JPH05248985A - Wind tunnel - Google Patents

Wind tunnel

Info

Publication number
JPH05248985A
JPH05248985A JP8328892A JP8328892A JPH05248985A JP H05248985 A JPH05248985 A JP H05248985A JP 8328892 A JP8328892 A JP 8328892A JP 8328892 A JP8328892 A JP 8328892A JP H05248985 A JPH05248985 A JP H05248985A
Authority
JP
Japan
Prior art keywords
air
flow
air flow
wind tunnel
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8328892A
Other languages
Japanese (ja)
Inventor
Hideki Nomoto
秀喜 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8328892A priority Critical patent/JPH05248985A/en
Publication of JPH05248985A publication Critical patent/JPH05248985A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE:To easily and properly set the section area of an air flow path in accordance with any arbitrary Mach number by varying the section area without changing the shape of the flow path wall. CONSTITUTION:A wind tunnel is formed which is to control a uniform flow velocity by varying the section area of an air flow path for uniform streaming, wherein an air jet blow-in hole 4 is furnished upstream of a constant section area flow path wall 3 while an air flow suction port 5 is furnished downstream, and the section area of the air flow path is varied aerodynamically.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超音速風洞に好適な風洞
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wind tunnel suitable for a supersonic wind tunnel.

【0002】[0002]

【従来の技術】超音速風洞において、超音速気流を作り
出す超音速ノズルは、流路断面積がいったん縮小し次に
拡大するいわゆるラバルノズルと呼ばれるものであり、
気流の上流の下流に対する圧力比が十分に大きいときに
は、この流路拡大部で気流が断熱膨張し、超音速気流が
生成し、このとき下流の気流マッハ数はそこの流路断面
積と流路断面積最小部の比で良く近似され、いわゆる一
次元理論が成立することが知られている。従って超音速
ノズルは、ノズル出口の気流マッハ数に応じて風洞壁の
形状を設定しなければならず、従来の超音速ノズルは、
図5縦断面図に示すように、一様流の気流1を作る整流
筒2の先に弾性変化できる薄板製の固体壁14を作り、
この固体壁14を複数個の油圧ジャッキ15によって保
持し、油圧ジャッキ15のストロークにより壁形状を設
定している。
2. Description of the Related Art In a supersonic wind tunnel, a supersonic nozzle that produces a supersonic airflow is a so-called Laval nozzle in which the cross-sectional area of a flow channel is first reduced and then expanded.
When the upstream / downstream pressure ratio of the air flow is sufficiently large, the air flow expands adiabatically in this enlarged flow path part to generate a supersonic air flow.At this time, the downstream air flow Mach number is the flow path cross-sectional area and flow path. It is known that it is well approximated by the ratio of the minimum cross-sectional area, and so-called one-dimensional theory holds. Therefore, the supersonic nozzle must set the shape of the wind tunnel wall according to the air flow Mach number at the nozzle outlet, and the conventional supersonic nozzle is
As shown in the vertical cross-sectional view of FIG. 5, a solid wall 14 made of a thin plate, which can be elastically changed, is formed at the tip of a rectifying cylinder 2 that creates a uniform flow 1.
The solid wall 14 is held by a plurality of hydraulic jacks 15, and the wall shape is set by the stroke of the hydraulic jacks 15.

【0003】しかしながらこのような装置では、固体壁
の構造が複雑になり、個々のマッハ数の設定にも時間と
労力がかかり、またノズルを個々のマッハ数に応じて個
別に作るときには、作られているノズルのマッハ数しか
実現することができず、このノズルの交換に時間と労力
がかかるのに変わりはない。更に気流通風中にマッハ数
を変化させるには、複雑な機構を操作しなくてはならず
速効性に欠ける嫌いがある。
However, in such an apparatus, the structure of the solid wall is complicated, it takes time and labor to set the individual Mach numbers, and when the nozzles are individually made according to the individual Mach numbers, they are produced. It is possible to realize only the Mach number of the existing nozzle, and it takes time and labor to replace this nozzle. Furthermore, in order to change the Mach number in the air flow, it is necessary to operate a complicated mechanism, and there is a dislike that it lacks quick effect.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
事情に鑑みて提案されたもので、流路壁の形状を変える
ことなく気流流路断面積を変化させることができ、任意
のマッハ数に応じる気流流路断面積を容易かつ的確に設
定することができる風洞を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the above circumstances, and it is possible to change the cross-sectional area of an air flow passage without changing the shape of the flow passage wall. An object of the present invention is to provide a wind tunnel capable of easily and accurately setting the cross-sectional area of the air flow passage according to the number.

【0005】[0005]

【課題を解決するための手段】そのために本発明は、一
様流の気流流路断面積を変化させ一様流流速を制御する
風洞において、定断面積流路壁の上流にエアジェット吹
き出し口又は突起物を設けるとともに下流に気流吸い出
し口を設け気流流路断面積を空気力学的に変化させるこ
とを特徴とする。
To this end, the present invention provides an air jet outlet upstream of a constant cross-section flow path wall in a wind tunnel in which the uniform flow velocity cross-sectional area is changed to control the uniform flow velocity. Alternatively, it is characterized in that a projection is provided and an airflow suction port is provided downstream to change the airflow channel cross-sectional area aerodynamically.

【0006】[0006]

【作用】本発明風洞においては、定断面積流路壁の上流
に設けたエアジェット吹き込み口からエアジェットを吹
き込むとともに、下流に設けた気流吸い出し口から気流
を吸い出すことにより、いわゆる空力ノズルを作り出し
て一様流流速を制御する。従ってマッハ数によってノズ
ル形状を変える必要がなくなり、吹き出しエアジェット
の流量,圧力を制御することにより一様流流速を適宜か
つ容易に制御することができる。
In the wind tunnel of the present invention, a so-called aerodynamic nozzle is created by blowing the air jet from the air jet blowing port provided on the upstream side of the wall of the constant cross-section area and sucking the air stream from the air flow sucking port provided on the downstream side. Control the uniform flow velocity. Therefore, it is not necessary to change the nozzle shape depending on the Mach number, and the uniform flow velocity can be appropriately and easily controlled by controlling the flow rate and pressure of the blown air jet.

【0007】[0007]

【実施例】本発明風洞の実施例を図面について説明する
と、図1は第1実施例の縦断面図、図2は同上における
エアジェット吹き込み口付近の流れ場の説明図、図3は
気流吸い出し口付近の流れ場の説明図、図4は第2実施
例の縦断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, an embodiment of the wind tunnel of the present invention will be described. FIG. 1 is a longitudinal sectional view of the first embodiment, FIG. 2 is an explanatory view of a flow field in the vicinity of an air jet blowing port in the same as above, and FIG. FIG. 4 is an explanatory view of a flow field near the mouth, and FIG. 4 is a vertical sectional view of the second embodiment.

【0008】まず第1実施例の図1において、一様流の
気流1を作る整流筒2の先に、定断面積流路壁3が形成
されており、この定断面積流路壁3の上流位置にエアジ
ェット吹き込み口4が設けられるとともに、その下流位
置に気流吸い出し口5が設けられている。これらエアジ
ェット吹き込み口4,気流吸い出し口5はそれぞれ単数
個でもよいが、気流流線10の流れを円滑にするために
それぞれ複数個とする。しかして各エアジェット吹き込
み口4は高圧貯気槽6に連結され、その中間にエアジェ
ット11の圧力と流量を制御するバルブ7が配設されて
おり、各気流吸い出し口5は真空槽8と連結され、その
中間に流量,圧力制御用のバルブ9が配設されている。
またバルブ7,9は風洞制御のコンピューターによって
制御される。
First, in FIG. 1 of the first embodiment, a constant cross-sectional area flow passage wall 3 is formed at the tip of a rectifying cylinder 2 which produces a uniform flow air flow 1. An air jet blowing port 4 is provided at an upstream position, and an air flow suction port 5 is provided at a downstream position. The air jet blowing port 4 and the air flow suction port 5 may each be singular, but they are plural in order to make the flow of the air flow streamline 10 smooth. Then, each air jet blow-in port 4 is connected to a high-pressure air storage tank 6, a valve 7 for controlling the pressure and flow rate of the air jet 11 is arranged in the middle thereof, and each air flow suction port 5 is connected to a vacuum tank 8. A valve 9 for controlling the flow rate and the pressure is arranged in the middle.
The valves 7 and 9 are controlled by a wind tunnel control computer.

【0009】このような装置において、エアジェット吹
き込み口4からエアジェット11を吹き込み気流吸い出
し口5から吸い出すと、いかに気流流線10の流れが変
化するかを図3及び図4により説明する。図3におい
て、エアジェット吹き込み口4から気流流線10に垂直
にエアジェット11を吹き込むと、エアジェット11は
下流側に曲げられそれに伴い気流流線10は定断面積流
路壁3から離れるように曲げられる。このときエアジェ
ット11のすぐ上流とすぐ下流には剥離領域ができ複雑
な流れ場が形成される。また気流流線10とエアジェッ
ト11とを分ける分割流線12により気流流線10の外
側の形状が決定され、この分割流線12の形状はエアジ
ェット11の圧力と流量によって変化するとともにエア
ジェット吹き込み口4の数によって変化するので、これ
らを適宜選定することにより、分割流線12の形状を自
由に設定することができる。なお図4において、気流吸
い出し口5によりエアジェット11を吸引すると、気流
流線10の流路は拡大し、気流の断熱膨張を助け所定の
マッハ数をもつ気流流線10を生成することができる。
In such a device, how the flow of the airflow streamline 10 changes when the air jet 11 is blown from the air jet blowing port 4 and sucked from the air flow suction port 5 will be described with reference to FIGS. 3 and 4. In FIG. 3, when the air jet 11 is blown from the air jet blowing port 4 perpendicularly to the airflow streamline 10, the airjet 11 is bent to the downstream side and accordingly the airflow streamline 10 separates from the constant cross-sectional area flow path wall 3. Can be bent. At this time, a separation area is formed immediately upstream and immediately downstream of the air jet 11, and a complicated flow field is formed. The shape of the outside of the airflow streamline 10 is determined by the divided streamline 12 that divides the airflow streamline 10 and the air jet 11. The shape of the divided streamline 12 changes according to the pressure and flow rate of the air jet 11, and The shape of the divided streamline 12 can be freely set by appropriately selecting these because it changes depending on the number of the blowing ports 4. In FIG. 4, when the air jet 11 is sucked by the air flow suction port 5, the flow path of the air flow streamline 10 is expanded, and the adiabatic expansion of the air flow is assisted to generate the air flow streamline 10 having a predetermined Mach number. ..

【0010】かくしてエアジェット吹き込み口4からエ
アジェット11を吹き込むことにより整流筒2からくる
一様流の気流1の気流流線10は狭められ、その後下流
側で定断面積流路壁3から気流を吸い出すことにより狭
められた気流流線10は再度拡大され、即ち定断面積流
路壁3付近の上流,下流におけるエアジェット11の吹
き込み,吸い出しにより、いわばラバルノズルが形成さ
れ、気流流線10の拡大部において風洞一様流が断熱膨
張して超音速気流が実現できることになる。
In this way, by blowing the air jet 11 from the air jet blowing port 4, the air flow streamline 10 of the uniform air flow 1 coming from the flow straightening cylinder 2 is narrowed, and then the air flow from the constant cross-sectional area flow passage wall 3 on the downstream side. The airflow streamline 10 narrowed by sucking out the airflow streamline 10 is expanded again, that is, by blowing and sucking out the air jets 11 upstream and downstream of the flow passage wall 3 near the constant cross-sectional area, so to speak, a Laval nozzle is formed, The uniform flow in the wind tunnel is adiabatically expanded in the expanded portion, and a supersonic airflow can be realized.

【0011】次に第2実施例の図4において、上記のエ
アジェット吹き込み口4の代わりに、突起物13を定断
面積流路壁3に設置し気流流線10を縮小させる。縮小
された気流流線10は、下流にある気流吸い出し口5か
ら積極的に気流を吸い出すことにより、実質的に拡大さ
れ、断熱膨張により超音速気流を実現させる。この突起
物13と上記のエアジェット吹き込み口4の両者を組合
わせてもよく、突起物13の高さ及び流れ方向の長さや
取付位置は、生成させようとするマッハ数に応じて変化
させてもよい。
Next, referring to FIG. 4 of the second embodiment, instead of the above-mentioned air jet blowing port 4, a protrusion 13 is installed on the flow passage wall 3 of a constant cross-sectional area to reduce the airflow streamline 10. The reduced airflow streamline 10 is substantially expanded by positively sucking the airflow from the airflow suction port 5 located downstream, and realizes a supersonic airflow by adiabatic expansion. Both the projection 13 and the air jet blowing port 4 may be combined, and the height of the projection 13 and the length in the flow direction and the mounting position may be changed according to the Mach number to be generated. Good.

【0012】[0012]

【発明の効果】要するに本発明によれば、一様流の気流
流路断面積を変化させ一様流流速を制御する風洞におい
て、定断面積流路壁の上流にエアジェット吹き出し口又
は突起物を設けるとともに下流に気流吸い出し口を設け
気流流路断面積を空気力学的に変化させることにより、
流路壁の形状を変えることなく気流流路断面積を変化さ
せることができ、任意のマッハ数に応じる気流流路断面
積を容易かつ的確に設定することができる風洞を得るか
ら、本発明は産業上極めて有益なものである。
In summary, according to the present invention, an air jet outlet or a projection is provided upstream of a constant cross-sectional area flow path wall in a wind tunnel in which the cross-sectional area of the uniform flow path is changed to control the uniform flow velocity. By providing an airflow suction port downstream and changing the airflow channel cross-sectional area aerodynamically,
The present invention provides a wind tunnel that can change the air flow passage cross-sectional area without changing the shape of the flow passage wall and can easily and accurately set the air flow passage cross-sectional area according to an arbitrary Mach number. It is extremely useful in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明風洞の第1実施例の縦断面図である。FIG. 1 is a vertical sectional view of a first embodiment of a wind tunnel of the present invention.

【図2】同上におけるエアジェット吹き込み口付近の流
れ場の説明図である。
FIG. 2 is an explanatory diagram of a flow field in the vicinity of an air jet blowing port in the above.

【図3】同上における気流吸い出し口付近の流れ場の説
明図である。
FIG. 3 is an explanatory view of a flow field in the vicinity of the airflow suction port in the above.

【図4】第2実施例の縦断面図である。FIG. 4 is a vertical sectional view of a second embodiment.

【図5】従来の風洞の縦断面図である。FIG. 5 is a vertical cross-sectional view of a conventional wind tunnel.

【符号の説明】[Explanation of symbols]

1 気流 2 整流筒 3 定断面積流路壁 4 エアジェット吹き込み口 5 気流吸い出し口 6 高圧貯気槽 7 バルブ 8 真空槽 9 バルブ 10 気流流線 11 エアジェット 12 分割流線 13 突起物 1 air flow 2 straightening tube 3 constant cross-sectional area flow path wall 4 air jet blowing port 5 air flow suction port 6 high pressure air storage tank 7 valve 8 vacuum tank 9 valve 10 air flow stream line 11 air jet 12 split stream line 13 protrusion

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一様流の気流流路断面積を変化させ一様
流流速を制御する風洞において、定断面積流路壁の上流
にエアジェット吹き出し口又は突起物を設けるとともに
下流に気流吸い出し口を設け気流流路断面積を空気力学
的に変化させることを特徴とする風洞。
1. In a wind tunnel for controlling a uniform flow velocity by changing the cross-sectional area of a uniform flow passage, an air jet outlet or a protrusion is provided upstream of a constant cross-section passage wall, and the air is sucked out downstream. A wind tunnel that is provided with a mouth to change the air flow passage cross-sectional area aerodynamically.
JP8328892A 1992-03-05 1992-03-05 Wind tunnel Withdrawn JPH05248985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8328892A JPH05248985A (en) 1992-03-05 1992-03-05 Wind tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8328892A JPH05248985A (en) 1992-03-05 1992-03-05 Wind tunnel

Publications (1)

Publication Number Publication Date
JPH05248985A true JPH05248985A (en) 1993-09-28

Family

ID=13798205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8328892A Withdrawn JPH05248985A (en) 1992-03-05 1992-03-05 Wind tunnel

Country Status (1)

Country Link
JP (1) JPH05248985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3102656A1 (en) * 1981-01-24 1982-08-05 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Circuit arrangement for a magnetic drive which is supplied from a DC voltage power supply whose voltage fluctuates severely, especially a switching contactor
CN108181077A (en) * 2017-12-15 2018-06-19 浙江大学 The two-fluid jet apparatus of changeable incoming flow conditions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3102656A1 (en) * 1981-01-24 1982-08-05 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Circuit arrangement for a magnetic drive which is supplied from a DC voltage power supply whose voltage fluctuates severely, especially a switching contactor
CN108181077A (en) * 2017-12-15 2018-06-19 浙江大学 The two-fluid jet apparatus of changeable incoming flow conditions

Similar Documents

Publication Publication Date Title
US2948148A (en) Supersonic wind-tunnel for a variable mach number
JP4989859B2 (en) Cold spray nozzle and cold spray apparatus and method using the same
JP4298677B2 (en) Engine exhaust gas deflection system
CN102434315B (en) Bypass type double-throat passive vectoring sprayer nozzle
US2799990A (en) Supersonic jet deflection device
CN106837601B (en) Venturi offset fluidic vectoring nozzle with lateral expansion
CN107504066B (en) A kind of integral shaft symmetrical jet pressure stabilizing cavity supplied to high pressure disk gas bearing
JPH05248985A (en) Wind tunnel
US2729974A (en) Transonic flow control with reduced power
JP2020148197A (en) Jet nozzle and thrust vector control method
JP2001271710A (en) Noise reduction device and discharge nozzle for jet engine
JP2022526627A (en) Jet pump
FI60412C (en) JETTEXTURERINGSANORDNING FOER GARN
US5531406A (en) Flow-vectored trailing-edge for airfoils and jets
US4189812A (en) Jet for fluid texturing yarn
JP6883339B2 (en) Ejector
US3520639A (en) Venturi tube
GB788852A (en) Improvements in or relating to aircraft
JPH0579944A (en) Wind tunnel testing device
CN117490968B (en) Jet simulator rectifying device and jet design method
RU1818569C (en) Transonic aerodynamic tunnel working portion
JPH0651140B2 (en) Spraying device
US4096612A (en) Jet for fluid texturing yarn
US2934896A (en) Variable-area propelling nozzle combined with a thrust spoiler
JP2629297B2 (en) Flow deflector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518