JP2997493B2 - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JP2997493B2
JP2997493B2 JP2036139A JP3613990A JP2997493B2 JP 2997493 B2 JP2997493 B2 JP 2997493B2 JP 2036139 A JP2036139 A JP 2036139A JP 3613990 A JP3613990 A JP 3613990A JP 2997493 B2 JP2997493 B2 JP 2997493B2
Authority
JP
Japan
Prior art keywords
layer
magneto
film
exchange
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2036139A
Other languages
Japanese (ja)
Other versions
JPH03241548A (en
Inventor
勝太郎 市原
純生 芦田
哲 喜々津
由美 水澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2036139A priority Critical patent/JP2997493B2/en
Publication of JPH03241548A publication Critical patent/JPH03241548A/en
Application granted granted Critical
Publication of JP2997493B2 publication Critical patent/JP2997493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、書き換え可能な光磁気媒体に関し、特に少
なくとも交換力を介して結合された2層の希土類−遷移
金属(R−T)膜を具備する光磁気媒体の交換力を制御
する技術に関するものである。
The present invention relates to a rewritable magneto-optical medium, and more particularly to a two-layer rare earth-transition metal (R) coupled via at least exchange force. -T) a technique for controlling the exchange force of a magneto-optical medium having a film.

(従来の技術) レーザビームを照射して加熱し、加熱部の保磁力を低
下させて、保磁力が低下した部分の磁化の向きを外部磁
界の向きにそろえて情報の記録あるいは消去を行ない、
磁化の向きに応じた磁気光学カー効果を利用して情報の
再生を行なう光磁気記録媒体は、書換え可能な光ディス
クのメモリ媒体として実用化されている。光磁気媒体の
記録層には、垂直磁化膜が容易に得やすい、微小反転磁
区の安定性が良い、実用的な半導体レーザで記録と消去
が容易にできる、粒界雑音がない等の理由から、非晶質
R−T膜が用いられている。しかし、単層では高い記録
感度と高い再生信号強度比とを両立するのが難しい。そ
こで、高感度であるがカー回転角は比較的小さなR−T
膜(例えばTb−Fe膜)を記録層とし、カー回転角は比較
的大きいが低感度であるR−T膜(例えばGd−Fe膜)を
交換力を介して積層させた媒体が提案されている。ま
た、交換結合多層媒体は、R−T膜単層の媒体において
は実現が困難とされている光変調オーバライト機能を付
与する目的でも近年多数の提案がなされており次世代の
光磁気媒体としてその発展が期待されている。
(Prior art) Heating by irradiating a laser beam, lowering the coercive force of the heating section, and aligning the magnetization direction of the portion where the coercive force is reduced with the direction of the external magnetic field to record or erase information,
2. Description of the Related Art A magneto-optical recording medium that reproduces information using the magneto-optical Kerr effect according to the direction of magnetization has been put to practical use as a rewritable optical disk memory medium. In the recording layer of the magneto-optical medium, a perpendicular magnetization film can be easily obtained, the stability of the minute reversal domain is good, recording and erasing can be easily performed with a practical semiconductor laser, and there is no grain boundary noise. And an amorphous RT film. However, it is difficult to achieve both high recording sensitivity and high reproduction signal intensity ratio with a single layer. Therefore, although the sensitivity is high, the Kerr rotation angle is relatively small.
A medium has been proposed in which a film (for example, a Tb-Fe film) is used as a recording layer, and an RT film (for example, a Gd-Fe film) having a relatively large Kerr rotation angle and low sensitivity is laminated via an exchange force. I have. In recent years, a large number of exchange-coupled multilayer media have been proposed for the purpose of providing a light modulation overwrite function which is difficult to realize in a single-layer RT media, and as a next-generation magneto-optical medium. Its development is expected.

交換結合媒体を用いて記録/再生/消去動作を実行す
るにあたっては、光変調オーバライト機能を発現させよ
うとする場合には特にであるが、交換力を介して結合さ
れた上下2つのR−T膜間に働く交換力(Hexg)コント
ロールが極めて重要である。
When performing the recording / reproducing / erasing operation using the exchange coupling medium, this is particularly the case where the light modulation overwrite function is to be realized, but the upper and lower R-coupled via the exchange force are used. It is extremely important to control the exchange force (H ex g) acting between the T membranes.

Hexgは、界面磁壁エネルギー密度をEwB,各層の磁化を
Ms1,Ms2各層の厚みをd1,d2とすると、層1へは の変換力が働き、 層2へは の変換力が働くという様に表わされるので、EwB,Ms1,M
s2,d1,d2の最適設計が重要である。
H ex g indicates the interface domain wall energy density E wB , and the magnetization of each layer
Assuming that the thickness of each layer of M s1 and M s2 is d 1 and d 2 , The conversion power works, and the layer 2 E wB , M s1 , M
s2, the optimal design of d 1, d 2 is important.

交換結合2層膜を用いた光変調オーバライト方式にお
いては、記録層のキューリー点近傍では、Hexg1(記録
層を層1とすると)は記録層保磁力Hc1よりも大きく交
換力によって記録層の磁化(厳密には副格子磁化)が補
助層の磁化(これも厳密には副格子磁化)の向きにそろ
い、かつ常温(メモリ保持温度)及びに再生温度(再生
レーザ光照射時の膜温度)では、Hexg1がHc1よりも小さ
く記録ビットが安定に存在しうる事及びに常温ではHexg
2(補助層を層2とする)がHc2よりも小さく初期化磁界
印加後に補助層が一定の向きを向いている事が必須条件
となっているので、 の膜温度に対するコントロールが重要となる。従来技術
における交換結合多層膜においてはHexgに対する配慮は
必ずしも充分とはいえない。
In the light modulation overwrite method using the exchange-coupling two-layer film, near the Curie point of the recording layer, H ex g 1 (assuming the recording layer is layer 1) is larger than the recording layer coercive force H c1 by the exchange force. The magnetization of the recording layer (strictly speaking, sub-lattice magnetization) is aligned with the direction of the magnetization of the auxiliary layer (strictly speaking, sub-lattice magnetization), and the normal temperature (memory holding temperature) and the reproducing temperature (at the time of reproducing laser beam irradiation). in film temperature), at room temperature it and H ex g 1 is small recording bits than H c1 can exist stably H ex g
2 (assuming that the auxiliary layer is layer 2) is smaller than H c2 and it is an essential condition that the auxiliary layer is oriented in a certain direction after the application of the initialization magnetic field. It is important to control the film temperature. In the conventional exchange-coupled multilayer film, consideration for H ex g is not always sufficient.

面内磁化中間層を用いる方法やプロセスサイドのアプ
ローチがあるものの、前者は媒体層構成を複雑化し媒体
の生産性を低下させる可能性があり、後者は製造中に界
面の状態を適確にモニターできなければ歩留りがあがら
ない等の問題を有するものである。
Although there is a method using the in-plane magnetization intermediate layer and a process-side approach, the former may complicate the media layer structure and reduce the productivity of the media, and the latter accurately monitors the state of the interface during manufacturing. If it is not possible, the yield will not be improved.

(発明が解決しようとする課題) 本発明は掲記した従来技術の課題に対してなされたも
のであり、層構成が基本的には単純な交換混合2層膜で
よく、製造プロセス上特に工夫をする事なく、単に異種
遷移金属間の界面における交換力が同程遷移金属間の界
面における交換力よりも小さい事を利用して、 の値を低下させて、特に常温あるいは再生温度における
記録ビットの安定性及び補助層の磁化の安定性の良好な
光磁気記録媒体を提供する事をその目的としている。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems of the prior art, and the layer structure may be basically a simple exchange mixed two-layer film. Without taking advantage of the fact that the exchange force at the interface between dissimilar transition metals is simply smaller than the exchange force at the interface between transition metals, It is an object of the present invention to provide a magneto-optical recording medium having excellent stability of recording bits at room temperature or reproduction temperature and good stability of magnetization of the auxiliary layer, particularly by lowering the value of

[発明の構成] (課題を解決するための手段) 本発明は、膜面に対して垂直な方向に磁化容易軸を有
する非晶質希土類−遷移金属合金薄膜を複数層積層して
なる光磁気記録媒体において、複数層積層された少なく
とも1つの界面においてその界面の上下の層が層間の界
面磁壁エネルギーが3erg/cm2以下の範囲で交換力を介し
て結合されており、その上下を構成する2つの薄膜のう
ち一方の薄膜中の遷移金属元素の主成分がFeであり、他
方の薄膜中の遷移金属元素の主成分がCoであることを特
徴とする光磁気記録媒体である。ここで主成分というの
は、 RxT100-x(x:at%)で一般的に表記される(R,T以外
の添加元素が入っている場合や、Rとして希土類の他に
軽希土類が用いられる場合でもかまわない)組成式のT
成分をさらに(Fe100-yCoy){y:at%}と表わすとFe主
成分の場合にはy50at%である事を意味し、Co主成分
というのはy50at%である事を意味し、Rや添加元素
の種類によらず単にFeとCoのみを抽出して、T成分と表
記した場合のT成分の組成中の主成分を意味するもので
ある。
[Constitution of the Invention] (Means for Solving the Problems) The present invention provides a magneto-optical device comprising a stack of a plurality of amorphous rare earth-transition metal alloy thin films having an easy axis of magnetization in a direction perpendicular to the film surface. In a recording medium, at least one of the plurality of stacked layers has upper and lower layers connected to each other via exchange force in a range where the interface domain wall energy between the layers is 3 erg / cm 2 or less, and constitutes the upper and lower layers. A magneto-optical recording medium characterized in that the main component of the transition metal element in one of the two thin films is Fe, and the main component of the transition metal element in the other thin film is Co. Here, the main component is generally expressed by RxT 100-x (x: at%) (when an additional element other than R and T is contained, or R is a rare earth element in addition to a rare earth element. May be used) T
If the component is further expressed as (Fe 100-y Co y ) {y: at%}, the main component of Fe means y50at%, and the main component of Co means y50at%. When only Fe and Co are extracted regardless of the type of R, additive element, and the like, the T component means the main component in the composition of the T component.

(作用) 本発明は、一般に同種T元素(Fe主成分−Fe主成分、
もしくはCo主成分−Co主成分)の2層膜を交換結合させ
た場合に大きすぎるEwBを異種T元素の2層膜を用いる
事によって低下する事ができる。このため、常温もしく
は再生温度における記録層と補助層の磁化を安定に保つ
事ができ、メモリーの信頼性を向上する事ができる。例
えば典型的な例として常温でMs1=100ewu/cc,d1=100nm
の記録層を用いた場合に、同種T元素からなる交換結合
媒体を用いた場合EwB5erg/cm2であるのでHexg1は、2.
5koeに達し、Hc1と同系かもしくは大きくなってしまう
のに対し、異種T元素からなる交換結合媒体を用いれば
EwB=2erg/cm2b程度に低下できるのでHexg1は1koe程度
となってHc1よりも小さくできメモリビットの安定性は
向上する。さらにHexg1はd1に反比例するのでEwBを小さ
くする事によりd1を小さくできるので媒体の生産性が向
上する他、カーエンハンスメント膜構造の適正な設計を
行なう上でも有利である。
(Action) The present invention generally relates to the same type of T element (Fe main component-Fe main component,
Or oversized E wB when is exchange-coupled two-layered film of Co main component -Co ingredient) can be reduced by using a two-layered film of a heterologous T elements. For this reason, the magnetization of the recording layer and the auxiliary layer at room temperature or reproduction temperature can be kept stable, and the reliability of the memory can be improved. For example, as a typical example, M s1 = 100ewu / cc, d 1 = 100 nm at normal temperature
In the case of using the recording layer, H ex g 1 Because the case of using the exchange coupling medium consisting of allogeneic T element is E wB 5erg / cm 2 is 2.
5koe reached, while becomes H c1 syngeneic to or greater, the use of the exchange coupling medium made of different T element
Since E wB can be reduced to about 2 erg / cm 2 b, H ex g 1 becomes about 1 koe, which is smaller than H c1, and the stability of the memory bit is improved. Further H ex g 1 except that improves the productivity of the medium can be small and d 1 by reducing the E wB is inversely proportional to d 1, it is also advantageous to perform the proper design of the car enhancement film structure.

(実施例) 以下、図面を参照して本発明の光磁気記録媒体を詳細
に説明する。
(Example) Hereinafter, a magneto-optical recording medium of the present invention will be described in detail with reference to the drawings.

第1図は本発明の光磁気記録媒体の一実施例の断面構
成図であり、1は記録層、2は交換力の作用しうる界
面、3は1に交換結合してなる補助層、4,5は保護層、
6は基板である。第1図の媒体は例えば以下の手法で形
成される。スパッタリング装置にガラス基板6をセット
し装置成膜室内を10-7Torr程度に排気した後Arガスを10
0sccm導入し成膜室内圧力を5×10-3Torrとした後、先
ずSi3N4ターゲットを装着したマグネトロンスパッタ源
に1kwのRF電力を印加し、保護膜5を形成した後に、例
えばTb20Fe80合金ターゲットにDC電力を印加し100nmの
記録層1を形成し連続して、Tb27(Fe20Co8073合金タ
ーゲットにDC電力を印加し100nmの補助層3を形成し再
びSi3N4ターゲットにRF電力を印加し、保護層4を形成
する。R−T膜の組成は合金ターゲット組成よりも若干
R−poor側にシフトし、このようにして得られた媒体の
記録層の組成はTb18Fe82となり、一方補助層の組成はTb
25(Fe20Co8075となった。この様にして得られた第1
図の媒体をVSMによって常温で測定した所±10kOeの外部
磁界Hexのスイープによって第2図(a)に示される如
くの典型的な変換結合2層膜のM−Hループが得られ
た。この場合、記録層はTb18Fe82とTM−richセンス,補
助層はTb25(Fe20Co80)75とRE−richセンスで請ゆるア
ンチパラレルタイプの変換結合膜であるので、第2図
(a)において、F,A,C,Dの状態においては界面磁壁が
できており、B,Eの状態においては界面磁壁ができてい
ない。A→BもしくはD→Eの遷移は、記録層Tb18Fe82
の磁化反転に伴なうもので、記録層単層での特性は、M
s1=125ewu/cc,Hc1=2koeであるのでA→BもしくはD
→Eの遷移によってMは125ewu/cc分上昇もしくは下降
し、遷移磁界はHc1−Hexg1で1.2kOeであり、B→Cもし
くはE→Fの遷移は補助層の反転に伴なうもので補助層
単層の特性はMs2=100ewu/cc,Hc2=5kOeであるので、B
→Cもしくは、E→Fの遷移はMは100ewu/cc分だけ上
昇もしくは下降し、遷移磁界は、Hc2+Hexg2で、6kOeで
あった。Hexg1のより正確な導出方法としては第2図
(a)のB状態からHexを低下してループを描かせる手
法があり、このようにして得られたループを第2図
(b)に示した。第2図(b)において、A→Bの遷移
磁界はHc1−Hexg1であり、G→Fの遷移磁界はHc1+Hex
g1であるので、両者の遷移磁界の差の1/2がHexg1を与え
それを第2図(a)のループもしくは記録層単層のルー
プから得られるMs1及び膜厚d1の積の2倍で割るとEwB
算出される。補助層Tb25(Fe100-yCoy)中のyを幾通か
に交えて上記手法でEwBを導出してプロットしたものが
第3図である。Fe主成分の記録層に対してFe主成分の補
助層を積層した場合にはEwB>3erg/cm2であり、Hexg1
1.2kOeであるのに対しCo主成分の補助層を用いた場合E
wB3erg/cm2,Hexg1<1.2kOeであり、さらに典型例とし
てFe−Feの組合せとしてTb25Fe75の補助層を用いた場合
にはEwB=7erg/cm2でHexg1=2.8kOeでHc1を上まわって
しまうのに対し、Fe−Coの組合せとしてTb25Fe75の補助
層を用いた場合にはEwB=1.5erg/cm2でHexg1=0.6kOe
で、Hc1よりも1.4kOe低く、例えば記録層に対して外部
より1kOeの磁界を印加した場合でもメモリビットは保存
されるので信頼性が向上する事が判る。
FIG. 1 is a sectional view of a magneto-optical recording medium according to an embodiment of the present invention, wherein 1 is a recording layer, 2 is an interface on which an exchange force can act, 3 is an auxiliary layer formed by exchange coupling to 1, 4 , 5 is a protective layer,
6 is a substrate. The medium of FIG. 1 is formed, for example, by the following method. The glass substrate 6 was set in the sputtering apparatus, and the film forming chamber was evacuated to about 10 -7 Torr, and then Ar gas was discharged.
After introducing 0 sccm and setting the film forming chamber pressure to 5 × 10 −3 Torr, first, an RF power of 1 kW was applied to a magnetron sputtering source equipped with a Si 3 N 4 target to form a protective film 5, and then, for example, Tb 20 DC power is applied to the Fe 80 alloy target to form a recording layer 1 of 100 nm. Continuously, DC power is applied to the Tb 27 (Fe 20 Co 80 ) 73 alloy target to form an auxiliary layer 3 of 100 nm and Si 3 again. RF power is applied to the N 4 target to form the protective layer 4. The composition of the RT film slightly shifted to the R-poor side from the alloy target composition, and the composition of the recording layer of the medium thus obtained was Tb 18 Fe 82 , while the composition of the auxiliary layer was Tb 18 Fe 82 .
25 (Fe 20 Co 80 ) 75 . The first thus obtained
When the medium shown in the figure was measured at room temperature by a VSM, sweeping of an external magnetic field Hex of ± 10 kOe yielded a typical conversion coupling bilayer MH loop as shown in FIG. 2 (a). In this case, the recording layer is an anti-parallel type conversion coupling film which is Tb 18 Fe 82 and TM-rich sense, and the auxiliary layer is Tb 25 (Fe 20 Co 80 ) 75 and RE-rich sense. In (a), an interface domain wall is formed in the states of F, A, C, and D, and no interface domain wall is formed in the states of B and E. The transition from A to B or D to E occurs in the recording layer Tb 18 Fe 82
The characteristics of a single recording layer are M
A → B or D because s1 = 125ewu / cc, H c1 = 2koe
With the transition of → E, M rises or falls by 125ewu / cc, the transition magnetic field is 1.2 kOe at H c1 −H ex g 1 , and the transition of B → C or E → F is accompanied by the inversion of the auxiliary layer. The characteristics of the single auxiliary layer are M s2 = 100ewu / cc and H c2 = 5kOe.
In the transition from → C or E → F, M increased or decreased by 100ewu / cc, and the transition magnetic field was H c2 + H ex g 2 and 6 kOe. As a more accurate derivation method of H ex g 1 , there is a method in which H ex is reduced from the B state in FIG. 2 (a) to draw a loop, and the loop obtained in this way is shown in FIG. )Pointing out toungue. In FIG. 2 (b), the transition field of A → B is H c1 -H ex g 1, the transition field of the G → F is H c1 + H ex
g 1 , half of the difference between the two transition magnetic fields gives H ex g 1, which is given by M s1 and the film thickness d 1 obtained from the loop of FIG. 2A or the loop of the recording layer single layer. E wB is calculated by dividing by twice the product of FIG. 3 is a diagram in which E wB is derived and plotted by the above-mentioned method, with some y in the auxiliary layer Tb 25 (Fe 100-y Co y ). When an auxiliary layer mainly composed of Fe is laminated on a recording layer mainly composed of Fe, E wB > 3 erg / cm 2 and H ex g 1 >
1.2 kOe compared to the case using Co-based auxiliary layer E
wB 3erg / cm 2 , H ex g 1 <1.2 kOe, and more typically, when an auxiliary layer of Tb 25 Fe 75 is used as a Fe—Fe combination, E wB = 7 erg / cm 2 and H ex g 1 = 2.8 kOe, which exceeds H c1 , whereas when an auxiliary layer of Tb 25 Fe 75 is used as a Fe—Co combination, H ex g 1 = 0.6 at E wB = 1.5 erg / cm 2 kOe
In lower 1.4kOe than H c1, for example, the memory bits even when applying a magnetic field of 1kOe externally with respect to the recording layer is so stored seen that reliability is improved.

上記した例ではTb18Fe82記録層とTb25(Fe100-yCoy
補助層を交換結合した例について述べたが本発明はR元
素の選び方に限定されるものではなく、RとしてはTb以
外にGd,Dy,Nd,Ho等が使え、又、R,T以外にAl,Ti,Cr,An
等の添加元素が入っていてもかまわない。又、媒体の構
成は2層以外に3層以上の多層でも構わず、その様な場
合には少くとも1つの交換結合界面を有し、そのうち少
くも1つの交換結合界面の上下をなす2つの膜のTの主
成分が片方はFeもう一方はCoとなっていれば良い。
In the above example, the Tb 18 Fe 82 recording layer and Tb 25 (Fe 100-y Co y )
Although an example in which the auxiliary layer is exchange-coupled has been described, the present invention is not limited to the method of selecting the R element. As R, Gd, Dy, Nd, Ho, etc. can be used in addition to Tb. Al, Ti, Cr, An
Etc. may be contained. The medium may be composed of three or more layers other than two layers. In such a case, the medium has at least one exchange-coupling interface, and at least one exchange-coupling interface above and below at least one exchange-coupling interface. It suffices that one of the main components of T in the film is Fe and the other is Co.

[発明の効果] 本発明の光磁気記録媒体を用いれば、交換結合多層媒
体の界面磁壁エネルギー密度を所望の値に制御できるの
で、メモリ保持温度及びメモリ再生温度における6ビッ
トの安定性が向上できる。
[Effect of the Invention] By using the magneto-optical recording medium of the present invention, the interface domain wall energy density of the exchange-coupling multilayer medium can be controlled to a desired value, so that the stability of 6 bits at the memory holding temperature and the memory reproducing temperature can be improved. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の光磁気記録媒体の一実施例の構成図、
第2図及び第3図は本発明の一実施例の特性を示す図で
ある。 1……記録層、2……界面、3……補助層、4,5……保
護層、6……基板
FIG. 1 is a configuration diagram of one embodiment of a magneto-optical recording medium of the present invention,
FIG. 2 and FIG. 3 are diagrams showing characteristics of one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Recording layer, 2 ... Interface, 3 ... Auxiliary layer, 4,5 ... Protective layer, 6 ... Substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水澤 由美 神奈川県川崎市幸区柳町70番地 株式会 社東芝柳町工場内 (56)参考文献 特開 昭61−48149(JP,A) 特開 平3−156752(JP,A) 特開 平3−162742(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 11/10 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yumi Mizusawa 70, Yanagicho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Inside the Toshiba Yanagicho Plant (56) References JP-A-61-48149 (JP, A) JP-A-3 -1556752 (JP, A) JP-A-3-162742 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G11B 11/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】膜面に対して垂直な方向に磁化容易軸を有
する非晶質希土類−遷移金属合金薄膜を複数層積層して
なる光磁気記録媒体において、複数層積層された少なく
とも1つの界面においてその界面の上下の層が層間の界
面磁壁エネルギーが3erg/cm2以下の範囲で交換力を介し
て結合されており、その上下を構成する2つの薄膜のう
ち一方の薄膜中の遷移金属元素の主成分がFeであり、他
方の薄膜中の遷移金属元素の主成分がCoであることを特
徴とする光磁気記録媒体。
1. A magneto-optical recording medium comprising a plurality of layers of an amorphous rare earth-transition metal alloy thin film having an easy axis of magnetization in a direction perpendicular to the film surface, wherein at least one interface of the plurality of layers is laminated. The upper and lower layers of the interface are coupled via an exchange force in a range where the interface domain wall energy between the layers is 3 erg / cm 2 or less, and the transition metal element in one of the two thin films constituting the upper and lower layers Wherein the main component is Fe, and the main component of the transition metal element in the other thin film is Co.
JP2036139A 1990-02-19 1990-02-19 Magneto-optical recording medium Expired - Lifetime JP2997493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2036139A JP2997493B2 (en) 1990-02-19 1990-02-19 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2036139A JP2997493B2 (en) 1990-02-19 1990-02-19 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH03241548A JPH03241548A (en) 1991-10-28
JP2997493B2 true JP2997493B2 (en) 2000-01-11

Family

ID=12461457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2036139A Expired - Lifetime JP2997493B2 (en) 1990-02-19 1990-02-19 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP2997493B2 (en)

Also Published As

Publication number Publication date
JPH03241548A (en) 1991-10-28

Similar Documents

Publication Publication Date Title
JP3519293B2 (en) Magneto-optical recording medium, reproducing method of magneto-optical recording medium, magneto-optical recording and reproducing apparatus
JP3245704B2 (en) Magneto-optical recording medium and method of manufacturing the same
US5958575A (en) Magneto-optical recording medium
JP2997493B2 (en) Magneto-optical recording medium
EP0305185B1 (en) Opto-magnetic recording medium having plurality of exchange-coupled magnetic layers
US6033538A (en) Magneto-optical recording medium production method
US5529854A (en) Magneto-optic recording systems
US5225289A (en) Opto-magnetic recording medium having plurality of exchange-coupled magnetic layers
US6096446A (en) Magnetooptical recording medium and method of producing the same
JP2648623B2 (en) Magneto-optical recording medium
JP2929918B2 (en) Magneto-optical recording medium and reproducing method thereof
JP3074104B2 (en) Magneto-optical recording medium
JPH06333285A (en) Magneto-optical recording medium and its production
JP3237977B2 (en) Magneto-optical recording medium
JP2770836B2 (en) Method for manufacturing magneto-optical recording medium
JP3328988B2 (en) Magneto-optical recording medium
JP3075048B2 (en) Magneto-optical recording medium and reproducing method thereof
JP3381960B2 (en) Magneto-optical recording medium
JPH06309710A (en) Magneto-optical recording medium
JP3756052B2 (en) Reproduction method of magneto-optical recording medium
JPH11238264A (en) Magneto-optical record medium and its reproducing method
JP2536202B2 (en) Method for manufacturing magneto-optical recording medium
JPH10214441A (en) Magneto-optical disk
JPH11250515A (en) Magneto-optical recording medium
JPH0536134A (en) Magneto-optical recording medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11