JPH05249100A - Deterioration-degree judgment method of electric apparatus filled with synthetic oil - Google Patents

Deterioration-degree judgment method of electric apparatus filled with synthetic oil

Info

Publication number
JPH05249100A
JPH05249100A JP4048949A JP4894992A JPH05249100A JP H05249100 A JPH05249100 A JP H05249100A JP 4048949 A JP4048949 A JP 4048949A JP 4894992 A JP4894992 A JP 4894992A JP H05249100 A JPH05249100 A JP H05249100A
Authority
JP
Japan
Prior art keywords
synthetic oil
deterioration
molecular weight
curve
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4048949A
Other languages
Japanese (ja)
Other versions
JP3018718B2 (en
Inventor
Takashi Tsutsumi
岳志 堤
Hironobu Naito
裕宣 内藤
Motoo Wada
元生 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4048949A priority Critical patent/JP3018718B2/en
Publication of JPH05249100A publication Critical patent/JPH05249100A/en
Application granted granted Critical
Publication of JP3018718B2 publication Critical patent/JP3018718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

PURPOSE:To obtain a deterioration-degree judgment method wherein a local overheating temperature can be judged by analyzing a very small amount of a synthetic oil sample from an electric apparatus as an object to be diagnosed as will as the deterioration degree and the remaining life of a main material can be judged. CONSTITUTION:A synthetic oil as a specimen is sample from an electric apparatus which is filled with the synthetic oil; a prescribed low-molecular-weight component in the synthetic oil as the specimen is analyzed quantitatively; the concentration ratio of each low-molecular-weight component to a specific low-molecular-weight component is found from an alalytical result which has been obtained. The concentration ratio is collated with a judgment curve which has been found in advance with reference to the synthetic oil of the same kind; a temperature in a heat-generating part at the inside of the electric apparatus is judged. When the synthetic oil is a silicone oil, only 3D out of low-molecular-weight components 3D, 4D, 5D, 6D displays a saturation characteristic. As a result, when the 3D is regarded as the specific low-molecular- weight component and the concentration ratio is found, a judgment curve having a pattern which is peculiar to the silicone oil can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、シリコ−ン油などの
合成油を冷却媒体を兼ねた絶縁媒体として使用した合成
油入り電気機器の劣化度判定方法に係わり、ことに合成
油入り電気機器から少量の合成油を採取して熱劣化で生
成した低分子量成分を定量分析することにり、局部過熱
や部分放電などの異常現象による劣化度を判定する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining the degree of deterioration of a synthetic oil-containing electric device in which a synthetic oil such as silicone oil is used as an insulating medium which also serves as a cooling medium. The present invention relates to a method for determining the degree of deterioration due to an abnormal phenomenon such as local overheating or partial discharge by sampling a small amount of synthetic oil from the oil and quantitatively analyzing a low molecular weight component generated by heat deterioration.

【0002】[0002]

【従来の技術】電気機器の冷却媒体を兼ねた絶縁油とし
て使用可能な合成油としては、シリコ−ン油をはじめ、
炭化水素からなるアルキルナフタレン,ジアリルエタ
ン、エステル結合を持つりん酸エステル,カルボン酸エ
ステル、ハロゲン化合物であるフッ素油などが知られて
おり、ことに、シリコ−ン油は鉱油に比べて耐熱性,難
燃性に優れているので、特に軽量化のために高い運転温
度と高度の信頼性が要求される車両用変圧器に鉱油系絶
縁油に代わって使用されている。これらの油入り電気機
器では運転温度においても徐々に熱劣化が進行するが、
機器内部で局部的な過熱や部分放電などの異常事態が発
生すると合成油および有機絶縁材料等の劣化が急速に進
行し、ついには絶縁事故に進展する危険性があるため、
これらの異常事態の発生を早期に検出して絶縁事故を未
然に防止できる予防保全技術の確立が求められている。
2. Description of the Related Art Synthetic oils that can be used as insulating oil that also serves as a cooling medium for electric equipment include silicone oil,
Alkylnaphthalene composed of hydrocarbon, diallylethane, phosphoric acid ester having ester bond, carboxylic acid ester, and fluorine oil which is a halogen compound are known. In particular, silicone oil has higher heat resistance than mineral oil, Because of its excellent flame retardancy, it is used in place of mineral oil-based insulating oil in vehicle transformers that require high operating temperatures and high reliability, especially for weight reduction. In these oil-filled electrical devices, thermal deterioration gradually progresses even at operating temperature,
If an abnormal situation such as local overheating or partial discharge occurs inside the equipment, the synthetic oil and the organic insulating material will deteriorate rapidly, which may eventually lead to an insulation accident.
The establishment of preventive maintenance technology that can detect the occurrence of these abnormal situations early and prevent insulation accidents is required.

【0003】予防保全技術としては、分子構造が明らか
でない鉱油を用いた鉱油入り電気機器の場合、診断対象
機器から採取した鉱油試料中の溶存ガスを抽出して、そ
の成分および生成量を分析する操作を定期的に繰り返し
行うことにより、そのガス生成パタ−ンや成分および生
成量などから機器内部での局部過熱や部分放電などの異
常事態の発生を検知する劣化度判定方法が、非破壊方式
の診断技術として既に知られている。しかしながら、異
常の程度や機器の残存寿命を判定するまでには至ってい
ない。
As a preventive maintenance technology, in the case of mineral oil-containing electrical equipment using mineral oil whose molecular structure is not clear, dissolved gas in a mineral oil sample collected from the equipment to be diagnosed is extracted and its components and production amount are analyzed. A non-destructive method for determining the degree of deterioration that detects the occurrence of an abnormal situation such as local overheating or partial discharge inside the equipment from the gas generation pattern, components, and amount of gas generation by repeating the operation periodically. It is already known as a diagnostic technique for. However, the degree of abnormality and the remaining life of the device have not yet been determined.

【0004】一方、合成油入り電気機器の劣化度判定方
法としては、合成油の熱劣化に伴ってその引火点の低下
現象、および蒸発量の増加現象、あるいは低分子量成分
の増加現象が現れることが知られており、この現象を利
用した劣化度判定方法として、分子構造が明らかな合成
油,例えばシリコ−ン油を用いた合成油入り電気機器に
ついて、診断対象機器から少量採取した合成油試料の蒸
発量を測定する方法、および低分子量成分の生成総量を
測定する方法が知られている。
On the other hand, as a method for determining the degree of deterioration of electric equipment containing synthetic oil, the phenomenon of lowering the flash point and the phenomenon of increasing the evaporation amount or increasing the amount of low molecular weight components appear with the thermal deterioration of the synthetic oil. Is known, and as a method of determining the degree of deterioration utilizing this phenomenon, a synthetic oil sample obtained by collecting a small amount of a synthetic oil with a clear molecular structure, for example, a synthetic oil containing a silicone oil, from a device to be diagnosed. There are known methods for measuring the amount of evaporation of water, and for measuring the total amount of low molecular weight components produced.

【0005】図5はシリコ−ン油の熱劣化による引火点
と蒸発量との関係を示す特性線図であり、シリコ−ン油
としてポリジメチルシロキサン(25°cにおける粘度
50cst)の強制加熱劣化処理条件を変えて求めた引
火点と蒸発量との相関関係を示しており、蒸発量が1%
を越えると引火点が急激に低下する傾向を示している。
そこで診断対象機器から少量採取したシリコ−ン油試料
を150°cで24時間加熱した後、試料油の蒸発によ
る減量を測定し、蒸発量1%を管理値として診断対象機
器の劣化度を判定する方法が知られている。
FIG. 5 is a characteristic diagram showing the relationship between the flash point and the evaporation amount due to the thermal deterioration of silicone oil, and the forced heating deterioration of polydimethylsiloxane (viscosity 50 cst at 25 ° C.) as silicone oil. It shows the correlation between the flash point and the evaporation amount obtained by changing the processing conditions, and the evaporation amount is 1%.
If it exceeds, the flash point tends to decrease sharply.
Therefore, after heating a small amount of silicone oil sample collected from the equipment to be diagnosed at 150 ° C for 24 hours, the amount of evaporation of the sample oil is measured, and the degree of deterioration of the equipment to be diagnosed is determined using the evaporation amount of 1% as a control value. It is known how to do it.

【0006】図6はポリジメチルシロキサンの熱劣化に
よる蒸発減量と生成低分子成分の濃度との関係を示す特
性線図であり、ポリジメチルシロキサンの熱劣化により
生成する低分子量化合物、ヘキサメチルシクロトリシロ
キサン化合物(3D)、オクタメチルシクロテトラシロ
キサン化合物(4D)、デカメチルシクロペンタシロキ
サン化合物(5D)、およびドデカメチルシクロヘキサ
シロキサン化合物(6D)の生成総量と蒸発量との間に
は直線的な比例関係があり、蒸発量1%に相応する低分
子量成分の濃度は0.75%であることを示している。
そこで、診断対象機器から少量採取したシリコ−ン油試
料中の低分子量成分をガスクロマトグラフィ−を用いて
定量分析し、低分子量成分の総量の管理値を0.75%
として診断対象機器の劣化度を判定する方法が知られて
いる(特公昭61−31824号公報参照)。
FIG. 6 is a characteristic diagram showing the relationship between the evaporation loss due to the heat deterioration of polydimethylsiloxane and the concentration of the produced low molecular weight component. The low molecular weight compound hexamethylcyclotril produced due to the heat deterioration of polydimethylsiloxane. There is a linear relationship between the total amount of siloxane compound (3D), octamethylcyclotetrasiloxane compound (4D), decamethylcyclopentasiloxane compound (5D), and dodecamethylcyclohexasiloxane compound (6D) produced and the amount of evaporation. There is a proportional relationship, indicating that the concentration of the low molecular weight component corresponding to the evaporation amount of 1% is 0.75%.
Therefore, a low molecular weight component in the silicone oil sample collected in a small amount from the equipment to be diagnosed was quantitatively analyzed using gas chromatography, and the control value of the total amount of the low molecular weight component was 0.75%.
There is known a method for determining the degree of deterioration of a device to be diagnosed (see Japanese Patent Publication No. 61-31824).

【0007】[0007]

【発明が解決しようとする課題】一般的に耐熱性,難燃
性に優れたシリコ−ン油などの合成油を冷却媒体を兼ね
た絶縁媒体として使用した合成油入り電気機器において
は、機器の定常的な温度上昇による劣化よりも、機器内
部の局部的な過熱や部分放電等の異常事態による劣化が
支配的要因となる場合が多く、これらの異常事態を早期
に検知できる劣化度判定方法が望まれている。ところ
が、局部的な異常現象部分で劣化した合成油は油の対流
あるいは循環によって機器内部の油全体に拡散し,希釈
されてしまうために、機器から採取した合成油試料中の
蒸発量または低分子量成分濃度の総量を測定する従来の
劣化度判定方法では、検出量の変化が少なく、局部的異
常現象の発生を感度よく早期に検出できないという欠点
がある。また、蒸発量を測定する従来の劣化度判定方法
では、蒸発減量を測定するための加熱処理に24時間を
要すること、また多数回の秤量を行うために作業工数が
嵩むこと、ならびに約10mlの合成油試料を定期的な
測定を行うたびに採取するために、合成油使用量の少な
い機器においては不足した合成油の補充が必要になるこ
となどの欠点がある。
Generally, a synthetic oil-containing electric device using a synthetic oil such as silicone oil having excellent heat resistance and flame retardancy as an insulating medium also serving as a cooling medium In many cases, deterioration due to an abnormal situation such as local overheating or partial discharge inside the equipment is the dominant factor rather than deterioration due to a steady temperature rise. Is desired. However, synthetic oil deteriorated due to a local abnormal phenomenon diffuses and is diluted throughout the oil inside the equipment due to convection or circulation of the oil, and the amount of evaporation or low molecular weight in the synthetic oil sample collected from the equipment is reduced. The conventional method of determining the degree of deterioration, which measures the total amount of the component concentration, has the drawback that the change in the detected amount is small and the occurrence of a local abnormal phenomenon cannot be detected early with high sensitivity. In addition, in the conventional deterioration degree determination method of measuring the evaporation amount, it takes 24 hours to perform the heat treatment for measuring the evaporation loss, and the work man-hours increase because the weighing is performed many times. Since a synthetic oil sample is taken every time periodical measurement is performed, there is a drawback in that a device with a small amount of synthetic oil needs to be replenished with insufficient synthetic oil.

【0008】この発明の目的は、診断対象電気機器から
微量の合成油を採取して分析することにより、局部過熱
温度を的確に判定でき、さらには主要材料の劣化度,残
存寿命を判定できる劣化度判定方法を得ることにある。
An object of the present invention is to collect a minute amount of synthetic oil from an electric device to be diagnosed and analyze it to accurately determine the local overheating temperature, and further to determine the degree of deterioration of the main material and the remaining life. It is to get the degree judgment method.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、合成油入り電気機器から合成油
試料を採取し、分析機器により前記合成油試料中の所定
の低分子量成分を定量分析し、得られた分析結果から特
定低分子量成分に対する各低分子量成分の濃度比率を求
め、この濃度比率および累積加熱時間をあらかじめ同種
の合成油について求めた判定カ−ブと照合し、前記電気
機器内部における発熱部位の温度を判定することとす
る。
In order to solve the above-mentioned problems, according to the present invention, a synthetic oil sample is taken from an electric instrument containing synthetic oil, and a predetermined low molecular weight component in the synthetic oil sample is analyzed by an analytical instrument. Was quantitatively analyzed, the concentration ratio of each low molecular weight component to the specific low molecular weight component was obtained from the obtained analysis result, and the concentration ratio and cumulative heating time were compared with the determination curve previously obtained for the same kind of synthetic oil, The temperature of the heat generating portion inside the electric device is determined.

【0010】また上記劣化度判定方法において判定カ−
ブが、合成油入り電気機器内の合成油と同種の合成油の
加熱温度と加熱時間を変えて強制劣化させた劣化油につ
いて得られた低分子量成分の濃度比率デ−タに基づいて
作成されたものであることとする。さらに、上記劣化度
判定方法において合成油試料がシリコ−ン油である場
合、所定の低分子量成分が、ヘキサメチルシクロトリシ
ロキサン化合物(3D)、オクタメチルシクロテトラシ
ロキサン化合物(4D)、デカメチルシクロペンタシロ
キサン化合物(5D)、およびドデカメチルシクロヘキ
サシロキサン化合物(6D)の内少なくとも2つ以上を
含むこととする。
Further, in the above-mentioned deterioration degree judging method, a judgment key
Is prepared based on the concentration ratio data of the low molecular weight components obtained for the deteriorated oil that is forcibly deteriorated by changing the heating temperature and the heating time of the synthetic oil of the same kind as the synthetic oil in the electric equipment containing the synthetic oil. It is supposed to be Further, when the synthetic oil sample is a silicone oil in the above-mentioned deterioration degree judging method, the predetermined low molecular weight component is hexamethylcyclotrisiloxane compound (3D), octamethylcyclotetrasiloxane compound (4D), decamethylcyclosiloxane. At least two or more of the pentasiloxane compound (5D) and the dodecamethylcyclohexasiloxane compound (6D) are included.

【0011】さらに、上記各劣化度判定方法において、
ヘキサメチルシクロトリシロキサン化合物(3D)を特
定低分子量成分とし、その濃度を基準として他の低分子
量成分の濃度比率を求めることとする。さらにまた、合
成油入り電気機器から合成油試料を定期的に採取し、分
析機器により前記各合成油試料中の所定の低分子量成分
を定量分析して濃度比率を求め、得られた濃度比率が急
増する時点を判別して起点とし、この時点からの経過時
間を累積過熱時間とすることとする。
Further, in each of the above-mentioned deterioration degree judging methods,
The hexamethylcyclotrisiloxane compound (3D) is used as the specific low molecular weight component, and the concentration ratio of the other low molecular weight components is determined based on the concentration thereof. Furthermore, a synthetic oil sample is periodically taken from an electric device containing synthetic oil, and a predetermined low molecular weight component in each synthetic oil sample is quantitatively analyzed by an analysis device to obtain a concentration ratio. The point of sudden increase is determined and used as the starting point, and the elapsed time from this point is taken as the cumulative overheating time.

【0012】一方、合成油入り電気機器から合成油試料
を定期的に採取し、分析機器により前記各合成油試料中
の所定の低分子量成分を定量分析し、得られた分析結果
から特定低分子量成分に対する各低分子量成分の濃度比
率を求め、この濃度比率および累積加熱時間をあらかじ
め同種の合成油について求めた判定カ−ブと照合して前
記電気機器内部における発熱部位の温度を判定するとと
もに、判定温度の急増時点から累積加熱時間を求め、得
られた判定温度および累積加熱時間を前記合成油入り電
気機器内部の特定構成材料についてあらかじめ求めた熱
劣化判定カ−ブと照合して前記合成油入り電気機器の劣
化度を判定することとする。
On the other hand, a synthetic oil sample is periodically taken from an electric device containing synthetic oil, and a predetermined low molecular weight component in each synthetic oil sample is quantitatively analyzed by an analytical device, and a specific low molecular weight is obtained from the obtained analysis result. The concentration ratio of each low molecular weight component to the component is determined, and the concentration ratio and the cumulative heating time are compared with the determination curve previously determined for the same type of synthetic oil to determine the temperature of the heat-generating part inside the electric device, Cumulative heating time is calculated from the point of time when the judgment temperature suddenly increases, and the obtained judgment temperature and cumulative heating time are compared with the heat deterioration judgment curve previously determined for the specific constituent material inside the synthetic oil-filled electric device. The degree of deterioration of incoming electrical equipment shall be determined.

【0013】また、上記劣化度判定方法において熱劣化
判定カ−ブが、合成油入り電気機器内の有機絶縁材料と
同種の有機絶縁材料の加熱温度と加熱時間を変えて強制
劣化させた劣化試料について所定の特性低下率デ−タを
アレニウスプロットして得られた寿命曲線であり、この
寿命曲線に判定温度を照合して得られる寿命時間と累積
加熱時間との差を残存寿命とすることとする。
Further, in the above-mentioned deterioration degree judging method, the heat deterioration judging curve is a deteriorated sample forcibly deteriorated by changing the heating temperature and the heating time of the organic insulating material of the same kind as the organic insulating material in the electric equipment containing synthetic oil. Is a life curve obtained by plotting predetermined characteristic deterioration rate data for Arrhenius plot, and the difference between the life time obtained by comparing the judgment temperature with this life curve and the cumulative heating time is taken as the remaining life. To do.

【0014】さらに、熱劣化判定カ−ブが、合成油入り
電気機器内の有機絶縁材料と同種の有機絶縁材料の加熱
温度を判定温度として強制劣化させた劣化試料について
得られた特性低下曲線であり、この特性低下曲線と累積
加熱時間とを照合して得られる特性値とその特性の初期
値との比を前記有機絶縁材料の劣化度とすることとす
る。
Further, in the characteristic deterioration curve obtained by the heat deterioration judgment curve, the deterioration sample is forcibly deteriorated with the heating temperature of the organic insulation material of the same kind as the organic insulation material in the electric equipment containing synthetic oil as the judgment temperature. Therefore, the ratio of the characteristic value obtained by comparing the characteristic deterioration curve with the cumulative heating time and the initial value of the characteristic is taken as the deterioration degree of the organic insulating material.

【0015】[0015]

【作用】この発明の構成において、合成油入り電気機器
から合成油試料を採取し、分析機器により合成油試料中
の所定の低分子量成分を定量分析し、得られた分析結果
から特定低分子量成分に対する各低分子量成分の濃度比
率を求め、この濃度比率および累積過熱時間をあらかじ
め同種の合成油について求めた判定カ−ブと照合し、電
気機器内部における発熱部位の温度を判定するよう劣化
度判定方法を構成したことにより、例えば局部過熱部で
生成した低分子量成分が対流や循環により希釈されて
も、特定低分子量成分に対する各低分子量成分の濃度比
率は変化しないので、これをあらかじめ同種の合成油に
ついて求めた判定カ−ブと照合することにより、電気機
器内部における発熱部位の温度を検知する機能が得られ
る。
In the configuration of the present invention, a synthetic oil sample is taken from an electric device containing synthetic oil, and a predetermined low molecular weight component in the synthetic oil sample is quantitatively analyzed by an analyzer, and a specific low molecular weight component is obtained from the obtained analysis result. The concentration ratio of each low-molecular-weight component is calculated, and the concentration ratio and cumulative overheating time are compared with the determination curve previously obtained for the same type of synthetic oil to determine the degree of deterioration to determine the temperature of the heat-generating part inside the electrical equipment. By configuring the method, for example, even if the low molecular weight component produced in the local heating section is diluted by convection or circulation, the concentration ratio of each low molecular weight component to the specific low molecular weight component does not change. By collating with the determination curve obtained for oil, the function of detecting the temperature of the heat generating portion inside the electric device can be obtained.

【0016】また、上記劣化度判定方法において判定カ
−ブを、合成油入り電気機器内の合成油と同種の合成油
の加熱温度と加熱時間を変えて強制劣化させた劣化油に
ついて得られた低分子量成分の濃度比率デ−タに基づい
て作成すれば、使用する合成油の分子構造によって異な
る低分子量成分の濃度比率を的確に捉えて電気機器内部
における発熱部位の温度を精度よく検知する機能が得ら
れる。
Further, in the above-mentioned deterioration degree judging method, the judgment curve was obtained for the deteriorated oil which was forcibly deteriorated by changing the heating temperature and the heating time of the synthetic oil of the same kind as the synthetic oil in the electric equipment containing the synthetic oil. If created based on the concentration ratio data of low molecular weight components, a function to accurately detect the concentration ratio of low molecular weight components that differ depending on the molecular structure of the synthetic oil used, and to accurately detect the temperature of the heat generating part inside the electrical equipment. Is obtained.

【0017】さらに、上記劣化度判定方法において合成
油試料がシリコ−ン油である場合、所定の低分子量成分
が、ヘキサメチルシクロトリシロキサン化合物(3
D)、オクタメチルシクロテトラシロキサン化合物(4
D)、デカメチルシクロペンタシロキサン化合物(5
D)、およびドデカメチルシクロヘキサシロキサン化合
物(6D)の内少なくとも2つ以上、好ましくはヘキサ
メチルシクロトリシロキサン化合物(3D)を特定低分
子量成分とし、その濃度を基準として他の低分子量成分
との濃度比率を求めることにより、局部過熱部の温度と
累積過熱時間に対して特徴のあるシリコ−ン油固有の濃
度比率特性パタ−ンを有する温度判定カ−ブが得られる
ので、この判定カ−ブを利用して、電気機器内部におけ
る発熱部位の温度を精度よく検知する機能が得られる。
Further, when the synthetic oil sample is silicone oil in the above-mentioned deterioration degree judging method, the predetermined low molecular weight component is the hexamethylcyclotrisiloxane compound (3
D), octamethylcyclotetrasiloxane compound (4
D), decamethylcyclopentasiloxane compound (5
D) and at least two or more of the dodecamethylcyclohexasiloxane compound (6D), preferably the hexamethylcyclotrisiloxane compound (3D), is used as the specific low molecular weight component, and based on the concentration thereof with other low molecular weight components. By obtaining the concentration ratio, it is possible to obtain a temperature determination curve having a concentration ratio characteristic pattern unique to the silicone oil with respect to the temperature of the locally overheated portion and the accumulated overheating time. The function of accurately detecting the temperature of the heat generating portion inside the electric device can be obtained by using the knob.

【0018】さらにまた、合成油入り電気機器から合成
油試料を定期的に採取し、分析機器により各合成油試料
中の所定の低分子量成分を定量分析して濃度比率を求
め、得られた濃度比率が急増する時点を判別して起点と
し、この時点からの経過時間を累積過熱時間とすれば、
定期的監視を頻繁に行うことにより精度の高い過熱温度
の検知が可能になるとともに、合成油試料として僅か1
μl を採取してガスクロマトグラブィ−を用いて簡単か
つ短時間で低分子量成分を測定できるので、定期的監視
を頻繁に行うに必要な合成油の採取量が僅かで済み、か
つ測定作業を簡単化する機能が得られる。
Furthermore, synthetic oil samples are periodically taken from electrical equipment containing synthetic oil, and predetermined low molecular weight components in each synthetic oil sample are quantitatively analyzed by an analytical equipment to obtain concentration ratios, and the obtained concentration If the point at which the ratio increases rapidly is determined as the starting point, and the elapsed time from this point is the cumulative overheating time,
Frequent regular monitoring enables highly accurate detection of the overheating temperature, and only 1
Low-molecular-weight components can be measured easily and in a short time using a gas chromatograph by collecting μl, so the amount of synthetic oil required for frequent regular monitoring can be small, and measurement work can be performed. The function to simplify is obtained.

【0019】一方、上記各実施例で得られた判定温度お
よび累積加熱時間を合成油入り電気機器内部の特定構成
材料についてあらかじめ求めた熱劣化判定カ−ブと照合
して合成油入り電気機器の劣化度を判定するよう構成す
れば、熱劣化判定カ−ブを例えば、合成油入り電気機器
内の有機絶縁材料と同種の有機絶縁材料の加熱温度と加
熱時間を変えて強制劣化させた劣化試料について所定の
特性低下率デ−タをアレニウスプロットして得られた寿
命曲線とすれば、この寿命曲線に判定温度を照合して得
られる寿命時間と累積加熱時間との差から、合成油入り
電気機器の劣化度を局部過熱部における有機絶縁材の残
存寿命として容易に推定することができる。また、熱劣
化判定カ−ブを、合成油入り電気機器内の有機絶縁材料
と同種の有機絶縁材料の加熱温度を判定温度として強制
劣化させた劣化試料について得られた特性低下曲線とす
れば、この特性低下曲線と累積加熱時間とを照合して得
られる特性値とその特性の初期値との比から、有機絶縁
材料の劣化度を容易に判定することができる。
On the other hand, the judgment temperature and the cumulative heating time obtained in each of the above-mentioned examples are compared with the heat deterioration judgment curve obtained beforehand for the specific constituent material inside the electric oil-filled electric device, and the electric oil-filled electric device If configured to determine the degree of deterioration, the thermal deterioration determination curve is, for example, a deteriorated sample that is forcibly deteriorated by changing the heating temperature and the heating time of the organic insulating material of the same kind as the organic insulating material in the electrical equipment containing synthetic oil. Assuming that the life curve obtained by Arenius plotting the predetermined characteristic deterioration rate data is, the difference between the life time obtained by comparing the judgment temperature with this life curve and the cumulative heating time is The deterioration degree of the device can be easily estimated as the remaining life of the organic insulating material in the locally overheated part. Further, if the thermal deterioration determination curve is a characteristic deterioration curve obtained for a deteriorated sample forcibly deteriorated with the heating temperature of the organic insulating material of the same kind as the organic insulating material in the electric equipment containing synthetic oil as the determination temperature, The degree of deterioration of the organic insulating material can be easily determined from the ratio of the characteristic value obtained by comparing the characteristic deterioration curve with the cumulative heating time and the initial value of the characteristic.

【0020】[0020]

【実施例】以下、この発明を実施例に基づいて説明す
る。合成油入り電気機器が例えば車両用油入り変圧器で
ある場合、その冷却媒体を兼ねた絶縁媒体としての合成
油にはシリコ−ン油が一般的に使用される。このシリコ
−ン油としてはポリジメチルシロキサン(25°cにお
ける粘度50cst)が多く用いられている。そこで先
ず、この劣化度判定方法を実施するにあたり、あらかじ
め用意すべき温度判定カ−ブの作成方法について説明す
る。
EXAMPLES The present invention will be described below based on examples. When the synthetic oil-containing electric device is, for example, a vehicle oil-containing transformer, silicone oil is generally used as the synthetic oil as an insulating medium that also serves as a cooling medium. As this silicone oil, polydimethylsiloxane (viscosity 50 cst at 25 ° C.) is often used. Therefore, first, a method for creating a temperature determination curve that should be prepared in advance for carrying out this deterioration degree determination method will be described.

【0021】図1はポリジメチルシロキサンを300°
cで加熱劣化した場合における低分子化合物濃度の経時
変化を示す特性線図、図2はこの発明の実施例になる合
成油入り電気機器の劣化度判定方法における温度判定カ
−ブの一例を示す特性線図である。図1は300°cで
連続加熱中のポリジメチルシロキサンから、一定時間毎
に1μl の試料油を採取し、ガスクロマトグラフィ−を
用いて低分子量成分を定量分析し、得られた低分子化合
物濃度を累積過熱時間を横軸とする両対数グラフ上にプ
ロットして得られた特性線図である。ポリジメチルシロ
キサン(25°cにおける粘度50cst)を加熱劣化
すると、劣化初期には末端からの主鎖の開裂により、ヘ
キサメチルシクロトリシロキサン化合物(3D)、オク
タメチルシクロテトラシロキサン化合物(4D)、デカ
メチルシクロペンタシロキサン化合物(5D)、および
ドデカメチルシクロヘキサシロキサン化合物(6D)な
どの環量体と称する低分子量化合物が主に生成する。こ
とに図から明らかなように、最初低分子量化合物の主成
分である3Dは不安定な物質であるため、加熱時間の経
過とともにより安定な物質4D,5D,6Dへと変化
し、これに伴って3Dのみが濃度1%を上限にしてそれ
以上過熱しても濃度が増加しない飽和特性を示す。
FIG. 1 shows polydimethylsiloxane at 300 °
FIG. 2 shows an example of a temperature determination curve in the method for determining the degree of deterioration of the electrical equipment containing synthetic oil according to an embodiment of the present invention. It is a characteristic diagram. Figure 1 shows that 1 µl of sample oil was sampled from polydimethylsiloxane continuously heated at 300 ° C at regular intervals, and low molecular weight components were quantitatively analyzed using gas chromatography. It is a characteristic diagram obtained by plotting on a logarithmic log graph having the cumulative overheating time as the horizontal axis. When polydimethylsiloxane (viscosity 50 cst at 25 ° C.) is heated and deteriorated, hexamethylcyclotrisiloxane compound (3D), octamethylcyclotetrasiloxane compound (4D), deca is generated at the initial stage of deterioration due to cleavage of the main chain from the terminal. A low molecular weight compound called a ring polymer such as a methylcyclopentasiloxane compound (5D) and a dodecamethylcyclohexasiloxane compound (6D) is mainly produced. As is clear from the figure, 3D, which is the main component of the low molecular weight compound, is an unstable substance at first, so it changes into more stable substances 4D, 5D, and 6D with the elapse of heating time. As a result, only 3D exhibits a saturation characteristic in which the concentration does not increase even if the concentration is increased to 1% as an upper limit and further heated.

【0022】したがって、飽和特性を持つ3Dを特定低
分子量成分として他の低分子量成分4D,5D,6Dと
の成分濃度比率を求めれば、得られた成分濃度比率は過
熱温度および過熱時間の関数としてポリジメチルシロキ
サン固有の特性パタ−ンを持つことになり、この発明に
おいて局部加熱温度を判定するための温度判定カ−ブと
して利用することができる。図2は、図1に示すと同様
の特性線図を異なる複数の加熱温度に対応して求め、得
られた多数のデ−タから成分濃度比率3D/5Dを求め
た温度判定カ−ブであり、成分濃度比率3D/4D,3
D/6Dについても同様に温度判定カ−ブを作成するこ
とができる。
Therefore, if the component concentration ratio with other low molecular weight components 4D, 5D and 6D is obtained by using 3D having a saturation characteristic as a specific low molecular weight component, the obtained component concentration ratio is a function of the superheat temperature and the superheat time. Since it has a characteristic pattern unique to polydimethylsiloxane, it can be used as a temperature determination curve for determining the local heating temperature in the present invention. FIG. 2 is a temperature determination curve in which a characteristic diagram similar to that shown in FIG. 1 is obtained corresponding to a plurality of different heating temperatures, and a component concentration ratio 3D / 5D is obtained from a large number of obtained data. Yes, component concentration ratio 3D / 4D, 3
A temperature determination curve can be similarly created for D / 6D.

【0023】次に、実施例になる劣化度判定方法の手順
を説明する。先ず、診断対象機器からシリコ−ン油試料
としてのポリジメチルシロキサン(25°cにおける粘
度50cst)を約1μl 採取し、ガスクロマトグラフ
ィ−を用いてシリコ−ン油試料中の低分子量化合物濃度
を定量分析する。得られた低分子量化合物濃度デ−タか
ら例えば成分濃度比率3D/5Dを求め、図2に示す温
度判定カ−ブと照合する。この時、診断対象機器の内部
に局部過熱や部分放電などの異常現象が無ければ、成分
濃度比率は約6.3(上限値)を示し、かつ運転温度が
例えば200°cよりかなり低い温度であれば、シリコ
−ン油試料を定期的に採取して上記診断を繰り返し行っ
ても最初の診断からの累積過熱時間に対する成分濃度比
率の低下が少なく、このことから診断対象機器に異常が
無いことを検知できる。
Next, the procedure of the deterioration degree determining method according to the embodiment will be described. First, about 1 μl of polydimethylsiloxane (viscosity of 50 cst at 25 ° c) as a sample of silicone oil was sampled from the equipment to be diagnosed, and the concentration of low molecular weight compounds in the sample of silicone oil was quantitatively analyzed using gas chromatography. To do. From the obtained low molecular weight compound concentration data, for example, a component concentration ratio of 3D / 5D is obtained and collated with the temperature determination curve shown in FIG. At this time, if there is no abnormal phenomenon such as local overheating or partial discharge inside the equipment to be diagnosed, the component concentration ratio shows about 6.3 (upper limit value) and the operating temperature is much lower than 200 ° C. If so, even if the silicone oil sample is periodically collected and the above-mentioned diagnosis is repeated, the ratio of the component concentration to the cumulative overheating time from the first diagnosis does not decrease much, which means that there is no abnormality in the equipment to be diagnosed. Can be detected.

【0024】一方、診断対象機器が運転中例えば過負荷
運転などにより巻線温度が200°cを越える異常温度
上昇を伴う場合、その過負荷時間の合計値を累積過熱時
間とし、得られた成分濃度比率を上記累積過熱時間の相
当する温度判定カ−ブと照合することにより、過負荷運
転による温度上昇値を判定することができる。すなわ
ち、累積過熱時間tA が250時間であり、得られた成
分濃度比率3D/5Dが約3.2であったとすれば、図
2の温度判定カ−ブを用いて過負荷による巻線の異常温
度上昇値TA を250°cと判定することができる。
On the other hand, when the equipment under diagnosis is accompanied by an abnormal temperature rise exceeding 200 ° C. due to an overload operation or the like during operation, the total value of the overload times is taken as the cumulative overheat time, and the obtained component is obtained. By comparing the concentration ratio with the temperature determination curve corresponding to the cumulative overheating time, the temperature rise value due to overload operation can be determined. That is, assuming that the cumulative overheating time t A is 250 hours and the obtained component concentration ratio 3D / 5D is about 3.2, the temperature judgment curve of FIG. The abnormal temperature increase value T A can be determined to be 250 ° c.

【0025】さらに、定期的な診断において成分濃度比
率つたは成分濃度値が急変した場合、診断周期の半分に
相当する時間を累積過熱時間として判定を行うことによ
り、局部過熱温度を推定できるとともに、診断周期を短
縮して濃度比率を求め、成分濃度比率急変時からの経過
時間を累積加熱時間として局部過熱温度を判定すること
により、より精度の高い過熱温度を得ることができる。
Further, when the component concentration ratio or the component concentration value changes abruptly in the periodic diagnosis, the local overheat temperature can be estimated by determining the time corresponding to half of the diagnosis cycle as the cumulative overheat time, A more accurate superheat temperature can be obtained by shortening the diagnostic cycle to obtain the concentration ratio, and determining the local superheat temperature by using the elapsed time from the sudden change in the component concentration ratio as the cumulative heating time.

【0026】次に、局部過熱温度の判定値から機器内部
の主要構成材料の劣化度を判定する方法について説明す
る。図3はこの発明の異なる実施例になる合成油入り電
気機器の劣化度判定方法における劣化度判定カ−ブを示
す特性線図である。診断対象機器の耐熱寿命を左右する
構成材料が有機絶縁材料である場合、この有機絶縁材料
をシリコ−ン油中で過熱温度と過熱時間を変えて強制過
熱劣化させ、その機械的特性または電気的絶縁特性を測
定し、その特性値が初期値に対して所定レベル低下する
時間と温度を、時間の対数と絶対温度の逆数を横軸およ
び縦軸に採ったグラフ上にプロットして得られる耐熱寿
命曲線(アレニウスプロット曲線と呼ぶ)が直線で近似
できることは既に知られており、この耐熱寿命曲線を劣
化度判定カ−ブとして判定温度と照合することにより、
判定温度における有機絶縁材料の劣化度(残存寿命)を
判定することができる。
Next, a method of judging the degree of deterioration of the main constituent materials inside the equipment from the judgment value of the local overheating temperature will be described. FIG. 3 is a characteristic diagram showing a deterioration degree determining curve in a deterioration degree determining method for an electric device containing synthetic oil according to another embodiment of the present invention. If the constituent material that affects the heat-resistant life of the equipment to be diagnosed is an organic insulating material, this organic insulating material is subjected to forced overheating deterioration by changing the overheating temperature and overheating time in silicone oil, and its mechanical characteristics or electrical characteristics Heat resistance obtained by measuring insulation characteristics and plotting the time and temperature at which the characteristic value drops by a prescribed level from the initial value on a graph in which the horizontal axis and the vertical axis represent the logarithm of time and the reciprocal of absolute temperature. It is already known that a life curve (called an Arrhenius plot curve) can be approximated by a straight line, and by comparing this heat resistance life curve with a judgment temperature as a deterioration degree judgment curve,
It is possible to determine the degree of deterioration (remaining life) of the organic insulating material at the determination temperature.

【0027】図3は車両用シリコ−ン油入り変圧器の巻
線導体の被覆材として使用される芳香族ポリアミド紙
(商品名 Nomex)について求めた劣化判定カ−ブであ
り、診断対象機器から採取したシリコ−ン油試料の判定
温度がTA °cであった場合、図3からその寿命時間t
b を求めることができる。したがって、判定温度TA
おける累積過熱時間がta であった場合、寿命時間tb
と累積過熱時間との差tb−ta が上記巻線絶縁被覆材
の残存寿命時間となり、診断対象機器の残存寿命が求ま
るので、定期的な診断を行うことにより機器の絶縁事故
を未然に防止できるとともに、機器の改修や更新時期を
早期に計画することができる。
FIG. 3 is a deterioration determination curve obtained for an aromatic polyamide paper (trade name Nomex) used as a covering material for a winding conductor of a silicone oil-filled transformer for a vehicle. When the judgment temperature of the collected silicone oil sample is T A ° c, the life time t
You can ask for b . Therefore, if the accumulated overheating time at the determination temperature T A is t a , the life time t b
The difference t b -t a between the cumulative heating time is the remaining life time of the winding insulation covering material, since the remaining life diagnosis target device is obtained, in advance of the insulation fault of the equipment by performing periodic diagnosis In addition to being able to prevent it, it is possible to plan the time for repairing or renewing the equipment early.

【0028】図4はこの発明の他の実施例になる合成油
入り電気機器の劣化度判定方法における劣化度判定カ−
ブを示し、判定温度TA °cにおける芳香族ポリアミド
紙の機械的強度と加熱時間との関係を示す特性線図であ
る。図において、累積加熱時間ta をこの劣化判定カ−
ブと照合することにより、判定温度TA ,累積加熱時間
a に対応する機械的強度Ntaを求めることができる。
したがって、機械的強度の初期値N0 と機械的強度の判
定値Ntaとの比から芳香族ポリアミド紙の劣化度を判定
できるとともに、許容できる機械的強度の下限値Ntx
管理値としてあらかじめ設定しておけば、管理値Ntx
対応する寿命時間tx と累積加熱時間t a との差から診
断対象機器の残存寿命を求めることができる。
FIG. 4 shows a synthetic oil according to another embodiment of the present invention.
Deterioration degree determination method for determining the degree of deterioration of electrical equipment
Indicates the judgment temperature TAAromatic polyamide at ° c
It is a characteristic diagram showing the relationship between the mechanical strength of the paper and the heating time.
It In the figure, the cumulative heating time taThis deterioration judgment card
The judgment temperature TA, Cumulative heating time
taMechanical strength N corresponding totaCan be asked.
Therefore, the initial value of mechanical strength N0And mechanical strength
Fixed value NtaDetermining the degree of deterioration of aromatic polyamide paper from the ratio
The lower limit value N of the mechanical strength that is possible and acceptabletxTo
If set in advance as a control value, the control value NtxTo
Corresponding life time txAnd cumulative heating time t aSeen from the difference
The remaining life of the disconnection target device can be obtained.

【0029】なお、上述の実施例は、シリコ−ン油を用
いた合成油入り電気機器の場合を例に説明したが、他の
合成油を用いた合成油入り電気機器の劣化度判定方法
も、図2,図3,あるいは図4に対応する判定カ−ブを
異なる合成油および有機絶縁材料毎にあらかじめ準備し
ておくことにより、容易に実施することができる。
Although the above-described embodiments have been described with respect to the case of the electric equipment containing the synthetic oil using the silicone oil, the deterioration degree judging method of the electric equipment containing the synthetic oil using other synthetic oil is also applicable. This can be easily carried out by preparing the judgment curves corresponding to FIGS. 2, 3 or 4 for different synthetic oils and organic insulating materials in advance.

【0030】[0030]

【発明の効果】この発明は前述のように、合成油入り電
気機器から合成油試料を採取し、分析機器により合成油
試料中の所定の低分子量成分を定量分析し、得られた分
析結果から特定低分子量成分に対する各低分子量成分の
濃度比率を求め、この濃度比率および累積過熱時間をあ
らかじめ同種の合成油について求めた判定カ−ブと照合
し、電気機器内部における発熱部位の温度を判定するよ
う劣化度判定方法を構成した。その結果、例えば局部過
熱部で生成した低分子量成分が対流や循環により希釈さ
れても、特定低分子量成分に対する各低分子量成分の濃
度比率は変化しないので、これをあらかじめ同種の合成
油について求めた判定カ−ブと照合することにより、診
断対象機器内部における発熱部位の温度を検知すること
が可能になり、機器から採取した合成油試料中の蒸発量
または低分子量成分濃度の総量を測定する従来の劣化度
判定方法で問題となった、局部的な異常現象部分で劣化
した合成油が油の対流あるいは循環によって機器内部の
油全体に拡散,希釈されてしまうことにより検出量の変
化が少なく、局部的異常現象の発生を感度よく早期に検
出できないという欠点が排除され、局部的過熱部の温度
を精度よく早期に判定できる合成油入り電気機器の劣化
度判定方法を提供することができる。
As described above, according to the present invention, a synthetic oil sample is taken from an electric instrument containing synthetic oil, and a predetermined low molecular weight component in the synthetic oil sample is quantitatively analyzed by an analytical instrument. The concentration ratio of each low molecular weight component to the specific low molecular weight component is obtained, and the concentration ratio and cumulative heating time are compared with the determination curve obtained in advance for the same type of synthetic oil to determine the temperature of the heat generating part inside the electric device. Thus, the deterioration degree determination method is configured. As a result, for example, even if the low molecular weight component produced in the local superheated portion is diluted by convection or circulation, the concentration ratio of each low molecular weight component to the specific low molecular weight component does not change, so this was obtained in advance for the same kind of synthetic oil. By comparing with the judgment curve, it becomes possible to detect the temperature of the exothermic part inside the equipment to be diagnosed, and to measure the total evaporation amount or low molecular weight component concentration in the synthetic oil sample collected from the equipment. The synthetic oil deteriorated in the local abnormal phenomenon part, which was a problem in the deterioration degree judgment method, is diffused and diluted throughout the oil inside the equipment by convection or circulation of the oil, and the change in the detected amount is small, The electric oil-filled electrical equipment that eliminates the disadvantage of not being able to detect the occurrence of a local abnormal phenomenon with high sensitivity and early, and can accurately and early determine the temperature of the local overheating part It is possible to provide a deterioration degree determination process.

【0031】また、診断対象機器から1μl程度の微量
の合成油試料を採取して生成低分子量成分を簡単かつ短
時間で定量分析できるので、蒸発量を測定する従来の劣
化度判定方法で問題となった蒸発減量の測定時間を短縮
し、秤量作業を排除できるとともに、採取する油量が極
めて微量で済むので、合成油使用量の少ない機器におい
ても合成油を補充することなく診断を定期的に行うこと
ができる。
Further, since a small amount of synthetic oil sample of about 1 μl is sampled from the device to be diagnosed and the low molecular weight component produced can be analyzed easily and in a short time, there is a problem with the conventional deterioration degree determination method for measuring the evaporation amount. This reduces the evaporation loss measurement time, eliminates the need for weighing work, and requires only a very small amount of oil to be collected, so even equipment with a small amount of synthetic oil can be diagnosed regularly without replenishing synthetic oil. It can be carried out.

【0032】さらに、主要構成材料の熱劣化判定カ−ブ
をあらかじめ用意しておけば、判定温度および累積過熱
時間と照合することにより、局部的異常現象の発生部位
におてる主要構成材料の劣化度および残存寿命を判定で
きる合成油入り電気機器の劣化度判定方法を提供するこ
とができるので、局部的異常現象を早期に検知してこれ
に起因する絶縁事故を未然に防止できるとともに、機器
の改修や更新などを計画的に行える予防保全効果が得ら
れる。
Furthermore, if a heat deterioration judging curve for the main constituent materials is prepared in advance, the deterioration of the main constituent materials at the site where the local abnormal phenomenon occurs can be confirmed by comparing with the judgment temperature and the cumulative heating time. Since it is possible to provide a method for determining the degree of deterioration of a synthetic oil-filled electric device that can judge the degree of deterioration and the remaining life, it is possible to detect a local abnormal phenomenon early and prevent an insulation accident resulting from this, and The preventive maintenance effect that systematically repairs and updates can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】ポリジメチルシロキサンを300°cで過熱劣
化した場合における低分子化合物濃度の経時変化を示す
特性線図
FIG. 1 is a characteristic diagram showing changes over time in the concentration of low-molecular compounds when polydimethylsiloxane is deteriorated by heating at 300 ° C.

【図2】この発明の実施例になる合成油入り電気機器の
劣化度判定方法における温度判定カ−ブの一例を示す特
性線図
FIG. 2 is a characteristic diagram showing an example of a temperature determination curve in the method for determining the degree of deterioration of electric equipment containing synthetic oil according to an embodiment of the present invention.

【図3】この発明の異なる実施例になる合成油入り電気
機器の劣化度判定方法における劣化度判定カ−ブを示す
特性線図
FIG. 3 is a characteristic diagram showing a deterioration degree determining curve in a deterioration degree determining method for an electric device containing synthetic oil according to another embodiment of the present invention.

【図4】この発明の他の実施例になる合成油入り電気機
器の劣化度判定方法における劣化度判定カ−ブを示す特
性線図
FIG. 4 is a characteristic diagram showing a deterioration degree determining curve in a deterioration degree determining method for an electric device containing synthetic oil according to another embodiment of the present invention.

【図5】シリコ−ン油の熱劣化による引火点と蒸発量と
の関係を示す特性線図
FIG. 5 is a characteristic diagram showing the relationship between the flash point and the evaporation amount due to the thermal deterioration of silicone oil.

【図6】ポリジメチルシロキサンの熱劣化による蒸発減
量と生成低分子量成分の濃度との関係を示す特性線図
FIG. 6 is a characteristic diagram showing the relationship between the evaporation loss due to heat deterioration of polydimethylsiloxane and the concentration of the produced low molecular weight component.

【符号の説明】[Explanation of symbols]

3D ヘキサメチルシクロトリシロキサン化合物 4D オクタメチルシクロテトラシロキサン化合物 5D デカメチルシクロペンタシロキサン化合物 6D ドデカメチルシクロヘキサシロキサン化合物 TA 判定温度 ta 累積過熱時間 tb 寿命時間 Nta 機械的強度の初期値(主要構成材料) Nta 判定機械強度(主要構成材料) Ntx 機械強度の管理値(主要構成材料)3D hexamethylcyclotrisiloxane compound 4D octamethylcyclotetrasiloxane compound 5D decamethylcyclopentasiloxane compound 6D dodecamethylcyclohexasiloxane Compound T A determination temperature t a cumulative heating time t b lifetime N ta mechanical strength initial value of ( Main constituent materials) Nta- determined mechanical strength (main constituent materials) N tx Mechanical strength control value (main constituent materials)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】合成油入り電気機器から合成油試料を採取
し、分析機器により前記合成油試料中の所定の低分子量
成分を定量分析し、得られた分析結果から特定低分子量
成分に対する各低分子量成分の濃度比率を求め、この濃
度比率および累積過熱時間をあらかじめ同種の合成油に
ついて求めた判定カ−ブと照合し、前記電気機器内部に
おける発熱部位の温度を判定することを特徴とする合成
油入り電気機器の劣化度判定方法。
1. A synthetic oil sample is taken from an electric instrument containing synthetic oil, and a predetermined low molecular weight component in the synthetic oil sample is quantitatively analyzed by an analytical instrument. The concentration ratio of the molecular weight component is obtained, and the concentration ratio and the cumulative heating time are collated with a determination curve obtained in advance for the same type of synthetic oil to determine the temperature of the heat generating portion inside the electric device. Deterioration determination method for oil-filled electrical equipment.
【請求項2】判定カ−ブが、合成油入り電気機器内の合
成油と同種の合成油の加熱温度と加熱時間を変えて強制
劣化させた劣化油について得られた低分子量成分の濃度
比率デ−タに基づいて作成されたものであることを特徴
とする請求項1記載の合成油入り電気機器の劣化度判定
方法。
2. A concentration ratio of a low molecular weight component obtained for a deteriorated oil whose judgment curve is forcibly deteriorated by changing the heating temperature and the heating time of the synthetic oil of the same kind as the synthetic oil in the electric equipment containing the synthetic oil. The deterioration degree determining method for an electric device containing synthetic oil according to claim 1, wherein the deterioration degree determining method is based on data.
【請求項3】合成油試料がシリコ−ン油である場合、所
定の低分子量成分が、ヘキサメチルシクロトリシロキサ
ン化合物(3D)、オクタメチルシクロテトラシロキサ
ン化合物(4D)、デカメチルシクロペンタシロキサン
化合物(5D)、およびドデカメチルシクロヘキサシロ
キサン化合物(6D)の内少なくとも2つ以上を含むこ
とを特徴とする請求項1または請求項2記載の合成油入
り電気機器の劣化度判定方法。
3. When the synthetic oil sample is silicone oil, the predetermined low molecular weight component is hexamethylcyclotrisiloxane compound (3D), octamethylcyclotetrasiloxane compound (4D), decamethylcyclopentasiloxane compound. (5D), and at least 2 or more of a dodecamethyl cyclohexasiloxane compound (6D) are contained, The deterioration degree determination method of the electrical equipment containing synthetic oil of Claim 1 or Claim 2 characterized by the above-mentioned.
【請求項4】ヘキサメチルシクロトリシロキサン化合物
(3D)を特定低分子量成分とし、その濃度を基準とし
て他の低分子量成分との濃度比率を求めることを特徴と
する請求項3記載の合成油入り電気機器の劣化度判定方
法。
4. The synthetic oil according to claim 3, wherein the hexamethylcyclotrisiloxane compound (3D) is used as a specific low molecular weight component, and the concentration ratio with other low molecular weight components is determined based on the concentration thereof. Deterioration determination method for electrical equipment.
【請求項5】合成油入り電気機器から合成油試料を定期
的に採取し、分析機器により前記各合成油試料中の所定
の低分子量成分を定量分析して濃度比率を求め、得られ
た濃度比率が急増する時点を判別して起点とし、この時
点からの経過時間を累積過熱時間とすることを特徴とす
る請求項1記載の合成油入り電気機器の劣化度判定方
法。
5. A synthetic oil sample is periodically taken from an electric device containing synthetic oil, and a predetermined low molecular weight component in each synthetic oil sample is quantitatively analyzed by an analytical device to obtain a concentration ratio, and the obtained concentration is obtained. 2. The method for determining the degree of deterioration of a synthetic oil-filled electric device according to claim 1, wherein a point at which the ratio rapidly increases is determined as a starting point, and an elapsed time from this point is set as a cumulative heating time.
【請求項6】合成油入り電気機器から合成油試料を採取
し、分析機器により前記合成油試料中の所定の低分子量
成分を定量分析し、得られた分析結果から特定低分子量
成分に対する各低分子量成分の濃度比率を求め、この濃
度比率および累積過熱時間をあらかじめ同種の合成油に
ついて求めた判定カ−ブと照合し、前記電気機器内部に
おける発熱部位の温度を判定するとともに、得られた判
定温度および累積加熱時間を前記合成油入り電気機器内
部の特定構成材料についてあらかじめ求めた熱劣化判定
カ−ブと照合して前記合成油入り電気機器の劣化度を判
定することを特徴とする合成油入り電気機器の劣化度判
定方法。
6. A synthetic oil sample is taken from an electric device containing synthetic oil, and a predetermined low molecular weight component in the synthetic oil sample is quantitatively analyzed by an analytical device. The concentration ratio of the molecular weight component is obtained, and the concentration ratio and the cumulative heating time are collated with the determination curve previously obtained for the same type of synthetic oil to determine the temperature of the heat-generating part inside the electric device and the obtained determination. Synthetic oil characterized in that the degree of deterioration of the electric device containing synthetic oil is judged by comparing the temperature and the cumulative heating time with a thermal deterioration judging curve obtained in advance for a specific constituent material inside the electric device containing the synthetic oil. Deterioration degree determination method for enclosed electrical equipment.
【請求項7】熱劣化判定カ−ブが、合成油入り電気機器
内の有機絶縁材料と同種の有機絶縁材料の加熱温度と加
熱時間を変えて強制劣化させた劣化試料について所定の
特性低下率デ−タをアレニウスプロットして得られた寿
命曲線であり、この寿命曲線に判定温度を照合して得ら
れる寿命時間と累積加熱時間との差を残存寿命とするこ
とを特徴とする請求項6記載の合成油入り電気機器の劣
化度判定方法。
7. A predetermined deterioration rate of characteristics of a deteriorated sample in which a heat deterioration judging curve is forcibly deteriorated by changing a heating temperature and a heating time of an organic insulating material of the same kind as an organic insulating material in electric equipment containing synthetic oil. 7. A life curve obtained by Arrhenius plot of data, wherein the difference between the life time obtained by matching the judgment temperature with this life curve and the cumulative heating time is taken as the remaining life. A method for determining the degree of deterioration of an electric device containing synthetic oil as described.
【請求項8】熱劣化判定カ−ブが、合成油入り電気機器
内の有機絶縁材料と同種の有機絶縁材料の加熱温度を判
定温度として強制劣化させた劣化試料について得られた
特性低下曲線であり、この特性低下曲線と累積加熱時間
とを照合して得られる特性値とその特性の初期値との比
を前記有機絶縁材料の劣化度とすることを特徴とする請
求項6記載の合成油入り電気機器の劣化度判定方法。
8. A characteristic deterioration curve obtained for a deteriorated sample in which a heat deterioration judging curve is forcibly deteriorated by using a heating temperature of an organic insulating material of the same kind as an organic insulating material in an electric device containing synthetic oil as a judgment temperature. 7. The synthetic oil according to claim 6, wherein a ratio of a characteristic value obtained by collating the characteristic deterioration curve with the cumulative heating time and an initial value of the characteristic is used as the degree of deterioration of the organic insulating material. Deterioration degree determination method for enclosed electrical equipment.
JP4048949A 1992-03-06 1992-03-06 Deterioration determination method for electrical equipment containing synthetic oil Expired - Lifetime JP3018718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4048949A JP3018718B2 (en) 1992-03-06 1992-03-06 Deterioration determination method for electrical equipment containing synthetic oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4048949A JP3018718B2 (en) 1992-03-06 1992-03-06 Deterioration determination method for electrical equipment containing synthetic oil

Publications (2)

Publication Number Publication Date
JPH05249100A true JPH05249100A (en) 1993-09-28
JP3018718B2 JP3018718B2 (en) 2000-03-13

Family

ID=12817531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4048949A Expired - Lifetime JP3018718B2 (en) 1992-03-06 1992-03-06 Deterioration determination method for electrical equipment containing synthetic oil

Country Status (1)

Country Link
JP (1) JP3018718B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182161A (en) * 2007-01-26 2008-08-07 Hitachi Ltd Silicone liquid containing electric equipment, silicone liquid containing transformer, and measurement method for cyclic compound in silicone liquid used for silicone liquid containing electric equipment
JP2011515654A (en) * 2008-02-06 2011-05-19 イドロ−ケベック Method and apparatus for measuring the temperature of the hot spot in an electrical device containing oil
WO2017213116A1 (en) 2016-06-07 2017-12-14 三菱電機株式会社 Temperature estimation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182161A (en) * 2007-01-26 2008-08-07 Hitachi Ltd Silicone liquid containing electric equipment, silicone liquid containing transformer, and measurement method for cyclic compound in silicone liquid used for silicone liquid containing electric equipment
JP2011515654A (en) * 2008-02-06 2011-05-19 イドロ−ケベック Method and apparatus for measuring the temperature of the hot spot in an electrical device containing oil
WO2017213116A1 (en) 2016-06-07 2017-12-14 三菱電機株式会社 Temperature estimation method
JPWO2017213116A1 (en) * 2016-06-07 2019-02-14 三菱電機株式会社 Temperature estimation method
US11015987B2 (en) 2016-06-07 2021-05-25 Mitsubishi Electric Corporation Temperature estimation method

Also Published As

Publication number Publication date
JP3018718B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
CN110297167B (en) Transformer aging state evaluation method based on multi-source information fusion
KR100541996B1 (en) A dignosis method of insulation of electric apparatus
Ahmed et al. Analysis of partial discharge signals in medium voltage XLPE cables
Madonna et al. Evaluation of strand‐to‐strand capacitance and dissipation factor in thermally aged enamelled coils for low‐voltage electrical machines
EP3327736B1 (en) Method for determining abnormality in oil-filled electric apparatus
JPH05249100A (en) Deterioration-degree judgment method of electric apparatus filled with synthetic oil
KR101494382B1 (en) Diagnosis method and apparatus of transformer oil
JP2006060134A (en) Apparatus and method for assessing the remaining life of transformer for power supply
EP2315010A1 (en) Diagnostic method for oil-filled electric equipment, diagnostic device for implementing diagnostic method, and oil-filled electric equipment with built-in diagnostic device
Pradhan et al. Diagnostic testing of oil-impregnated paper insulation in prorated power transformers under accelerated stress
Bernard et al. Methods for monitoring age-related changes in transformer oils
EP0219266A1 (en) Method for evaluating the breakdown time of an insulating film
JP2018124185A (en) Estimation method of generation condition of organic copper compound and copper sulfide in oil-filled cable by analysis of insulation oil and diagnostic method of risk of abnormality generation of oil-filled cable
EP1703293B1 (en) Method and device for estimating remaining service life of coil
JP2010071961A (en) Deterioration diagnosis method of polymer material
Cselkó et al. Speciality and applicability of advanced response methods in contrast to the traditional dielectric measurements for condition assessment of power transformers
Chmura et al. Life time estimation of serviced aged oil-paper insulated HV power cables based on the dielectric loss measurements (tan δ)
JP2669262B2 (en) Diagnostic method and diagnostic device for oil-filled electrical equipment
Pahlavanpour Characterisation of insulating oils
Virtanen et al. Characterization of silicone oil used in HV cable sealing ends
RU2140071C1 (en) Process determining operational life of bearing member made of high-temperature thermally compacted aluminum alloy in structure of aircraft
KR101293404B1 (en) Moisture diagnosis apparatus for insulator using characteristic of moisture movement in power transformer, and risk evaluation method using characteristic of moisture movement in power transformer using the same
JP7374004B2 (en) Deterioration diagnosis method and system for composite materials for rotating electric machines
RU2133043C1 (en) Method of diagnostics of thyristor converter
Markova et al. Fluorescence method for quick transformer oil monitoring

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 13