling force between the memory layer and the recording layer does not change even if the overwrite test is repeated. There is an effect that a high-speed magneto-optical recording medium can be obtained.
【図1】 本発明の第1および第2実施例の断面図であ
る。FIG. 1 is a cross-sectional view of first and second embodiments of the present invention.
【図2】 本発明の第1および第2実施例の製造装置の
説明図である。FIG. 2 is an explanatory diagram of a manufacturing apparatus according to first and second embodiments of the present invention.
【図3】 第1および第2実施例の中間層の膜厚と界面
磁壁エネルギーの関係図である。FIG. 3 is a relationship diagram between the film thickness of the intermediate layer and the interface domain wall energy in the first and second examples.
【図4】 第2実施例の中間層膜厚とオーバーライトに
於けるC/N の関係図である。FIG. 4 is a graph showing the relationship between the thickness of the intermediate layer and the C / N ratio in overwriting according to the second embodiment.
【図5】 第2実施例のY濃度と界面磁壁エネルギーの
関係図である。FIG. 5 is a relationship diagram of Y concentration and interface domain wall energy in the second embodiment.
【図6】 第2実施例のY濃度とオーバーライトに於け
るC/N の関係図である。FIG. 6 is a relationship diagram of Y density and C / N in overwriting in the second embodiment.
1 基板 2 下部保護膜 3 記録層 4-1,4-2 中間層 5 メモリ層 6 上部記録膜 11 スパッタ容器 12 排気管 13 ガス導入管 14 バルブ 15 保護膜形成用ターゲット 16 記録層形成用ターゲット 17-1,17-2 中間層形成用ターゲット 18 メモリ層形成用ターゲット 1 Substrate 2 Lower protective film 3 Recording layer 4-1,4-2 Intermediate layer 5 Memory layer 6 Upper recording film 11 Sputter container 12 Exhaust pipe 13 Gas introduction pipe 14 Valve 15 Target for protective film formation 16 Target for recording layer formation 17 -1,17-2 Intermediate layer forming target 18 Memory layer forming target
Claims (2)
層(3) 、メモリ層(5) として設け、該記録層(3) とメモ
リ層(5) 間の交換結合力を制御する中間層(4-1) を備え
た光磁気記録媒体に於いて、 前記中間層(4-1) に非磁性希土類元素のイットリウム、
スカンジウム、或いはランタンの元素の内の少なくとも
一元素で形成されたスパッタ膜を用い、該中間層(4-1)
の膜厚を5 〜10Åの範囲としたことを特徴とする光磁気
記録媒体。1. An intermediate for controlling exchange coupling between the recording layer (3) and the memory layer (5), wherein a rare earth-transition metal amorphous alloy thin film is provided as the recording layer (3) and the memory layer (5). In a magneto-optical recording medium having a layer (4-1), the intermediate layer (4-1) in the non-magnetic rare earth element yttrium,
Using a sputtered film formed of at least one element of scandium or lanthanum, the intermediate layer (4-1)
A magneto-optical recording medium having a thickness of 5 to 10 Å.
層(3) 、メモリ層(5) として設け、該記録層(3) とメモ
リ層(5) 間の交換結合力を制御する中間層(4-2) を備え
た光磁気記録媒体に於いて、 前記中間層(4-2) に非磁性希土類元素のイットリウム、
スカンジウム、或いはランタンの内の少なくとも一元素
と、希土類−遷移金属非晶質合金との合金膜で形成され
たスパッタ膜を用い、該中間層(4-2) の膜厚を50〜150
Åの範囲とし、前記合金膜に含有される前記非磁性希土
類元素の含有量を、30〜40原子%としたことを特徴とす
る光磁気記録媒体。2. A rare earth-transition metal amorphous alloy thin film is provided as a recording layer (3) and a memory layer (5), and an intermediate layer for controlling the exchange coupling force between the recording layer (3) and the memory layer (5). In a magneto-optical recording medium having a layer (4-2), the intermediate layer (4-2) in the non-magnetic rare earth element yttrium,
A sputtering film formed of an alloy film of scandium or at least one element of lanthanum and a rare earth-transition metal amorphous alloy is used, and the thickness of the intermediate layer (4-2) is 50 to 150.
The magneto-optical recording medium is characterized in that the content of the non-magnetic rare earth element contained in the alloy film is 30 to 40 atomic% in the range of Å.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4544892A JPH05250737A (en) | 1992-03-03 | 1992-03-03 | Magneto-optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4544892A JPH05250737A (en) | 1992-03-03 | 1992-03-03 | Magneto-optical recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05250737A true JPH05250737A (en) | 1993-09-28 |
Family
ID=12719626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4544892A Withdrawn JPH05250737A (en) | 1992-03-03 | 1992-03-03 | Magneto-optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05250737A (en) |
-
1992
- 1992-03-03 JP JP4544892A patent/JPH05250737A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0606498B1 (en) | Magneto-optic recording medium and method of its manufacture | |
US4995024A (en) | Magneto-optical recording element | |
US5896350A (en) | Magneto-optical recording medium and method of producing the same | |
JPH05250737A (en) | Magneto-optical recording medium | |
US5258237A (en) | Magneto-optic recording medium | |
EP0324854B1 (en) | Optomagnetic recording medium and process for its manufacture | |
US5529854A (en) | Magneto-optic recording systems | |
JPS60231935A (en) | Photomagnetic recording medium | |
JPH0684213A (en) | Magneto-optical recording medium and its production | |
JP2929745B2 (en) | Method for manufacturing magneto-optical recording medium | |
JPS60243843A (en) | Production of photothermomagnetic recording medium | |
US6096446A (en) | Magnetooptical recording medium and method of producing the same | |
JP2997493B2 (en) | Magneto-optical recording medium | |
JPS62267950A (en) | Magneto-optical recording medium | |
JP2770836B2 (en) | Method for manufacturing magneto-optical recording medium | |
JP2536202B2 (en) | Method for manufacturing magneto-optical recording medium | |
JP2900957B2 (en) | Method for manufacturing magneto-optical recording medium | |
JPH01140446A (en) | Magneto-optical memory medium | |
JPH0573972A (en) | Magneto-optical recording medium | |
JP3189414B2 (en) | Method for manufacturing magneto-optical recording medium | |
JPS63148447A (en) | Thermomagneto-optical recording medium | |
JPH04310645A (en) | Magneto-optical recording medium | |
JPH09134553A (en) | Magneto-optical recording medium | |
Carey et al. | Thermo-magneto-optic materials for high density data storage | |
JPH0744915A (en) | Production of magneto-optical recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990518 |