JPH05249071A - Oxygen sensor of threshold current type - Google Patents

Oxygen sensor of threshold current type

Info

Publication number
JPH05249071A
JPH05249071A JP3072333A JP7233391A JPH05249071A JP H05249071 A JPH05249071 A JP H05249071A JP 3072333 A JP3072333 A JP 3072333A JP 7233391 A JP7233391 A JP 7233391A JP H05249071 A JPH05249071 A JP H05249071A
Authority
JP
Japan
Prior art keywords
solid electrolyte
diffusion member
cathode
oxide
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3072333A
Other languages
Japanese (ja)
Inventor
Akihiro Yamashita
晃弘 山下
Nobuaki Murakami
信明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3072333A priority Critical patent/JPH05249071A/en
Publication of JPH05249071A publication Critical patent/JPH05249071A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To increase the mechanical strength of the bonded part of a solid electrolyte and a porous gas diffusion member and to prevent oxygen from being leaked from the bonded part by a method wherein the solid electrolyte and the porous gas diffusion member are bonded at a high temperature by using a platinum plate. CONSTITUTION:An oxygen-ion conductive solid electrolyte 1 is obtained in the following manner: a metal oxide by Y2O3 is mixed with a metal oxide by ZrO2; an oxide which has been obtained is formed to be a cylindrical shape; and a dense sintered body is formed. One side of the solid electrolyte 1 is coated with a noble-metal paste such as platinum or the like as an anode 2; the paste is baked in the air. A cathode 3 and a porous gas diffusion member 4 which is provided with diffusion holes of a gas under test are installed on a face which is opposite to the anode 2. The cathode 3 is obtained in the following manner: the powder of a perovskite-type composite oxide is mixed with turpentine; the face of the cathode is coated with the mixture; and the mixture is baker in the air. The diffusion member 4 is obtained in the following manner: a coarse-particle oxide and a fine-particle oxide which have mixed a metal oxide by ZrO2 with Y2O3 are mixed and reshaped; and the mixture is sintered in the air. When the solid electrolyte 1 to which the electrodes have been baked and the diffusion member 4 are bonded, they are bonded at a high temperature by using a platinum plate and by exerting a pressure to the direction of a circle-center axis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は限界電流型酸素センサー
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a limiting current type oxygen sensor.

【0002】[0002]

【従来の技術】雰囲気炉、燃焼排ガス等に含まれる酸素
濃度の測定には、酸素イオン導電性固体電解質であるジ
ルコニアを利用した酸素センサーが用いられていること
は従来より知られている。この酸素センサーは、固体電
解質であるジルコニア板を隔壁とし、ジルコニア板の両
側に白金などの貴金属電極を設け800℃から900℃
の高温において一方の電極に被検ガスを、残る一方の電
極には酸素濃度既知の参照ガスを導くと、酸素濃淡電池
の働きにより温度によって定まる起電力が生じ、この起
電力から被検ガス中の酸素濃度が求められる。しかしな
がら、このような酸素濃淡電池の作用を利用した酸素濃
度センサーにおいては、被検ガスと参照ガス中の酸素濃
度差が近づいてくると起電力も微小なものとなり、また
起電力変化は酸素濃度の対数に比例するためわずかな酸
素濃度変化を読みとることは困難である。さらに参照ガ
スを必要とすることや、高温で作動させることが必要で
あることなどからセンサー装置も複雑なものとなる。そ
こで、このような欠点を解決するために、酸素ポンプ現
象を利用した限界電流型酸素センサーが知られている。
酸素ガス拡散現象と酸素ポンプ現象を利用した限界電流
型酸素センサーの一例を図2に示す。同図においてガス
拡散孔を有する多孔性ガス拡散部材4を拡散してきた酸
素ガスは陰極3で電子を受け取り酸素イオンとなり固体
電解質1中を移動して陽極2で再び酸素ガスになる。そ
の際ガス拡散を律速となるように拡散孔を制御すると、
電流値に被検ガス中の酸素濃度に応じた限界電流値が現
れる。拡散孔の制御によって酸素濃度と限界電流値は直
線関係を示すことから酸素濃度を知ることが可能とな
る。なお、陽極2及び陰極3に印加するため白金リード
線5が接続され、更に拡散部材4と固体電解質1とは無
機系接着剤6によって接合されている。
2. Description of the Related Art It has been conventionally known that an oxygen sensor using zirconia, which is an oxygen ion conductive solid electrolyte, is used for measuring the oxygen concentration contained in an atmospheric furnace, combustion exhaust gas and the like. In this oxygen sensor, a solid electrolyte zirconia plate is used as a partition wall, and precious metal electrodes such as platinum are provided on both sides of the zirconia plate at 800 ° C to 900 ° C.
When the test gas is introduced to one electrode at a high temperature and the reference gas whose oxygen concentration is known is introduced to the other electrode, an electromotive force determined by the temperature is generated by the function of the oxygen concentration battery, and this electromotive force causes The oxygen concentration of is determined. However, in the oxygen concentration sensor using the action of such an oxygen concentration battery, the electromotive force becomes minute when the difference in oxygen concentration between the test gas and the reference gas approaches, and the electromotive force changes depending on the oxygen concentration. Since it is proportional to the logarithm of, it is difficult to read a slight change in oxygen concentration. Further, the sensor device is complicated because it requires a reference gas and needs to operate at a high temperature. Therefore, in order to solve such a drawback, a limiting current type oxygen sensor utilizing an oxygen pump phenomenon is known.
An example of a limiting current type oxygen sensor using the oxygen gas diffusion phenomenon and the oxygen pump phenomenon is shown in FIG. In the figure, the oxygen gas that has diffused through the porous gas diffusion member 4 having gas diffusion holes receives electrons at the cathode 3, becomes oxygen ions, moves in the solid electrolyte 1, and becomes oxygen gas again at the anode 2. At that time, if the diffusion holes are controlled so as to control the gas diffusion,
A limiting current value corresponding to the oxygen concentration in the test gas appears in the current value. By controlling the diffusion holes, the oxygen concentration and the limiting current value show a linear relationship, so that the oxygen concentration can be known. A platinum lead wire 5 is connected to apply to the anode 2 and the cathode 3, and the diffusion member 4 and the solid electrolyte 1 are joined by an inorganic adhesive 6.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上述の特
徴を持つ限界電流型酸素センサーの固体電解質と多孔性
ガス拡散部材の接合部は、センサー素子外部から陰極部
へ酸素の漏れ込みがないこと、作動中に両者が機械的強
度を保ち密着していることが必要である。従来、その接
合方法として、無機系接着剤を使用し、又は両者を原料
板のときに重ね合わせ、加熱処理をして接合している
が、両方法とも機械的強度を得るには十分であるもの
の、素子外部からの酸素の漏れ込みによるセンサーの誤
動作を余儀なくされている。本発明はこのような事情に
鑑みて提案されたものであり、固体電解質と多孔性ガス
拡散部材との間の接合が十分な機械的強度を持つと共
に、接合部からの酸素の漏れ込みがなく、したがって誤
動作のない限界電流型酸素センサーを提供することを目
的とする。
However, the joint portion between the solid electrolyte and the porous gas diffusion member of the limiting current type oxygen sensor having the above-mentioned characteristics is such that oxygen does not leak from the outside of the sensor element to the cathode portion, and it operates. It is necessary that both are in close contact with each other while maintaining mechanical strength. Conventionally, as a joining method, an inorganic adhesive is used, or both are stacked when they are raw material plates, and heat treatment is performed, but both methods are sufficient for obtaining mechanical strength. However, the sensor malfunctions due to the leakage of oxygen from the outside of the device. The present invention has been proposed in view of such circumstances, the bonding between the solid electrolyte and the porous gas diffusion member has a sufficient mechanical strength, without the leakage of oxygen from the bonding portion. Therefore, it is an object of the present invention to provide a limiting current type oxygen sensor free from malfunction.

【0004】[0004]

【課題を解決するための手段】そのため本発明は酸素イ
オン導電性固体電解質の一方の面に陽極を設け、前記固
体電解質の他方の面の前記陽極と相対する位置に陰極
を、該陰極及び前記固体電解質に接して多孔性ガス拡散
部材をそれぞれ設け、前記両電極間に電圧を印加する電
源と、前記両電極間に流れる電流を検出する電流計とを
設けてなる限界電流型酸素センサーにおいて、前記固体
電解質と多孔性ガス拡散部材との接合に白金板を用いた
高温接合を使用したことを特徴とする。
Therefore, the present invention provides an anode on one surface of an oxygen ion conductive solid electrolyte, a cathode on the other surface of the solid electrolyte opposite to the anode, the cathode and the In a limiting current type oxygen sensor, each of which is provided with a porous gas diffusion member in contact with the solid electrolyte, a power source for applying a voltage between the both electrodes, and an ammeter for detecting a current flowing between the both electrodes is provided. A high temperature bonding using a platinum plate is used for bonding the solid electrolyte and the porous gas diffusion member.

【0005】[0005]

【作用】このような構成によれば、限界電流型酸素セン
サーの固体電解質と多孔性ガス拡散部材との接合は強固
でしかも接合部からの酸素の漏れ込みはなく、誤動作も
ない。
According to this structure, the solid electrolyte of the limiting current type oxygen sensor and the porous gas diffusion member are firmly bonded to each other, oxygen does not leak from the bonded portion, and malfunction does not occur.

【0006】[0006]

【実施例】本発明の一実施例を図面について説明する
と、図1はその断面図である。同図において本発明に係
る酸素センサーに用いる酸素イオン導電性固体電解質1
はZrO2 の金属酸化物にY2 3 の金属酸化物を8モ
ル%の割合で混合し、1800℃で10時間焼成して得
られた酸化物を厚さ0.5mm,直径10mmの円柱板状に
成形し、緻密な焼結体としたものである。このような固
体電解質1の片面に陽極2として白金などの貴金属ペー
ストを塗布し1000℃で1時間空気中で焼き付ける。
さらに固体電解質1の陽極2と相対する面には陰極3と
被検ガス拡散孔を有する多孔性ガス拡散部材4を設け
る。陰極はLa1-x x MnO3 (M=Sr,Ca;O
<x<1)の組成を持つペロブスカイト型複合酸化物と
する。ペロブスカイト型複合酸化物の調整は以下の方法
による。すなわち出発原料は酸化ランタン(La
2 3 )、炭酸ストロンチウム(又は炭酸カルシウム)
及び酸化マンガン(Mn2 3 )をストロンチウム(又
はカルシウム)組成比が焼成後の酸化物状態で0.1か
ら0.5モル%、好ましくは0.4から0.5モル%と
なるように混合し1500℃で10時間空気中で焼成す
る。焼成した酸化物粉体はボールミルによって湿式粉砕
を行いその粒度を0.5から1μmにする。このように
して得られたペロブスカイト型複合酸化物粉体とテレピ
ン油を3:1の重量割合で混合しぺースト状としたもの
を陰極面に塗布し1100℃で1時間空気中で焼き付け
陰極とする。被検ガス拡散孔を有する多孔性ガス拡散部
材4は、ZrO2 の金属酸化物にY2 3 の金属酸化物
を8モル%の割合で混合し、1800℃で10時間焼成
して得られた3から4μmの粗粒酸化物とこれをボール
ミルによって湿式粉砕を行い0.2から0.5μmに粉
砕した微粒酸化物を2:1の重量割合で混合し厚さ1m
m,直径10mmのぺレットに成形した後1300℃で1
0時間、空気中で焼結させる。電極を焼き付けた固体電
解質1とガス拡散孔を有する拡散部材4との接合は次の
方法による。すなわち、外径10mm、内径8mm、厚さ5
0μmの白金板8を固体電解質とガス拡散孔を有する拡
散部材との間に固定した後、0.5kg/cm2 から1kg/
cm2 の圧力を円心軸方向にかけて1500℃で1時間、
空気中で保持する。室温まで温度を低下させた後、図1
に示すように陰極陽極に電圧を印加できるように白金リ
ード線5を固定し、直流電源7を接続しさらに印加した
電圧に対する電流を検出する電流系により限界電流型酸
素センサーを構成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view thereof. In the figure, an oxygen ion conductive solid electrolyte 1 used in the oxygen sensor according to the present invention.
Is a cylinder having a thickness of 0.5 mm and a diameter of 10 mm obtained by mixing ZrO 2 metal oxide with Y 2 O 3 metal oxide at a ratio of 8 mol% and firing at 1800 ° C. for 10 hours. It is formed into a plate and made into a dense sintered body. A noble metal paste such as platinum is applied to one surface of the solid electrolyte 1 as the anode 2 and baked in air at 1000 ° C. for 1 hour.
Further, a cathode 3 and a porous gas diffusion member 4 having a test gas diffusion hole are provided on the surface of the solid electrolyte 1 facing the anode 2. The cathode is La 1-x M x MnO 3 (M = Sr, Ca; O
A perovskite complex oxide having a composition of <x <1). The perovskite type complex oxide is prepared by the following method. That is, the starting material is lanthanum oxide (La).
2 O 3 ), strontium carbonate (or calcium carbonate)
And manganese oxide (Mn 2 O 3 ) such that the composition ratio of strontium (or calcium) in the oxide state after firing is 0.1 to 0.5 mol%, preferably 0.4 to 0.5 mol%. Mix and fire in air at 1500 ° C. for 10 hours. The calcined oxide powder is wet-milled by a ball mill to make the particle size 0.5 to 1 μm. The thus-obtained perovskite-type composite oxide powder and turpentine oil were mixed in a weight ratio of 3: 1 to form a paste, which was applied to the cathode surface and baked in air at 1100 ° C. for 1 hour to form a cathode. To do. The porous gas diffusion member 4 having test gas diffusion holes is obtained by mixing the metal oxide of ZrO 2 with the metal oxide of Y 2 O 3 at a ratio of 8 mol% and firing at 1800 ° C. for 10 hours. 3 to 4 μm of coarse-grained oxide and wet-milled this with a ball mill to pulverize to 0.2-0.5 μm of finely divided oxide and mix them in a weight ratio of 2: 1 to obtain a thickness of 1 m.
m at 1300 ℃ after molding into pellets with a diameter of 10 mm
Sinter in air for 0 hours. Bonding of the solid electrolyte 1 having the electrodes baked and the diffusion member 4 having the gas diffusion holes is performed by the following method. That is, outer diameter 10 mm, inner diameter 8 mm, thickness 5
After fixing the 0 μm platinum plate 8 between the solid electrolyte and the diffusion member having gas diffusion holes, 0.5 kg / cm 2 to 1 kg /
Applying a pressure of cm 2 along the axis of the circle at 1500 ° C for 1 hour,
Hold in air. After lowering the temperature to room temperature,
As shown in, the platinum lead wire 5 is fixed so that a voltage can be applied to the cathode and anode, a direct current power source 7 is connected, and a current system for detecting a current corresponding to the applied voltage constitutes a limiting current type oxygen sensor.

【0007】[0007]

【発明の効果】上述したように本発明によれば、酸素イ
オン導電性固体電解質であるイットリア安定化ジルコニ
アを用いた限界電流型酸素センサーにおいて、固体電解
質と多孔性ガス拡散部材との接合に白金板を介した高温
圧接を使用することによって、従来の接合方法に比較し
て素子外部からの酸素の漏れ込みがなく、対象ガス中の
酸素濃度を正確に検出することができる。要するに本発
明によれば、酸素イオン導電性固体電解質の一方の面に
陽極を設け、前記固体電解質の他方の面の前記陽極と相
対する位置に陰極を、該陰極及び前記固体電解質に接し
て多孔性ガス拡散部材をそれぞれ設け、前記両電極間に
電圧を印加する電源と、前記両電極間に流れる電流を検
出する電流計とを設けてなる限界電流型酸素センサーに
おいて、前記固体電解質と多孔性ガス拡散部材との接合
に白金板を用いた高温接合を使用したことにより、固体
電解質と多孔性ガス拡散部材との間の接合が十分な機械
的強度を持つと共に、接合部からの酸素の漏れ込みがな
く、したがって誤動作のない限界電流型酸素センサーを
得るから、本発明は産業上極めて有益なものである。
As described above, according to the present invention, in a limiting current type oxygen sensor using yttria-stabilized zirconia which is an oxygen ion conductive solid electrolyte, platinum is used for joining the solid electrolyte and the porous gas diffusion member. By using the high-temperature pressure welding through the plate, oxygen does not leak from the outside of the element as compared with the conventional joining method, and the oxygen concentration in the target gas can be accurately detected. In short, according to the present invention, an anode is provided on one surface of the oxygen ion conductive solid electrolyte, a cathode is provided at a position opposite to the anode on the other surface of the solid electrolyte, and the cathode and the solid electrolyte are in contact with each other to form a porous film. In the limiting current type oxygen sensor, each of which is provided with a gas diffusion member, a power source for applying a voltage between the electrodes, and an ammeter for detecting a current flowing between the electrodes, wherein the solid electrolyte and the porosity are By using high temperature bonding using a platinum plate for bonding with the gas diffusion member, the solid electrolyte and the porous gas diffusion member have sufficient mechanical strength and oxygen leakage from the bonding part. The present invention is extremely useful industrially because it provides a limiting current type oxygen sensor which is compact and therefore does not malfunction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る限界電流型酸素センサ
ーの断面図である。
FIG. 1 is a sectional view of a limiting current type oxygen sensor according to an embodiment of the present invention.

【図2】従来の限界電流型酸素センサーの断面図であ
る。
FIG. 2 is a sectional view of a conventional limiting current type oxygen sensor.

【0008】[0008]

【符号の説明】[Explanation of symbols]

1 固体電解質 2 陽極 3 陰極 4 拡散部材 5 白金リード線 6 無機系接着剤 7 直流電源 8 白金板 1 Solid Electrolyte 2 Anode 3 Cathode 4 Diffusing Member 5 Platinum Lead Wire 6 Inorganic Adhesive 7 DC Power Supply 8 Platinum Plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸素イオン導電性固体電解質の一方の面
に陽極を設け、前記固体電解質の他方の面の前記陽極と
相対する位置に陰極を、該陰極及び前記固体電解質に接
して多孔性ガス拡散部材をそれぞれ設け、前記両電極間
に電圧を印加する電源と、前記両電極間に流れる電流を
検出する電流計とを設けてなる限界電流型酸素センサー
において、前記固体電解質と多孔性ガス拡散部材との接
合に白金板を用いた高温接合を使用したことを特徴とす
る限界電流型酸素センサー。
1. An anode is provided on one surface of an oxygen ion conductive solid electrolyte, a cathode is provided on a surface of the other surface of the solid electrolyte opposite to the anode, and a porous gas is in contact with the cathode and the solid electrolyte. A limiting current type oxygen sensor comprising a diffusing member, a power source for applying a voltage between the electrodes, and an ammeter for detecting a current flowing between the electrodes, wherein the solid electrolyte and the porous gas are diffused. A limiting current type oxygen sensor characterized in that a high temperature bonding using a platinum plate is used for bonding with a member.
JP3072333A 1991-03-12 1991-03-12 Oxygen sensor of threshold current type Withdrawn JPH05249071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3072333A JPH05249071A (en) 1991-03-12 1991-03-12 Oxygen sensor of threshold current type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3072333A JPH05249071A (en) 1991-03-12 1991-03-12 Oxygen sensor of threshold current type

Publications (1)

Publication Number Publication Date
JPH05249071A true JPH05249071A (en) 1993-09-28

Family

ID=13486261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3072333A Withdrawn JPH05249071A (en) 1991-03-12 1991-03-12 Oxygen sensor of threshold current type

Country Status (1)

Country Link
JP (1) JPH05249071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402417B1 (en) * 2000-01-26 2003-10-22 한국에너지기술연구원 Electric Ion Pumping type YSZ Oxygen Sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402417B1 (en) * 2000-01-26 2003-10-22 한국에너지기술연구원 Electric Ion Pumping type YSZ Oxygen Sensor

Similar Documents

Publication Publication Date Title
JP4608047B2 (en) Mixed ionic conductor and device using the same
US5393397A (en) Oxygen sensor
JP4608506B2 (en) Mixed ionic conductor and device using the same
JPS63300955A (en) Electrochemical element
JPS63738B2 (en)
US5672437A (en) Solid electrolyte for a fuel cell
JPS63501801A (en) Solid electrolyte device and its manufacturing method
JPS6311847A (en) Air/fuel ratio detecting element
JPH1021935A (en) Solid electrolyte fuel cell
JPH05249071A (en) Oxygen sensor of threshold current type
JP2868913B2 (en) Solid electrolyte gas sensor
JP2000019152A (en) Hydrogen gas sensor
JPH033181B2 (en)
JPH0353578B2 (en)
JP2004303712A (en) Solid oxide fuel cell
JP2948124B2 (en) Oxygen sensor
JP2932916B2 (en) Gas sensor
JPH05249072A (en) Oxygen sensor of threshold current type
JP2805811B2 (en) Combustion control sensor
JP2612584B2 (en) Manufacturing method of oxygen detection element
JP2592070B2 (en) Electrode formation method
JPH03120456A (en) Oxygen sensor
JPS644146B2 (en)
JPH05234604A (en) Solid electrolyte type fuel cell
KR100234021B1 (en) Heater integrated oxygen sensor using porous ceramic diffusion barrier composition and preparation method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514