JP2020148197A - Jet nozzle and thrust vector control method - Google Patents

Jet nozzle and thrust vector control method Download PDF

Info

Publication number
JP2020148197A
JP2020148197A JP2019049232A JP2019049232A JP2020148197A JP 2020148197 A JP2020148197 A JP 2020148197A JP 2019049232 A JP2019049232 A JP 2019049232A JP 2019049232 A JP2019049232 A JP 2019049232A JP 2020148197 A JP2020148197 A JP 2020148197A
Authority
JP
Japan
Prior art keywords
nozzle
jet
outside air
solenoid valve
flying object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019049232A
Other languages
Japanese (ja)
Inventor
敏彦 社河内
Toshihiko Shiyakouchi
敏彦 社河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019049232A priority Critical patent/JP2020148197A/en
Publication of JP2020148197A publication Critical patent/JP2020148197A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

To solve a problem of a conventional flying object in which even if there are differences in the scale of the actuators, such as the method of moving the wings with an actuator and controlling by steering, the use of actuators is indispensable, and it makes difficult to realize downsizing and reducing weight of a flying object and energy saving in it.SOLUTION: A jet nozzle of the present invention is assembled in a manner where a pipe nozzle, a spacer, and an expansion nozzle are coaxially aligned. A plurality of suction pipes is arranged radially around the axis in the vicinity of the joint section of the expansion nozzle to the spacer. During operation of this jet nozzle, since negative pressure is induced in the suction pipe due to the high-speed flow of high-pressure jet gas, the outside air may be taken into the suction pipe by opening outside air solenoid valve arranged on an end of the suction pipe. By adjusting the position and strength of the sucked outside air while individually controlling the opening degrees of these multiple solenoid valves, the jet direction of the jet stream ejected from the flying object is controlled, and the propulsion direction of the flying object is controlled.SELECTED DRAWING: Figure 1

Description

本発明は、ジェット機やロケットなど飛翔体の推進方向制御装置、及び推進方向の制御方法に関する。 The present invention relates to a propulsion direction control device for a flying object such as a jet aircraft or a rocket, and a method for controlling the propulsion direction.

ジェットエンジンやロケットエンジンなどを搭載して飛翔する飛翔体には、推進力として亜音速、超音速自由噴流などが用いられ、また、ジェットエンジンやロケットエンジンなどの飛翔体における進行方向の制御には、エレベータ、エルロン、フラップ、ラダーなどの小翼及び噴射ノズルなどの方向制御装置が用いられている。
特許文献1には飛翔体に対するガス噴射ノズル本体の角度を変更する第1アクチュエータと、当該第1アクチュエータによって角度変更されるガス噴射ノズルを飛翔体に対して回動させる第2のアクチュエータを備えた飛翔体の推進方向制御装置の発明が開示されている。即ち、特許文献1では、ガス噴射ノズル本体をアクチュエータで傾斜、回転させて飛翔体の推進方向制御を行っている。
Subsonic and supersonic free jets are used as propulsion for flying objects equipped with jet engines and rocket engines, and for controlling the traveling direction of flying objects such as jet engines and rocket engines. , Elevators, Ellons, flaps, rudder and other winglets and jet nozzles and other direction control devices are used.
Patent Document 1 includes a first actuator that changes the angle of the gas injection nozzle main body with respect to the flying object, and a second actuator that rotates the gas injection nozzle whose angle is changed by the first actuator with respect to the flying object. The invention of a propelling direction control device for a flying object is disclosed. That is, in Patent Document 1, the gas injection nozzle main body is tilted and rotated by an actuator to control the propulsion direction of the flying object.

特許文献2には、燃焼ガスをジェットノズルから噴射させて推力を得るラムジェットエンジンであって、燃焼室を形成する外筒の後部で且つ、ジェットノズルの入り口近傍に、機軸に対して軸対象に配置された複数の空気流入口を設け、各空気流入口を開閉する制御ドア、アクチュエータ、および駆動源を備えた方向制御可能はラムジェットエンジンの発明が開示されている。 Patent Document 2 describes a ramjet engine that obtains thrust by injecting combustion gas from a jet nozzle, which is axially symmetrical with respect to the axis at the rear of an outer cylinder forming a combustion chamber and near the entrance of the jet nozzle. The invention of a ramjet engine is disclosed in which a plurality of air inlets arranged in a ramjet engine are provided, and a control door, an actuator, and a drive source for opening and closing each air inlet are provided for directional control.

即ち、特許文献2では、飛翔体の推進方向の外側に開口させた制御ドアに当たって流入する空気をラムジットエンジン内に取り込み、この時、複数の制御ドアの開口度をそれぞれ個別に変化させて流入させる空気量を調整して飛翔体の推進方向の制御を行っている。 That is, in Patent Document 2, the air that hits the control door opened outside in the propulsion direction of the flying object and flows in is taken into the ramgit engine, and at this time, the opening degrees of the plurality of control doors are individually changed and flowed in. The propulsion direction of the projectile is controlled by adjusting the amount of air to be generated.

特開2016−44667JP 2016-44667 特開平5−187319JP-A-5-187319

従来の飛翔体の推進方向制御では、アクチュエータで翼を動かし舵をとって制御する方法、大掛かりなアクチュエータを用い噴射ノズル本体を飛翔体の中心軸に対して傾斜させ、傾斜させた状態のまま中心軸回りに噴射ノズル本体を回動させる方法、ラムジェットエンジンでは外付けの開閉扉をアクチュエータで開閉させ、外付けの開閉扉に当る外気をジェットノズルに取り込み噴射ガスの方向を変化させる方法など、様々な方法が採用されている。しかし、これら従来技術では何れも使用されるアクチュエータの規模に大小の差はあっても、アクチュエータの使用は必須であり、飛翔体の小型軽量化、省エネ化の実現を困難にしている。 In the conventional propulsion direction control of a flying object, a method of moving a wing with an actuator to steer and control it, or using a large-scale actuator to incline the injection nozzle body with respect to the central axis of the flying object, and centering it in an inclined state. A method of rotating the injection nozzle body around an axis, a method of opening and closing the external opening / closing door with an actuator in a ramjet engine, and a method of taking in the outside air hitting the external opening / closing door into the jet nozzle and changing the direction of the injection gas. Various methods have been adopted. However, in all of these conventional techniques, although there is a difference in the scale of the actuators used, the use of the actuators is indispensable, which makes it difficult to reduce the size and weight of the projectile and save energy.

請求項1に記載の噴流噴射ノズルの発明は、飛翔体の推進方向を所定の向きに制御できる噴流噴射ノズルである。本噴流噴射ノズルはパイプノズルと、スペーサと、拡大ノズルとが軸心を一致させて一体に組み立てられる。また、拡大ノズルがスペーサと接合される拡大ノズルの端面近傍には、吸引管を設置するため、複数の貫通穴が軸心を中心として放射状に形成され、この各貫通穴に吸引管が挿入される。
全ての吸引管の軸心側の端部は、拡大ノズル内に開放されている。また、全ての吸引管の他端近傍には電磁弁が取り付けられ、この電磁弁の開閉により吸引管の吸引口は開口度が自在に制御される。本噴流噴射ノズルは作動時、高圧ガスの高速流に起因して吸引管に負圧が発生する。この負圧の大きさは高圧ガスの流速に依存し、流速が大きい程負圧も大きくなる。
The invention of the jet injection nozzle according to claim 1 is a jet injection nozzle capable of controlling the propulsion direction of a flying object in a predetermined direction. In this jet injection nozzle, the pipe nozzle, the spacer, and the expansion nozzle are integrally assembled with their axes aligned. Further, in order to install a suction tube near the end face of the expansion nozzle where the expansion nozzle is joined to the spacer, a plurality of through holes are formed radially around the axis, and the suction tube is inserted into each of the through holes. To.
Axial ends of all suction tubes are open into the magnifying nozzle. Further, a solenoid valve is attached near the other end of all the suction pipes, and the opening degree of the suction port of the suction pipe is freely controlled by opening and closing the solenoid valve. When the jet injection nozzle is operated, a negative pressure is generated in the suction pipe due to the high-speed flow of high-pressure gas. The magnitude of this negative pressure depends on the flow velocity of the high-pressure gas, and the larger the flow velocity, the larger the negative pressure.

飛翔体が大気圏内にあるとき、吸引管の端部に設置された電磁弁(外気電磁弁)の開口部が外気に開口されると、吸引管内に発生する負圧に起因して外気が拡大ノズル内に吸引される。外気の吸引量は電磁弁の開口度の増加に伴って増加する。拡大ノズルには複数の吸引管が放射状に配置されているので、開閉される吸引管の位置と、吸引管に取り付けられた電磁弁の開口度を制御することで、拡大ノズル内に吸引される外気の位置と量を様々に変化させることができる。 When the flying object is in the atmosphere, if the opening of the solenoid valve (outside air solenoid valve) installed at the end of the suction pipe is opened to the outside air, the outside air expands due to the negative pressure generated in the suction pipe. It is sucked into the nozzle. The amount of outside air sucked increases as the opening degree of the solenoid valve increases. Since a plurality of suction tubes are arranged radially in the expansion nozzle, suction is performed in the expansion nozzle by controlling the position of the suction tube to be opened and closed and the opening degree of the solenoid valve attached to the suction tube. The position and amount of outside air can be changed in various ways.

一方、飛翔体が大気圏外にあるときは、吸引される外気は無い。この場合には、飛翔体自身に搭載された窒素、酸素、空気等の気体を電磁弁(ボンベ電磁弁)を開口させて拡大ノズル内に導入する。気体の導入位置と量は、電磁弁の位置と電磁弁の開口度の組合せで調整可能であり、これにより、拡大ノズルによる飛翔体の推進方向を自在に制御できる。
なお、ここで使用する「大気圏内」と「大気圏外」の文言は、飛翔体が飛翔する外気の気圧が、高圧ガスの高速流に起因して吸引管に生じる負圧より高い場合を「大気圏内」とし、低い場合を「大気圏外」と定義するものとする。
On the other hand, when the projectile is outside the atmosphere, there is no outside air sucked. In this case, a gas such as nitrogen, oxygen, or air mounted on the flying object itself is introduced into the expansion nozzle by opening the solenoid valve (cylinder solenoid valve). The introduction position and amount of gas can be adjusted by the combination of the position of the solenoid valve and the opening degree of the solenoid valve, whereby the propulsion direction of the projectile by the expansion nozzle can be freely controlled.
The terms "atmosphere" and "outside the atmosphere" used here refer to the case where the atmospheric pressure of the outside air in which the flying object flies is higher than the negative pressure generated in the suction pipe due to the high-speed flow of high-pressure gas. "Inside" and low is defined as "outside the atmosphere".

請求項2に記載の噴流噴射ノズルの発明では、飛翔体は、大気圏内を飛翔する場合に使用する外気吸引用の外気電磁弁、又は、大気圏外を飛翔する場合に使用するボンベより気体(窒素、酸素、空気)を流入させるボンベ電磁弁の何れか一方又は、両方を装備する。これにより、本発明の飛翔体は、大気圏内と大気圏外の何れの領域においても飛翔方向を制御することができる。なお、ボンベ電磁弁は大気圏外のみならず、必要に応じ大気圏内で使用することができる。 In the invention of the jet injection nozzle according to claim 2, the projectile is a gas (nitrogen) from an outside air solenoid valve for sucking outside air used when flying in the atmosphere or a cylinder used when flying outside the atmosphere. , Oxygen, air), and one or both of the cylinder solenoid valves that allow inflow. Thereby, the flying object of the present invention can control the flight direction in both the atmosphere and the outside of the atmosphere. The cylinder solenoid valve can be used not only outside the atmosphere but also in the atmosphere as needed.

請求項3に記載の飛翔体の推進方向ベクトル制御方法の発明は、パイプノズルと、スペーサと、拡大ノズルとが軸心を一致させて接合されて構成される請求項1に記載の噴流噴射ノズルの制御方法の発明である。また、本発明のベクトル制御方法では、パイプノズルの出口中心を原点とし、軸心をX軸、X軸に垂直な方向の距離をr、rの円周方向角をθとする座標系を用いる。また、噴流の中心軸に対する傾きを偏向角βとすると、偏向角βと円周方向角θは複数の吸引管に配置された各電磁弁の開口度の組合せで変化させることができるので、噴流の偏向角β及び円周方向θについて当該座標系を用いてベクトル制御を行うことができる。 The jet injection nozzle according to claim 1, wherein the invention of the projectile propulsion direction vector control method according to claim 3 is configured by joining a pipe nozzle, a spacer, and an expansion nozzle so as to align their axes. It is an invention of the control method of. Further, in the vector control method of the present invention, a coordinate system is used in which the center of the outlet of the pipe nozzle is the origin, the axis is the X-axis, the distance in the direction perpendicular to the X-axis is r, and the circumferential azimuth of r is θ. .. Further, assuming that the inclination of the jet with respect to the central axis is the deflection angle β, the deflection angle β and the circumferential azimuth θ can be changed by the combination of the opening degrees of each electromagnetic valve arranged in the plurality of suction tubes. Vector control can be performed using the coordinate system for the deflection angle β and the circumferential direction θ of.

本願発明の吸引管は、拡大ノズル内部に誘起される負圧を利用し、吸引管を開口することで外気を導入する。このとき、外気を導入しない箇所での高圧ガス噴流と拡大ノズル内壁面間の圧力が小さいため、結果的に外気を導入しない拡大ノズル内部壁面側に噴流を偏向させることができる。また、この噴流の偏向により飛翔体の飛翔方向を制御することができる。 The suction tube of the present invention utilizes the negative pressure induced inside the expansion nozzle to introduce the outside air by opening the suction tube. At this time, since the pressure between the high-pressure gas jet and the inner wall surface of the expansion nozzle at the place where the outside air is not introduced is small, the jet flow can be deflected to the inner wall surface side of the expansion nozzle where the outside air is not introduced as a result. In addition, the flight direction of the flying object can be controlled by the deflection of this jet.

噴流噴射ノズル断面図Jet jet nozzle cross section 噴流噴射ノズル側面図Side view of jet injection nozzle 方向制御装置Direction control device 電磁弁の開口度と噴流の偏向角度の関係Relationship between solenoid valve opening and jet deflection angle 噴流の偏向状況可視化測定例Jet deflection situation visualization measurement example 軸心上の噴流の圧力分布Pressure distribution of jet on the axis 軸心との垂直断面における噴流の圧力分布Jet pressure distribution in cross section perpendicular to the axis

図1、2に本発明の噴流噴射ノズル10の断面図と側面図を示す。本発明の噴流噴射ノズル10はパイプノズル11と、拡大ノズル14がスペーサ12を挟み、軸心を一致させて組み立てられる。高圧ガス18は、矢示するようにパイプノズル11の左方上流側より右方下流側に誘導される。パイプノズル11の高圧ガス流路17の内径は、高圧ガス流路17の入り口付近から、下流に向かいテーパー状に絞られる。逆に、パイプノズル11の下流側に位置するスペーサ12と、拡大ノズル14の内径は左方入口側から、右方出口側に向かいテーパー状に拡張される。また、スペーサ12によりパイプノズル11と拡大ノズル14との接続部内径に段差のない一様なテーパー構造が形成され、更に、高圧ガス流路17を形成するパイプノズル11と、スペーサ12と、拡大ノズル14の内径表面は段差や、突起のない平滑な表面に仕上げられる。これにより、高圧ガス18が高圧ガス流路17を矢視方向にスムースに噴射される。 1 and 2 show a cross-sectional view and a side view of the jet injection nozzle 10 of the present invention. The jet injection nozzle 10 of the present invention is assembled with the pipe nozzle 11 and the expansion nozzle 14 sandwiching the spacer 12 and aligning the axes. The high-pressure gas 18 is guided from the left upstream side of the pipe nozzle 11 to the right downstream side as shown by the arrow. The inner diameter of the high-pressure gas flow path 17 of the pipe nozzle 11 is tapered from the vicinity of the entrance of the high-pressure gas flow path 17 toward the downstream. On the contrary, the inner diameters of the spacer 12 located on the downstream side of the pipe nozzle 11 and the expansion nozzle 14 are tapered from the left inlet side toward the right outlet side. Further, the spacer 12 forms a uniform tapered structure with no step in the inner diameter of the connecting portion between the pipe nozzle 11 and the expansion nozzle 14, and further, the pipe nozzle 11 forming the high-pressure gas flow path 17 and the spacer 12 are expanded. The inner diameter surface of the nozzle 14 is finished to be a smooth surface without steps or protrusions. As a result, the high-pressure gas 18 is smoothly injected into the high-pressure gas flow path 17 in the direction of arrow.

拡大ノズル14のスペーサ12側の端部には、複数の吸引管13が放射状に設置される。具体的には、拡大ノズル14の外表面から、軸心に向かい放射状に複数の穴を形成し、各穴の内部に吸引管13を挿入するなどの方法で製作される。設置される吸引管13の個数に特に制限はないが、通常は偶数個が周方向に等間隔に配置される。各吸引管13の軸心16側の端面は、高圧ガス流路17に解放されている。また、各吸引管13の軸心16との反対側には外気電磁弁22とボンベ電磁弁23の何れか一方、あるいは両方が取付けられ、これら外気電磁弁22やボンベ電磁弁23は方向制御装置20(図3参照)により開口度0%〜100%の範囲の任意の開口度に自在に開口される。外気電磁弁22の場合、先端部は開口部15として、大気に開口されている。 A plurality of suction tubes 13 are radially installed at the ends of the expansion nozzle 14 on the spacer 12 side. Specifically, it is manufactured by forming a plurality of holes radially from the outer surface of the expansion nozzle 14 toward the axis and inserting the suction tube 13 into each hole. The number of suction pipes 13 to be installed is not particularly limited, but usually even numbers are arranged at equal intervals in the circumferential direction. The end face of each suction pipe 13 on the axial center 16 side is open to the high-pressure gas flow path 17. Further, one or both of the outside air solenoid valve 22 and the cylinder solenoid valve 23 are attached to the opposite side of each suction tube 13 from the axis 16, and these outside air solenoid valves 22 and the cylinder solenoid valve 23 are directional control devices. 20 (see FIG. 3) allows the opening to be freely opened to any opening degree in the range of 0% to 100%. In the case of the outside air solenoid valve 22, the tip portion is opened to the atmosphere as an opening 15.

図3は方向制御装置であり、ブロックダイヤグラムで表されている。方向制御装置20は、飛翔体の推進方向の制御を外気電磁弁22a〜22h又は、ボンベ電磁弁23a〜23hの開口度を制御して行う。外気圧センサ24は飛翔体が飛翔する外気圧をセンシングする。外気圧センサ24によりセンシングされる外気圧により、演算部27が外気電磁弁22とボンベ電磁弁23の何れを使用するかを決定する。姿勢センサ25は飛翔体の推進方向をセンシングするセンサで、典型的にはジャイロが用いられる。姿勢センサ25によりセンシングされる飛翔方向に対し、飛翔体の飛翔方向を変更させる場合、現在の飛翔方向と目標とする飛翔方向との差異である偏向角を演算部27で求め、この偏向角度を実現するために必要とされる各電磁弁の制御量を演算部27で計算する。各電磁弁の制御量となる開口度は0〜100%の範囲に設定される。 FIG. 3 is a direction control device, which is represented by a block diagram. The direction control device 20 controls the propulsion direction of the flying object by controlling the opening degree of the outside air solenoid valves 22a to 22h or the cylinder solenoid valves 23a to 23h. The outside air pressure sensor 24 senses the outside air pressure at which the flying object flies. The calculation unit 27 determines whether to use the outside air solenoid valve 22 or the cylinder solenoid valve 23 based on the outside air pressure sensed by the outside air pressure sensor 24. The attitude sensor 25 is a sensor that senses the propulsion direction of the flying object, and a gyro is typically used. When changing the flight direction of a flying object with respect to the flight direction sensed by the attitude sensor 25, the calculation unit 27 obtains a deflection angle, which is the difference between the current flight direction and the target flight direction, and obtains this deflection angle. The calculation unit 27 calculates the control amount of each solenoid valve required for realization. The opening degree, which is the control amount of each solenoid valve, is set in the range of 0 to 100%.

全ての外気電磁弁22又は、全てのボンベ電磁弁23の開口度が0%又は、100%の場合、高圧ガス18は噴射噴流19aとなって軸心16と同一方向に噴出する。しかし、外気電磁弁22又は、ボンベ電磁弁23の一部が開口度0%又は、100%以外に設定されると、設定された開口度に応じて、高圧ガス18は噴射噴流19bのように軸心16に対して偏向されて噴出する。 When the opening degree of all the outside air solenoid valves 22 or all the cylinder solenoid valves 23 is 0% or 100%, the high-pressure gas 18 becomes an injection jet 19a and is ejected in the same direction as the axis 16. However, when a part of the outside air solenoid valve 22 or the cylinder solenoid valve 23 is set to an opening degree other than 0% or 100%, the high-pressure gas 18 is like a jet jet 19b according to the set opening degree. It is deflected with respect to the axis 16 and ejects.

図4は電磁弁の開口度と噴流の偏向角の関係であり飛翔体の偏向角度βを実現するための偏向角度βと電磁弁の関係の一例を示すものである。図4に示すデータは図1、2に該当する実験モデル作成し、大気圧中で実測したもので、パイプノズルの出口中心を原点とし、軸心をX軸、X軸に垂直な方向をr軸とした座標系を用いている。具体的には図1,2に示された形状の噴流噴射ノズル10を作成し、図2に示す吸引管13の開口部15を手動弁で開閉させて実測したデータである。測定は、2個づつの電磁弁22aと22h、或いは22bと22g、或いは22cと22f、或いは22dと22e、を各1対の電磁弁として、各対の電磁弁を逐次、積算的に閉口する方法で測定している。図中P0は図2に於ける4対の外気電磁弁22a〜22hを全て開口した場合の偏向角であり、Pは1対の外気電磁弁22a、22hをそれぞれ100%閉口した時の偏向角である。Pは2対の外気電磁弁22a、22h、22b、22gの電磁弁をそれぞれ100%閉口した場合の偏向角である。 FIG. 4 shows the relationship between the opening degree of the solenoid valve and the deflection angle of the jet, and shows an example of the relationship between the deflection angle β and the solenoid valve for realizing the deflection angle β of the flying object. The data shown in FIG. 4 was created by creating an experimental model corresponding to FIGS. 1 and 2 and measured in atmospheric pressure. The origin is the center of the outlet of the pipe nozzle, the axis is the X-axis, and the direction perpendicular to the X-axis is r. A coordinate system with axes is used. Specifically, it is the data measured by creating the jet injection nozzle 10 having the shape shown in FIGS. 1 and 2 and opening and closing the opening 15 of the suction pipe 13 shown in FIG. 2 by a manual valve. In the measurement, two solenoid valves 22a and 22h, 22b and 22g, or 22c and 22f, or 22d and 22e are used as a pair of solenoid valves, and each pair of solenoid valves is sequentially and cumulatively closed. It is measured by the method. In the figure, P 0 is the deflection angle when all four pairs of outside air solenoid valves 22a to 22h in FIG. 2 are opened, and P 2 is when the pair of outside air solenoid valves 22a and 22h are 100% closed, respectively. The deflection angle. P 4 is two pairs of outside air solenoid valve 22a, 22h, 22b, a deflection angle in the case where the solenoid valve 22g and closed 100%, respectively.

また、Pは3対の外気電磁弁22a、22h、22b、22g、22c、22fの電磁弁をそれぞれ100%閉口した場合の偏向角である。更に、Pは4対の外気電磁弁22a、22h、22b、22g、22c、22f、22d、22eを全て100%閉口した場合の偏向角である。回帰式31は、P、P、P、Pの4点について3次式で回帰して得られる回帰式であり、外気電磁弁22の開口度を制御する制御式の1つとして使用されるものである。回帰式32は、P、Pを直線回帰して求めた回帰式である。 Also, P 6 is the deflection angle of the three pairs of outside air solenoid valve 22a, 22h, 22b, 22g, 22c, if the solenoid valve 22f and closed 100%, respectively. Further, P 8 is a deflection angle when all four pairs of outside air solenoid valves 22a, 22h, 22b, 22g, 22c, 22f, 22d, and 22e are 100% closed. The regression equation 31 is a regression equation obtained by regressing the four points P 0 , P 2 , P 4 , and P 6 by a cubic equation, and is one of the control equations for controlling the opening degree of the outside air solenoid valve 22. It is what is used. Regression equation 32 is a regression equation obtained by linearly regressing P 6 and P 8 .

本回帰式31を用いた偏向角の制御は図4を用いて、例えば次になる。
まず、偏向角度軸上の点βiに対応する回帰式上の点Piを求め、次いで点Piに対応する電磁弁開口度軸上の点Niを求める。この場合、Niの電磁弁の開閉は、1対の外気電磁弁22a、22hをそれぞれ100%閉口し、更に1対の外気電磁弁22b、22gをそれぞれ50%閉口する場合に相当する。
即ち、回帰式31を用いる偏向角制御では、外気電磁弁22の制御を偏向角度βiに対応する回帰式31上の点Piを求め、次いで回帰式上の点Piに対応する電磁弁開口度軸上の点Niの各電磁弁の条件を求めて、各電磁弁の開口度の制御を行う。
The control of the deflection angle using this regression equation 31 is as follows, for example, using FIG.
First, the point Pi on the regression equation corresponding to the point βi on the deflection angle axis is obtained, and then the point Ni on the solenoid valve opening degree axis corresponding to the point Pi is obtained. In this case, the opening and closing of the Ni solenoid valve corresponds to the case where the pair of outside air solenoid valves 22a and 22h are closed 100%, respectively, and the pair of outside air solenoid valves 22b and 22g are closed 50% respectively.
That is, in the deflection angle control using the regression equation 31, the control of the outside air solenoid valve 22 is to obtain the point Pi on the regression equation 31 corresponding to the deflection angle βi, and then the solenoid valve opening degree axis corresponding to the point Pi on the regression equation. The opening degree of each solenoid valve is controlled by obtaining the conditions of each solenoid valve at the above point Ni.

図5は、高圧ガス18の圧力を0.380Mpaに設定し、図4に示すP0,P2、P4、P6,P8に対応する噴流の偏向角度を大気中で実測した時の噴流をシュリーレン光学系(カトウ光研、SS150型)で写真撮影したものである。噴流には膨張、圧縮に対応した衝撃波が観察され、8個の全ての電磁弁を開口又は閉口するP0又はP8では、噴流は直進するが、他のP2、P4、P6では開口の程度に応じて噴流の偏向角が変化している。この噴流の偏向は、吸引管から外気が流入する箇所では、高圧ガス18と拡大ノズル14との間に外気が流入することで、高圧ガスの流動抵抗が小さくなり、噴流は開口状態にある吸引管側の壁面から離れ易くなるが、吸引管が閉口状態にある箇所では、高圧ガスの流動抵抗がそのまま維持されるため、噴流が閉口状態にある吸引管側の壁面側に偏向するものである。 FIG. 5 shows the schlieren optical system when the pressure of the high-pressure gas 18 is set to 0.380 Mpa and the deflection angles of the jets corresponding to P0, P2, P4, P6, and P8 shown in FIG. 4 are actually measured in the atmosphere. It was taken with (Kato Koken, SS150 type). Shock waves corresponding to expansion and compression are observed in the jet, and at P0 or P8 where all eight solenoid valves are opened or closed, the jet goes straight, but at other P2, P4, and P6, depending on the degree of opening. The deflection angle of the jet is changing. The jet is deflected by the fact that the outside air flows in between the high pressure gas 18 and the expansion nozzle 14 at the place where the outside air flows from the suction pipe, so that the flow resistance of the high pressure gas becomes small and the jet flow is in an open state. Although it becomes easier to separate from the wall surface on the pipe side, the jet flow is deflected to the wall surface side on the suction pipe side in the closed state because the flow resistance of the high-pressure gas is maintained as it is in the place where the suction pipe is closed. ..

図6は高圧ガス18のガス圧(P0)が0.380MPaの場合における、軸心上の空気速度分布の実測値である。縦軸は速度(uc)、横軸はパイプノズル11の出口を原点とした下流側の距離(X)で、パイプノズル11の出口の内径寸法(d0)に対する相対値(X/d0)で表している。軸心上の速度は噴流の膨張、圧縮によっておよそX/d0=10まで増減を繰り返しながら流下する。しかし、噴流の膨張、圧縮のモードは開口する電磁弁の数に依存して大きく異なり、開口する電磁弁の数が多い程膨張、圧縮の回数は増え、電磁弁の全てを閉口したP8では、パイプノズル11の出口端部から単調に減少する。なお、図中に示すPi-nozzleは、スペーサ12と拡大ノズル14を取り外し、パイプノズル11だけで測定したものである。またFc-nozzleは拡大ノズル14であり6-closed、8-closed、0-closedの3種類についての測定結果である。 FIG. 6 is an actually measured value of the air velocity distribution on the axis when the gas pressure (P 0 ) of the high pressure gas 18 is 0.380 MPa. In the vertical axis velocity (u c), the horizontal axis is the distance downstream with the origin of the outlet of the pipe nozzle 11 (X), the relative value to the inner diameter dimension of the outlet of the pipe nozzle 11 (d 0) (X / d 0 ). The velocity on the axis flows down while repeatedly increasing and decreasing until about X / d0 = 10 due to the expansion and compression of the jet. However, the mode of expansion and compression of the jet greatly differs depending on the number of solenoid valves that open, and the number of expansions and compressions increases as the number of solenoid valves that open increases, and in P8 where all the solenoid valves are closed, It decreases monotonically from the outlet end of the pipe nozzle 11. The Pi-nozzle shown in the figure was measured only by the pipe nozzle 11 with the spacer 12 and the expansion nozzle 14 removed. Further, Fc-nozzle is an expansion nozzle 14, and is a measurement result for three types of 6-closed, 8-closed, and 0-closed.

図7は軸心との垂直断面における噴流の速度分布の実測値であり、パイプノズル11の出口から下流側の3箇所での実測値について縦軸を共通にして、図示したものである。また、各図において、縦軸は軸心からの距離(r)を噴流ノズル出口直径(d0)に対する相対値(r/d0)で表したものである。横軸は速度(u)である。 FIG. 7 shows the measured values of the velocity distribution of the jet in the cross section perpendicular to the axis, and the measured values at the three locations downstream from the outlet of the pipe nozzle 11 are shown with the vertical axis common. Further, in each figure, the vertical axis represents the distance (r) from the axis center as a relative value (r / d 0 ) with respect to the jet nozzle outlet diameter (d 0 ). The horizontal axis is velocity (u).

(a)は拡大ノズル14の出口からの距離Xが、X/d0=4.2の場所、(b)は拡大ノズル14の出口から距離Xが、X/d0=5.4の場所、(c)は拡大ノズル14の出口からの距離Xが、X/d0=8.3の場所での実測値である。8個の外気電磁弁22a〜22hを全て開口するP0(0-closed)では、噴流幅が小さく、噴流の中心で速度に極小値をもつ分布を示すが、噴流が流下するに伴ってGoertler分布を示すようになる。なお、拡大ノズル14の出口直後、例えばX/d0=4.2での速度分布から噴流による推力を近似的に計算することができる。 (A) is a location where the distance X from the outlet of the expansion nozzle 14 is X / d 0 = 4.2, and (b) is a location where the distance X from the outlet of the expansion nozzle 14 is X / d 0 = 5.4, (c). Is the measured value at the place where the distance X from the outlet of the expansion nozzle 14 is X / d 0 = 8.3. At P 0 (0-closed), where all eight outside air solenoid valves 22a to 22h are opened, the jet width is small and the velocity shows a minimum value at the center of the jet, but Goertler as the jet flows down. It comes to show the distribution. Immediately after the outlet of the expansion nozzle 14, for example, the thrust due to the jet can be approximately calculated from the velocity distribution at X / d 0 = 4.2.

8個の外気電磁弁22a〜22hのうち6個を閉口するP6(6-closed)では、軸心との垂直断面方向の速度分布が非対称になるので図5に示めしたA−A‘、B−B’の2方向について、6-closed(A-A’)と、6-closed(B-B’)としてそれぞれの速度分布を示した。下流の断面に於いてはGoertler分布を示し、噴流幅はP0とP8の中間になっている。8個の外気電磁弁22a〜22hを全て閉口するP8では、他のP0、P6に比べ速度は小さく、噴流幅が大きいなどの特徴がある。 In P 6 (6-closed), which closes 6 of the 8 outside air solenoid valves 22a to 22h, the velocity distribution in the vertical cross-sectional direction with the axis becomes asymmetric, so AA'shown in FIG. The velocity distributions of 6-closed (A-A') and 6-closed (B-B') are shown in the two directions of BB'. In the downstream cross section, the Goertler distribution is shown, and the jet width is between P 0 and P 8 . In eight P 8 to closing all open air solenoid valve 22a to 22h, the speed compared to other P 0, P 6 small, there are features such as jet width is large.

本発明は、典型的にはジェットエンジンやロケットエンジンなど、噴流噴射ノズルを用いた飛翔体に有効に活用できるが、これら以外であっても噴流噴射ノズルを用いたスプレーなどの噴射方向制御にも活用できる。 The present invention can be effectively used for a flying object using a jet injection nozzle, such as a jet engine or a rocket engine, but other than these, it can also be used for controlling the injection direction of a spray using a jet injection nozzle. It can be used.

10 噴流噴射ノズル
11 パイプノズル
12 スペーサ
13 吸引管
14 拡大ノズル
15 開口部
16 軸心
17 高圧ガス流路
18 高圧ガス
19a、19b 噴射噴流
20 方向制御装置
22a〜22h 外気電磁弁
23a〜22h ボンベ電磁弁
24 外気圧センサ
25 姿勢センサ
26 姿勢制御部
27 演算部
31 回帰式
32 回帰式
10 Jet jet nozzle 11 Pipe nozzle 12 Spacer 13 Suction pipe 14 Expansion nozzle 15 Opening 16 Axis 17 High pressure gas flow path 18 High pressure gas 19a, 19b Jet jet 20 Direction control device 22a to 22h Outside air solenoid valve 23a to 22h Cylinder solenoid valve 24 External pressure sensor 25 Attitude sensor 26 Attitude control unit 27 Calculation unit 31 Regressive formula 32 Regressive formula

Claims (3)

飛翔体の推進方向を所定の向きに制御する噴流噴射ノズルであって、
パイプノズルと、スペーサと、拡大ノズルとが軸心を一致させて接合され、
前記拡大ノズルの前記スペーサとの接合部近傍に、複数の吸引管が前記軸心を中心として放射状に配置され、
前記複数の吸引管の前記軸心側の一端が、前記拡大ノズル内に開放され、
前記複数の吸引管の他端近傍に、前記複数の吸引管の各吸引口の開口度を自在に制御する電磁弁が前記吸引管毎に配置されて構成されることを特徴とする噴流噴射ノズル。
A jet injection nozzle that controls the propulsion direction of a flying object in a predetermined direction.
The pipe nozzle, the spacer, and the expansion nozzle are joined so that their axes are aligned.
A plurality of suction tubes are arranged radially around the axis in the vicinity of the joint of the expansion nozzle with the spacer.
One end of the plurality of suction tubes on the axial side is opened in the expansion nozzle.
A jet injection nozzle characterized in that an electromagnetic valve for freely controlling the opening degree of each suction port of the plurality of suction pipes is arranged in the vicinity of the other end of the plurality of suction pipes for each suction pipe. ..
前記電磁弁が外気を吸引する外気電磁弁又は、ボンベより気体(窒素、酸素、空気)を流入させるボンベ電磁弁の何れか一方、又は両方であることを特徴とする請求項1に記載の噴流噴射ノズル。 The jet according to claim 1, wherein the solenoid valve is either an outside air solenoid valve that sucks outside air, or a cylinder solenoid valve that allows gas (nitrogen, oxygen, air) to flow in from a cylinder, or both. Jet nozzle. パイプノズルと、スペーサと、拡大ノズルとが軸心を一致させて接合されて構成される請求項1に記載の前記噴流噴射ノズルであって、
前記パイプノズルの出口中心を原点とし、前記軸心をX軸、該X軸に垂直な方向の距離をr、該rの円周方向角をθとする座標系を用い、
前記飛翔体の噴流の複数の吸引管に配置された各電磁弁の開口度の組合せで調整できる前記飛翔体の噴流方向について、前記座標系を用いてベクトル制御することを特徴とする噴流噴射ノズルによる推力のベクトル制御方法。
The jet injection nozzle according to claim 1, wherein the pipe nozzle, the spacer, and the expansion nozzle are joined so as to align their axes.
A coordinate system is used in which the center of the outlet of the pipe nozzle is the origin, the center of the axis is the X axis, the distance in the direction perpendicular to the X axis is r, and the circumferential azimuth of r is θ.
A jet injection nozzle characterized in that the jet direction of the flying object, which can be adjusted by a combination of the opening degrees of each solenoid valve arranged in a plurality of suction tubes of the jet of the flying object, is vector-controlled using the coordinate system. Vector control method of thrust by.
JP2019049232A 2019-03-17 2019-03-17 Jet nozzle and thrust vector control method Pending JP2020148197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019049232A JP2020148197A (en) 2019-03-17 2019-03-17 Jet nozzle and thrust vector control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019049232A JP2020148197A (en) 2019-03-17 2019-03-17 Jet nozzle and thrust vector control method

Publications (1)

Publication Number Publication Date
JP2020148197A true JP2020148197A (en) 2020-09-17

Family

ID=72429380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019049232A Pending JP2020148197A (en) 2019-03-17 2019-03-17 Jet nozzle and thrust vector control method

Country Status (1)

Country Link
JP (1) JP2020148197A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113183132A (en) * 2021-04-23 2021-07-30 浙江工业大学 Jet module of jet-propelled water snake robot
CN115092355A (en) * 2022-06-28 2022-09-23 江苏科技大学 Throwing type ventilation, load reduction and posture adjustment lifeboat and adjustment method thereof
CN115822815A (en) * 2022-11-29 2023-03-21 中国科学院力学研究所 Air-breathing rocket pintle injector and injection method thereof
CN116220952A (en) * 2023-05-06 2023-06-06 北京星河动力装备科技有限公司 Nozzle, rocket engine and carrier rocket

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113183132A (en) * 2021-04-23 2021-07-30 浙江工业大学 Jet module of jet-propelled water snake robot
CN115092355A (en) * 2022-06-28 2022-09-23 江苏科技大学 Throwing type ventilation, load reduction and posture adjustment lifeboat and adjustment method thereof
CN115092355B (en) * 2022-06-28 2024-02-27 江苏科技大学 Throwing type ventilation load-reducing posture-adjusting lifeboat and adjusting method thereof
CN115822815A (en) * 2022-11-29 2023-03-21 中国科学院力学研究所 Air-breathing rocket pintle injector and injection method thereof
CN116220952A (en) * 2023-05-06 2023-06-06 北京星河动力装备科技有限公司 Nozzle, rocket engine and carrier rocket
CN116220952B (en) * 2023-05-06 2023-09-05 北京星河动力装备科技有限公司 Nozzle, rocket engine and carrier rocket

Similar Documents

Publication Publication Date Title
JP2020148197A (en) Jet nozzle and thrust vector control method
US20200284219A1 (en) Generation of a Pulsed Jet by Jet Vectoring Through a Nozzle with Multiple Outlets
JP4057014B2 (en) Device for supplying cooling air to the exhaust nozzle flap
US6679048B1 (en) Apparatus and method for controlling primary fluid flow using secondary fluid flow injection
CN106837600B (en) Venturi offset fluidic vectoring nozzle based on fluidic oscillator principle
US8746613B2 (en) Jet engine exhaust nozzle and associated system and method of use
JP2018178970A (en) Fluid-type thrust direction control device
CN107401956A (en) Amphibious cruise missile and its attitude control method based on venturi offset fluidic vectoring nozzle
CN108035824A (en) A kind of pulsed secondary jet thrust vector control system
CN107013334A (en) A kind of double combustion chamber's Scramjet Inlet and air intake control method
CN107120210A (en) A kind of supersonic nozzle
US11554882B2 (en) Attitude control and thrust boosting system and method for space launchers
US4441670A (en) Guided projectile
US6298658B1 (en) Multi-stable thrust vectoring nozzle
CN110645118A (en) Equal-flow solid attitude control thrust device and design method
CN106837601B (en) Venturi offset fluidic vectoring nozzle with lateral expansion
US20160090174A1 (en) Reaction drive blade tip with turning vanes
EP2865874A2 (en) Methods and apparatus for passive thrust vectoring and plume deflection
CN112443422B (en) Rotary vertical take-off and landing spray pipe based on quasi-axisymmetric throat offset type pneumatic vectoring spray pipe and design method thereof
CN103987948A (en) Nozzle arrangement and method of making the same
US10377475B2 (en) Nozzles for a reaction drive blade tip with turning vanes
CN105464838A (en) Methods and apparatus for passive thrust vectoring and plume deflection
CN112761815A (en) Aero-engine vector spray pipe structure
JP7197895B2 (en) Hydraulic thrust direction control device
CN114087087B (en) Multi-principle multi-mode pneumatic thrust vectoring nozzle and control method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190801