JPH05248962A - Semiconductor temperature sensor - Google Patents

Semiconductor temperature sensor

Info

Publication number
JPH05248962A
JPH05248962A JP4492292A JP4492292A JPH05248962A JP H05248962 A JPH05248962 A JP H05248962A JP 4492292 A JP4492292 A JP 4492292A JP 4492292 A JP4492292 A JP 4492292A JP H05248962 A JPH05248962 A JP H05248962A
Authority
JP
Japan
Prior art keywords
transistor
temperature sensor
transistors
semiconductor temperature
mos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4492292A
Other languages
Japanese (ja)
Other versions
JP3128013B2 (en
Inventor
Sadayuki Shimoda
貞之 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP4492292A priority Critical patent/JP3128013B2/en
Publication of JPH05248962A publication Critical patent/JPH05248962A/en
Application granted granted Critical
Publication of JP3128013B2 publication Critical patent/JP3128013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high precision semiconductor temp. sensor which gives a high output voltage and presents lesser process dispersion. CONSTITUTION:MOS transistors 5, 6, 7 are connected with respective emitter terminals of transistors 2, 3, 4 in Darlington connection. These MOS transistors 5, 6, 7 are driven by a current mirror circuit using another MOS transistor 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体温度センサに関
するものであり、特にMOS構造で構成された半導体温
度センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor temperature sensor, and more particularly to a semiconductor temperature sensor having a MOS structure.

【0002】[0002]

【従来の技術】従来の半導体温度センサの回路図を図2
に示す。この回路はセンサ技術、1982年9月号の
「IC内蔵高感度温度センサ(HITS)」に開示され
ている。3段ダーリントン接続されたPNPトランジス
タを定電流で駆動することにより、出力電圧端子1と接
地間におよそ3倍のVBEの電圧が出力され、その温度感
度は11mV/℃を得ている。
2. Description of the Related Art A circuit diagram of a conventional semiconductor temperature sensor is shown in FIG.
Shown in. This circuit is disclosed in "High Sensitivity Temperature Sensor with Built-in IC (HITS)" in Sensor Technology, September 1982. By driving a PNP transistor connected in three-stage Darlington with a constant current, a voltage of V BE which is about three times that of the output voltage terminal 1 and the ground is output, and the temperature sensitivity thereof is 11 mV / ° C.

【0003】[0003]

【発明が解決しようとする課題】しかし、図2の半導体
温度センサでは出力電圧端子1に出力される電圧値は正
確には1.5V程度しかない。通常ならVBEが3段のた
めVBE=0.6Vとすれば1.8Vの出力電圧が得られ
るはずである。これは、この回路ではトランジスタ2の
ベース電流が次段のトランジスタ3のエミッタ電流にな
り、さらにトランジスタ3のベース電流がトランジスタ
4のエミッタ電流となるため、トランジスタ3、4のベ
ース・エミッタ電流は次第に減少することに原因してい
る。このため次第にVBE電圧は減少し、出力電圧端子1
には、3倍のVBE電圧は出力されない。また、各トラン
ジスタに流れるベース・エミッタ電流が減少することに
より、VBEの温度係数のプロセスバラツキも大きくなる
ので、温度の検出精度が悪くなる。
However, in the semiconductor temperature sensor of FIG. 2, the voltage value output to the output voltage terminal 1 is exactly about 1.5V. Normally, since V BE is three stages, an output voltage of 1.8 V should be obtained if V BE = 0.6V. This is because, in this circuit, the base current of the transistor 2 becomes the emitter current of the transistor 3 in the next stage, and the base current of the transistor 3 becomes the emitter current of the transistor 4, so that the base-emitter currents of the transistors 3 and 4 gradually increase. It is due to the decrease. Therefore, the V BE voltage gradually decreases and the output voltage terminal 1
Does not output the V BE voltage three times higher. Further, since the base-emitter current flowing through each transistor decreases, the process variation of the temperature coefficient of V BE also increases, so that the temperature detection accuracy deteriorates.

【0004】本発明は上述した従来の技術の課題を解決
し、温度精度が良く、出力電圧の高い半導体温度センサ
を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide a semiconductor temperature sensor having good temperature accuracy and high output voltage.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明が採用した主たる手段は次のとおりである。
すなわち、各トランジスタのエミッタ電流を個別のMO
Sトランジスタから供給し、これらのMOSトランジス
タのチャネル幅もしくはチャネル長を変えることによ
り、3つのトランジスタ2、3、4に流れるベース・エ
ミッタ電流を等しくするものである。
To achieve the above object, the main means adopted by the present invention are as follows.
In other words, the emitter current of each transistor is
By supplying from the S-transistor and changing the channel width or channel length of these MOS transistors, the base-emitter currents flowing through the three transistors 2, 3 and 4 are made equal.

【0006】[0006]

【作用】本発明の半導体温度センサは、各段に流れるベ
ース・エミッタ電流を等しくしたため、3つのトランジ
スタの特性が等しくなり、高精度でかつ高出力電圧の半
導体温度センサが得られる。
In the semiconductor temperature sensor of the present invention, since the base-emitter currents flowing through the respective stages are made equal, the characteristics of the three transistors are made equal, and a semiconductor temperature sensor of high precision and high output voltage can be obtained.

【0007】[0007]

【実施例】本発明の半導体温度センサの回路図を図1に
示す。ダーリントン接続されたPNPトランジスタ2と
3と4の各エミッタ端子は、MOSトランジスタ5と6
と7のドレインにそれぞれ接続されている。また、MO
Sトランジスタ5と6と7のゲートは、全てMOSトラ
ンジスタ8のゲートとドレインに接続されカレントミラ
ー回路を構成している。MOSトランジスタ8のドレイ
ンには定電流源9が接続されている。
1 is a circuit diagram of a semiconductor temperature sensor of the present invention. The emitter terminals of the Darlington-connected PNP transistors 2, 3 and 4 are MOS transistors 5 and 6, respectively.
And 7 drains are connected respectively. Also, MO
The gates of the S transistors 5, 6, and 7 are all connected to the gate and drain of the MOS transistor 8 to form a current mirror circuit. A constant current source 9 is connected to the drain of the MOS transistor 8.

【0008】PNPトランジスタ2のエミッタ端子に流
れ込む電流値をI1 とする。PNPトランジスタの電流
増幅率をαとすれば、トランジスタ2のベース電流はI
1 (1−α)となる。ここでMOSトランジスタ6に流
れる電流値をαI1 にすれば、トランジスタ3のエミッ
タ端子に流れ込む電流はI1 に等しくなる。さらに、ト
ランジスタ3とトランジスタ2を同一サイズで形成すれ
ば、トランジスタ3の電流増幅率もαである。従って、
トランジスタ3のベース電流はI1(1−α)となる。
同様にMOSトランジスタ7に流れる電流値をαI1
すれば、トランジスタ4のエミッタ端子に流れ込む電流
値はI1 に等しくなる。今、トランジスタ2と3と4の
サイズを全て等しく形成すれば、電流増幅率は全て等し
く、かつ、ベース・エミッタ電流も等しいことから、ベ
ース・エミッタ間電圧VBEは全て等しくなり、出力電圧
端子1には3倍のVBE電圧が出力される。また、トラン
ジスタ2と3と4が同一サイズであるため、プロセスバ
ラツキに対しても相互の特性のマッチング性は良い。
The current value flowing into the emitter terminal of the PNP transistor 2 is I 1 . If the current amplification factor of the PNP transistor is α, the base current of the transistor 2 is I
It becomes 1 (1-α). If the value of the current flowing through the MOS transistor 6 is αI 1 , the current flowing into the emitter terminal of the transistor 3 becomes equal to I 1 . Further, if the transistor 3 and the transistor 2 are formed in the same size, the current amplification factor of the transistor 3 is α. Therefore,
The base current of the transistor 3 becomes I 1 (1-α).
Similarly, if the current value flowing in the MOS transistor 7 is αI 1 , the current value flowing into the emitter terminal of the transistor 4 becomes equal to I 1 . If the transistors 2, 3 and 4 are all formed to have the same size, the current amplification factors are all the same and the base-emitter currents are also the same, so that the base-emitter voltage V BE becomes the same and the output voltage terminal becomes The V BE voltage of 3 times is output to 1. Further, since the transistors 2, 3 and 4 have the same size, the matching characteristics of mutual characteristics are good even with respect to process variations.

【0009】次に、MOSトランジスタ5に流れる電流
をI1 、MOSトランジスタ6と7にそれぞれ流れる電
流をαI1 とする方法は、次のようにすれば良い。定電
流源9の定電流値をI1 とすれば、MOSトランジスタ
5と8のチャネル幅、チャネル長及び閾値電圧を等しく
すれば、MOSトランジスタ5には、定電流値I1 が流
れる。また、MOSトランジスタ6と7にαI1 の電流
を流すためには、例えばMOSトランジスタ8のチャネ
ル幅をW1 とすれば、MOSトランジスタ6と7のチャ
ネル幅をαW1 に設定すれば良い。もちろんこの状態で
は、チャネル長と閾値電圧はMOSトランジスタ8と等
しくしておく。チャネル幅Wと閾値電圧を等しくするな
らば、MOSトランジスタ8のチャネル長をL1 とする
と、MOSトランジスタ6と7のチャネル長をL1 /α
に設定すれば良い。
Next, a method for setting the current flowing through the MOS transistor 5 as I 1 and the currents flowing through the MOS transistors 6 and 7 as αI 1 may be performed as follows. If the constant current value of the constant current source 9 is I 1, and the channel widths, channel lengths, and threshold voltages of the MOS transistors 5 and 8 are equal, a constant current value I 1 flows through the MOS transistor 5. In order to pass the current of αI 1 through the MOS transistors 6 and 7, for example, if the channel width of the MOS transistor 8 is W 1 , the channel width of the MOS transistors 6 and 7 may be set to αW 1 . Of course, in this state, the channel length and the threshold voltage are set equal to those of the MOS transistor 8. If the channel width W and the threshold voltage are equal, the channel length of the MOS transistor 8 is L 1 and the channel lengths of the MOS transistors 6 and 7 are L 1 / α.
You can set it to.

【0010】[0010]

【発明の効果】以上述べたように本発明によれば、ダー
リントン接続されたトランジスタのベース・エミッタ電
流を等しくする手段を備えることによって、出力電圧が
高く、プロセスバラツキの少ない高精度の半導体温度セ
ンサを実現できるという効果がある。
As described above, according to the present invention, by providing means for making the base-emitter currents of Darlington-connected transistors equal, a high-accuracy semiconductor temperature sensor having a high output voltage and a small process variation. There is an effect that can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体温度センサの回路図である。FIG. 1 is a circuit diagram of a semiconductor temperature sensor of the present invention.

【図2】従来の半導体温度センサの回路図である。FIG. 2 is a circuit diagram of a conventional semiconductor temperature sensor.

【符号の説明】[Explanation of symbols]

1 出力電圧端子 2、3、4 PNPトランジスタ 5、6、7、8 MOSトランジスタ 9 定電流源 1 Output voltage terminal 2, 3, 4 PNP transistor 5, 6, 7, 8 MOS transistor 9 Constant current source

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 感温素子である複数のバイポーラ型トラ
ンジスタを接続してなるダーリントン回路と、これに給
電する定電流源と、上記定電流源にドレインが接続され
た第1のMOSトランジスタと、上記ダーリントン回路
の最終段バイポーラ型トランジスタのエミッタ端子にド
レインが接続された第2のMOSトランジスタとからな
り、両MOSトランジスタのソースおよびゲート同士が
それぞれ接続されてカレントミラー回路を構成する半導
体温度センサにおいて、上記最終段を除くバイポーラ型
トランジスタには、それぞれに対応してMOSトランジ
スタが設けられ、それぞれのドレイン端子は上記バイポ
ーラ型トランジスタの対応するエミッタ端子に、また、
ゲート端子は上記第1および第2のMOSトランジスタ
とも互いに接続され、かつ、それらのチャネル幅、もし
くは、チャネル長は、半導体温度センサを構成するバイ
ポーラ型トランジスタの各々のエミッタ電流が全て等し
くなるように設定されていることを特徴とする半導体温
度センサ。
1. A Darlington circuit formed by connecting a plurality of bipolar transistors, which are temperature-sensitive elements, a constant current source for supplying power to the Darlington circuit, and a first MOS transistor having a drain connected to the constant current source. A semiconductor temperature sensor comprising a second MOS transistor having a drain connected to an emitter terminal of a final-stage bipolar transistor of the Darlington circuit, and a source and a gate of both MOS transistors are connected to each other to form a current mirror circuit. A MOS transistor is provided corresponding to each of the bipolar transistors other than the final stage, and the drain terminal of each is connected to the corresponding emitter terminal of the bipolar transistor.
The gate terminal is also connected to the first and second MOS transistors, and their channel widths or channel lengths are such that the emitter currents of the bipolar transistors forming the semiconductor temperature sensor are all equal. A semiconductor temperature sensor characterized by being set.
JP4492292A 1992-03-02 1992-03-02 Semiconductor temperature sensor Expired - Lifetime JP3128013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4492292A JP3128013B2 (en) 1992-03-02 1992-03-02 Semiconductor temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4492292A JP3128013B2 (en) 1992-03-02 1992-03-02 Semiconductor temperature sensor

Publications (2)

Publication Number Publication Date
JPH05248962A true JPH05248962A (en) 1993-09-28
JP3128013B2 JP3128013B2 (en) 2001-01-29

Family

ID=12704967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4492292A Expired - Lifetime JP3128013B2 (en) 1992-03-02 1992-03-02 Semiconductor temperature sensor

Country Status (1)

Country Link
JP (1) JP3128013B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733174B2 (en) * 2000-08-04 2004-05-11 Nippon Precision Circuits Inc. Semiconductor temperature detecting method and its circuit
JP2008058015A (en) * 2006-08-29 2008-03-13 Seiko Instruments Inc Temperature sensor circuit
JP2008304346A (en) * 2007-06-08 2008-12-18 Seiko Instruments Inc Semiconductor temperature sensor
US8547163B2 (en) 2011-01-14 2013-10-01 Seiko Instruments Inc. Temperature sensor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4960808B2 (en) 2007-08-30 2012-06-27 セイコーインスツル株式会社 Semiconductor temperature sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733174B2 (en) * 2000-08-04 2004-05-11 Nippon Precision Circuits Inc. Semiconductor temperature detecting method and its circuit
JP2008058015A (en) * 2006-08-29 2008-03-13 Seiko Instruments Inc Temperature sensor circuit
US7997794B2 (en) 2006-08-29 2011-08-16 Seiko Instruments Inc. Temperature sensor circuit
JP2008304346A (en) * 2007-06-08 2008-12-18 Seiko Instruments Inc Semiconductor temperature sensor
US8547163B2 (en) 2011-01-14 2013-10-01 Seiko Instruments Inc. Temperature sensor device

Also Published As

Publication number Publication date
JP3128013B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
JP3319406B2 (en) Comparison amplification detection circuit
JP2891297B2 (en) Voltage-current converter
JPH1022750A (en) Input stage of low voltage operational amplifier and its method
JPH1051246A (en) Low-voltage operational amplifier and its method
EP0429829A2 (en) An electronic comparator circuit
EP0429268A2 (en) Current-mirror circuit with buffering transistor
JPH07307624A (en) Cmos operational amplifier of low-voltage high-speed operation
US4893091A (en) Complementary current mirror for correcting input offset voltage of diamond follower, especially as input stage for wide-band amplifier
US6359512B1 (en) Slew rate boost circuitry and method
EP0160035B1 (en) High efficiency igfet operational amplifier
JPH05248962A (en) Semiconductor temperature sensor
JP3352899B2 (en) Amplifier circuit
CN1208276A (en) Constant current circuit with small output current fluctuation
JP2639350B2 (en) Operational amplifier
US5751183A (en) Bipolar transistor circuit having a free collector
JP3657193B2 (en) Temperature detection circuit
US5049833A (en) Amplifier stage
US4746875A (en) Differential amplifier using N-channel insulated-gate field-effect transistors
US7193465B2 (en) Variable gain amplifier capable of functioning at low power supply voltage
JP2913428B2 (en) Temperature sensor
JP2571102Y2 (en) Semiconductor integrated circuit
JP2772069B2 (en) Constant current circuit
JPH06222089A (en) Window comparator
JPS6259487B2 (en)
JPH09261032A (en) Interface circuit

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071110

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081110

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081110

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091110

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091110

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20101110

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 10

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111110

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20121110

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20121110