JPH0524851A - Method for melting glass - Google Patents

Method for melting glass

Info

Publication number
JPH0524851A
JPH0524851A JP20234491A JP20234491A JPH0524851A JP H0524851 A JPH0524851 A JP H0524851A JP 20234491 A JP20234491 A JP 20234491A JP 20234491 A JP20234491 A JP 20234491A JP H0524851 A JPH0524851 A JP H0524851A
Authority
JP
Japan
Prior art keywords
glass
melting
high frequency
frequency induction
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20234491A
Other languages
Japanese (ja)
Inventor
Susumu Hachiuma
進 八馬
Yukinori Ota
幸則 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP20234491A priority Critical patent/JPH0524851A/en
Publication of JPH0524851A publication Critical patent/JPH0524851A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/021Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by induction heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/187Stirring devices; Homogenisation with moving elements

Abstract

PURPOSE:To obtain a glass required to be melted at a high temperature (especially >=1700 deg.C) in a state free from bubbles, etc. CONSTITUTION:A glass raw material is supplied to a melting tank 5 made of platinum by a feeder 1. The melting tank 5 is heated with a high-frequency induction-heating coil 4 to melt the glass raw material. The roughly molten glass is supplied to a zirconia-melting tank 10 and directly heated with a high- frequency induction heating coil 12 at a higher temperature to obtain clarified glass.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラスの溶解方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass melting method.

【0002】[0002]

【従来の技術】従来より、ガラスの一般的な溶解方法と
しては、セラミックスで構築されたガラス溶解窯を用
い、重油あるいは可燃性ガス等の燃焼反応熱を利用して
ガラス原料を加熱溶解する方法がある。かかる方法は、
長い技術的蓄積もあり、建築用その他の汎用の板ガラス
を大量生産するには極めて優れた方法である。
2. Description of the Related Art Conventionally, as a general glass melting method, a glass melting furnace constructed of ceramics is used to heat and melt a glass raw material by utilizing heat of combustion reaction of heavy oil or combustible gas. There is. Such a method
With a long technical accumulation, it is an excellent method for mass production of flat glass for buildings and other purposes.

【0003】しかしながら、ガラスの高機能化に対する
要求に伴い、最近のガラス組成は極めて多様化してお
り、溶解に高温度を要する組成のガラスも求められてき
ている。また、基板ガラス等の電子用途においては、泡
や異物等の無い極めて高品質なガラスが求められてい
る。
However, the glass compositions of recent years have been extremely diversified in response to the demand for high-performance glass, and glass having a composition requiring a high temperature for melting has also been demanded. Further, in electronic applications such as substrate glass, extremely high quality glass free from bubbles and foreign substances is required.

【0004】このような様々な要求に対し、ガラスの溶
解技術にも様々な検討がなされている。例えば、直接通
電による電気溶融や、白金容器による抵抗加熱溶融、白
金容器を使用し高周波誘導加熱により白金を加熱し、加
熱された白金によりガラスを加熱する間接溶融、マイク
ロ波加熱溶融等である。
In response to such various requirements, various studies have been made on the glass melting technique. For example, there are electric melting by direct energization, resistance heating melting by a platinum container, indirect melting by heating platinum by high frequency induction heating using a platinum container and heating glass by the heated platinum, microwave heating melting and the like.

【0005】しかし、直接通電法においては、電極材料
に制約があり、また電極材料からの不純物の混入防止等
解決すべき課題を多く抱えている。また、白金を使用す
る高周波間接溶融については、不純物の混入等はある程
度防止できるものの、白金の融点が低いため1700℃
以上の温度域での溶解は実質的に困難であった。また、
マイクロ波加熱については、エネルギー効率が悪く、加
熱効率が低いために工業的な規模では実用化に至ってい
ないのが現状である。
However, in the direct energization method, there are restrictions on the electrode material, and there are many problems to be solved such as prevention of contamination of impurities from the electrode material. Regarding high frequency indirect melting using platinum, although impurities can be prevented to some extent, due to the low melting point of platinum, the temperature is 1700 ° C.
Dissolution in the above temperature range was substantially difficult. Also,
With respect to microwave heating, the energy efficiency is low and the heating efficiency is low, so that it has not yet been put to practical use on an industrial scale.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前述のごと
き従来技術の問題点を解消し、溶解に高温度(特に17
00℃以上)を要するガラスを、不純物や泡・異物等の
無い高品質なガラスとして製造する技術を提供すること
を目的とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the problems of the prior art as described above, and the melting temperature is high (particularly 17%).
It is an object of the present invention to provide a technique for producing a glass requiring a temperature of 00 ° C. or higher) as a high-quality glass free from impurities, bubbles, foreign substances, and the like.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の問
題点の認識に基づき、鋭意検討を重ねた結果、溶解工程
と、該粗溶解したガラスを高周波誘導加熱により、該粗
溶解の温度よりも高い温度に直接加熱して溶解・均質化
・清澄する高周波誘導直接加熱工程とを含むことを特徴
とするガラスの溶解方法を提供するものである。
Means for Solving the Problems The inventors of the present invention have made extensive studies based on the recognition of the above-mentioned problems, and as a result, as a result, the melting step and the rough melting of the glass by high frequency induction heating A high frequency induction direct heating step of melting, homogenizing and clarifying by directly heating to a temperature higher than the temperature is provided.

【0008】かかる溶解方法において、粗溶融され固有
抵抗の低下したガラスは高周波誘導直接加熱により更に
高温に加熱される。高周波誘導直接加熱工程に用いる電
流の周波数は、100〜5000000Hzの範囲内で
あることが好ましい。周波数が100Hz未満では、ガ
ラスへのエネルギー伝達効率が低いので好ましくない。
他方周波数が5000000Hzを超えると配線からの
エネルギー損失が増大するので好ましくない。一般的
に、誘導加熱による加熱特性は、良く知られているよう
に周波数、加熱材料の電気抵抗、およびこれに付随する
パラメータである浸透深さ等から概ね算出することが可
能である。
In such a melting method, glass that has been roughly melted and has a reduced specific resistance is heated to a higher temperature by high frequency induction direct heating. The frequency of the current used in the high frequency induction direct heating step is preferably within the range of 100 to 5000000 Hz. If the frequency is less than 100 Hz, the energy transfer efficiency to glass is low, which is not preferable.
On the other hand, if the frequency exceeds 5,000,000 Hz, energy loss from the wiring increases, which is not preferable. Generally, the heating characteristic by induction heating can be generally calculated from the frequency, the electrical resistance of the heating material, and the penetration depth which is a parameter associated with the frequency, as is well known.

【0009】従って、被加熱物であるガラスの容量、容
器サイズ等を加味して最適な条件を設定することが可能
である。誘導加熱によりガラスを直接加熱する場合、ガ
ラスの固有抵抗は、実質的に加熱が可能な範囲としては
100Ω・cm以下、特に好ましくは10Ω・cm以下
程度であることが好ましい。固有抵抗値があまり大きす
ぎると浸透厚さが深くなり過ぎるため、エネルギーを高
密度で吸収することができないため高温度が得られず、
実質的な加熱が困難となる。
Therefore, it is possible to set the optimum conditions in consideration of the volume of the glass to be heated, the container size, and the like. When the glass is directly heated by induction heating, the specific resistance of the glass is preferably about 100 Ω · cm or less, particularly preferably about 10 Ω · cm or less, as a range capable of being substantially heated. If the specific resistance value is too large, the permeation thickness will be too deep, so it is not possible to absorb energy at a high density, so high temperature cannot be obtained,
Substantial heating becomes difficult.

【0010】粗溶解工程と高周波誘導直接加熱工程と
は、必ずしも別の溶解槽を設けて行う必要はないが、粗
溶解槽の材質として導電性の材料を使用する場合には後
段の高周波誘導直接加熱工程の際に溶解槽で高周波が吸
収されてしまい、ガラスに届かないため別の槽とする必
要がある。また、ガラス中へのコンタミネーション防止
といった観点からも、場合によっては分離することが有
効である。
The rough melting step and the high frequency induction direct heating step do not necessarily have to be carried out by providing separate melting tanks, but when a conductive material is used as the material of the rough melting tank, the high frequency induction direct heating in the latter stage is performed. High frequency is absorbed in the melting tank during the heating process and does not reach the glass, so it is necessary to use a separate tank. Also, from the viewpoint of preventing contamination into the glass, separation is effective in some cases.

【0011】粗溶解工程においては、ガラス原料は、ガ
ラスの固有抵抗が100Ω・cm以下、好ましくは10
Ω・cm以下になるまで加熱されるのが好ましい。ま
た、粗溶解工程の加熱方法については、不純物の混入な
く粗溶解を効率的に行うことができれば特に制約はない
が、導電性材質を用いた溶解槽を、高周波誘導加熱によ
り加熱し、加熱された溶解槽によりガラスを加熱する方
法や、かかる溶解槽に直接通電することによる抵抗加熱
方法、ガラスへの直接通電による抵抗加熱方法、高温燃
焼ガス加熱方法等の公知の方法を採用することができ
る。
In the coarse melting step, the glass raw material has a glass specific resistance of 100 Ω · cm or less, preferably 10
The heating is preferably performed until it becomes Ω · cm or less. The heating method in the rough melting step is not particularly limited as long as the rough melting can be efficiently performed without mixing of impurities, but the melting tank using a conductive material is heated by high frequency induction heating and heated. A known method such as a method of heating glass by a melting tank, a resistance heating method by directly energizing the melting tank, a resistance heating method by directly energizing the glass, or a high temperature combustion gas heating method can be adopted. .

【0012】導電性材質を用いる場合、その材質として
は、耐食性・耐高温性等の面から白金を主成分とする材
料を用いることが好ましい。その他、場合によっては、
酸化錫やモリブデン等の材料を使用することもできる。
When a conductive material is used, it is preferable to use a material containing platinum as a main component in terms of corrosion resistance and high temperature resistance. In other cases,
Materials such as tin oxide and molybdenum can also be used.

【0013】[0013]

【作用】本発明によるガラスの溶解は、まずガラス原料
を公知の方法により粗溶解する。ついで、同一の溶解槽
あるいは別に設けられた溶解槽内で、溶解槽の外側に設
けられた高周波誘導加熱コイルに高周波電流を印加す
る。これにより生じる磁界によってガラス中に誘導電流
が発生して、ガラスが直接加熱され、完全な溶解が行わ
れる。あわせて誘導電流に伴なう強制対流混合による均
質化、さらに清澄がなされる。また、溶融ガラスに対し
耐食性のある材料を槽材料としてすることができるた
め、コンタミネーションのない高品質なガラスを製造す
ることが可能である。
In the melting of the glass according to the present invention, the glass raw material is first roughly melted by a known method. Then, a high-frequency current is applied to a high-frequency induction heating coil provided outside the melting tank in the same melting tank or a separately provided melting tank. The magnetic field generated thereby produces an induced current in the glass, which directly heats the glass and causes a complete melting. At the same time, homogenization and further clarification are carried out by forced convection mixing with the induced current. Further, since a material having corrosion resistance to molten glass can be used as the tank material, it is possible to manufacture high-quality glass without contamination.

【0014】[0014]

【実施例】【Example】

実施例1 ガラス原料として、重量でSiO2 を71部、Al2
3 を18部、Li2 CO3 を10部、MgOを1部、Z
rSiO4 を5部として調合し、白金製の坩堝(容量1
000cc)に仕込んだ。続いて、この坩堝を高周波誘
導加熱炉内の所定の位置にセットし通電した。使用した
高周波誘導加熱炉は、発振周波数3kHzで設備電力が
50kVAの高周波発振設備と、誘導加熱コイルおよび
冷却設備、炉体、断熱材、その他を具備しているもので
ある。
Example 1 As a glass raw material, 71 parts by weight of SiO 2 and Al 2 O
3 for 18 parts, Li 2 CO 3 for 10 parts, MgO for 1 part, Z
5 parts of rSiO 4 was added to a platinum crucible (capacity 1
000 cc). Subsequently, this crucible was set at a predetermined position in the high frequency induction heating furnace and electricity was supplied. The high-frequency induction heating furnace used is equipped with a high-frequency oscillation equipment having an oscillation frequency of 3 kHz and a facility power of 50 kVA, an induction heating coil and cooling equipment, a furnace body, a heat insulating material, and the like.

【0015】通電後、坩堝内の溶融ガラス温度が162
0℃となったところで3時間保持した後、坩堝下部のオ
リフィス部を加熱して、ガラスを下方へ流出させた。流
出したガラスは、上記の高周波誘導加熱炉の下部に設け
られた、上記とは別の高周波誘導加熱炉(発振周波数3
MHz、設備電力50kVAの高周波発振設備と、誘導
加熱コイルその他を具備)内に装着された、あらかじめ
予熱された内容積1000ccのジルコニア質の坩堝
(旭硝子製、商品名ZB−X950R)内に受けられ
る。
After energization, the molten glass temperature in the crucible was 162
After the temperature was maintained at 0 ° C. for 3 hours, the orifice in the lower part of the crucible was heated to allow the glass to flow downward. The glass that flowed out was a high-frequency induction heating furnace (oscillation frequency: 3) provided below the high-frequency induction heating furnace.
It is received in a pre-heated zirconia crucible (made by Asahi Glass Co., Ltd., product name ZB-X950R) with an internal volume of 1000 cc, which is installed in a high-frequency oscillating equipment of MHz, equipment power of 50 kVA and an induction heating coil and the like). .

【0016】ついで、かかる誘導加熱炉に通電して、坩
堝内のガラスを直接加熱し、ガラス温度を1800℃に
制御しつつ10時間保持した。保持終了後、坩堝を取り
出し、ガラスを流しだし、徐冷炉で徐冷してガラスを得
た。得られたガラスは、未融物、泡ともなく均一であっ
た。
Then, the induction heating furnace was energized to directly heat the glass in the crucible, and the glass temperature was kept at 1800 ° C. for 10 hours. After the completion of holding, the crucible was taken out, the glass was poured out, and the glass was slowly cooled in a slow cooling furnace. The obtained glass was homogeneous without any unmelted matter and bubbles.

【0017】実施例2 実施例1と同様の組成の調合を行い、図1に示す連続溶
解装置を用い、溶解試験を行った。図1において、1は
原料供給フィーダー、2は粗溶解炉(高周波誘導加熱方
式、発振周波数3kHz、設備電力50kVA)、3は
高周波誘導加熱炉(発振周波数3MHz、設備電力50
kVA)である。
Example 2 The same composition as in Example 1 was prepared, and a dissolution test was conducted using the continuous dissolution apparatus shown in FIG. In FIG. 1, 1 is a raw material supply feeder, 2 is a coarse melting furnace (high frequency induction heating system, oscillation frequency 3 kHz, facility power 50 kVA), 3 is high frequency induction heating furnace (oscillation frequency 3 MHz, facility power 50
kVA).

【0018】また、4は粗溶解炉用の高周波誘導加熱コ
イル、5は白金製溶解槽(容量1000cc)、6は撹
拌器、7は断熱材、8は粗溶解ガラスの流路、9はガラ
ス流量制御用の白金ヒーター、10は高周波誘導直接加
熱用のジルコニア質溶解槽(内容積3000cc、他は
実施例1に同じ)、11はガラスのオーバーフロー用流
路、12は加熱コイル、13は溶解流出したガラスを示
す。
Further, 4 is a high frequency induction heating coil for a rough melting furnace, 5 is a platinum melting tank (capacity 1000 cc), 6 is a stirrer, 7 is a heat insulating material, 8 is a flow path of rough melting glass, and 9 is glass. Platinum heater for flow rate control, 10 zirconia melting tank for high-frequency induction direct heating (internal volume 3000 cc, others are the same as in Example 1), 11 glass overflow channel, 12 heating coil, 13 melting Shows the glass that has flowed out.

【0019】原料の投入速度は、ガラス換算で500g
/hr、粗溶解炉2の温度はガラス温度で1620℃
(ガラスの固有抵抗は約4Ω・cm)、高周波誘導で直
接加熱されるジルコニア質溶解槽のガラス温度は185
0℃とした。得られたガラスは毎時500gで、未融
物、泡とも目視検査では検出されず、高品質のガラスで
あった。
The feed rate of the raw material is 500 g in terms of glass.
/ Hr, the temperature of the coarse melting furnace 2 is 1620 ° C. at the glass temperature.
(The specific resistance of the glass is about 4 Ω · cm), the glass temperature of the zirconia melting tank heated directly by high frequency induction is 185.
It was set to 0 ° C. The glass obtained was 500 g per hour, and neither unmelted matter nor bubbles were detected by visual inspection, and it was high quality glass.

【0020】[0020]

【発明の効果】本発明によれば、従来のガラス溶解では
困難であった、例えば1700℃以上といった高温度域
でのガラス溶解を可能にし、高温度溶解を要する新規な
組成のガラスを高品質、高歩留まり、かつ効率よく製造
することを可能にした。更に、誘導加熱を用いることか
ら、燃焼ガス等の排ガスの生成もなく、クリーンかつコ
ンパクトな溶解装置を可能にするものである。
EFFECTS OF THE INVENTION According to the present invention, glass having a novel composition which enables glass melting in a high temperature range of, for example, 1700 ° C. or higher, which has been difficult in the conventional glass melting, and which requires a high temperature melting is obtained. It enables high yield and efficient manufacturing. Furthermore, since induction heating is used, a clean and compact melting apparatus is enabled without generation of exhaust gas such as combustion gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための連続溶解装置の断面図FIG. 1 is a sectional view of a continuous melting apparatus for carrying out the present invention.

【符号の説明】[Explanation of symbols]

2 粗溶解炉 3 高周波誘導加熱炉 5 白金製溶解槽 10 ジルコニア質溶解槽 2 crude melting furnace 3 high frequency induction heating furnace 5 Platinum dissolution tank 10 Zirconia dissolution tank

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ガラス形成原料を粗溶解する粗溶解工程
と、該粗溶解したガラスを高周波誘導加熱により、該粗
溶解の温度よりも高い温度に直接加熱して溶解・均質化
・清澄する高周波誘導直接加熱工程とを含むことを特徴
とするガラスの溶解方法。
1. A rough melting step of roughly melting glass forming raw materials, and a high frequency for melting, homogenizing and clarifying the roughly melted glass by directly heating it to a temperature higher than the temperature of the rough melting by high frequency induction heating. A method for melting glass, which comprises an induction direct heating step.
【請求項2】高周波誘導直接加熱工程に用いる高周波の
周波数が、100〜5000000Hzの範囲内である
請求項1に記載のガラスの溶解方法。
2. The glass melting method according to claim 1, wherein the high frequency used in the high frequency induction direct heating step is in the range of 100 to 5,000,000 Hz.
【請求項3】高周波誘導直接加熱工程におけるガラスの
固有抵抗が10Ω・cm以下である請求項1に記載のガ
ラスの溶解方法。
3. The method for melting glass according to claim 1, wherein the specific resistance of the glass in the high frequency induction direct heating step is 10 Ω · cm or less.
【請求項4】高周波誘導直接加熱工程が、ジルコニアを
主成分とする耐火物容器内で行われる請求項1記載のガ
ラスの溶解方法。
4. The method for melting glass according to claim 1, wherein the high frequency induction direct heating step is performed in a refractory container containing zirconia as a main component.
JP20234491A 1991-07-17 1991-07-17 Method for melting glass Withdrawn JPH0524851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20234491A JPH0524851A (en) 1991-07-17 1991-07-17 Method for melting glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20234491A JPH0524851A (en) 1991-07-17 1991-07-17 Method for melting glass

Publications (1)

Publication Number Publication Date
JPH0524851A true JPH0524851A (en) 1993-02-02

Family

ID=16455986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20234491A Withdrawn JPH0524851A (en) 1991-07-17 1991-07-17 Method for melting glass

Country Status (1)

Country Link
JP (1) JPH0524851A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004506587A (en) * 2000-08-25 2004-03-04 カール−ツァイス−スティフツング Method and apparatus for refining glass
EP1874697B1 (en) 2005-04-26 2009-11-18 Böttger, Diether Device for transferring glass melt to a float bath
WO2013011835A1 (en) * 2011-07-15 2013-01-24 日東紡績株式会社 Glass melting device, device for producing fiberglass, and method for producing fiberglass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004506587A (en) * 2000-08-25 2004-03-04 カール−ツァイス−スティフツング Method and apparatus for refining glass
JP4707303B2 (en) * 2000-08-25 2011-06-22 ショット アクチエンゲゼルシャフト Method and apparatus for clarifying glass
US8869561B2 (en) 2000-08-25 2014-10-28 Schott Ag Method and a device for the refining of glass
EP1874697B1 (en) 2005-04-26 2009-11-18 Böttger, Diether Device for transferring glass melt to a float bath
WO2013011835A1 (en) * 2011-07-15 2013-01-24 日東紡績株式会社 Glass melting device, device for producing fiberglass, and method for producing fiberglass
JPWO2013011835A1 (en) * 2011-07-15 2015-02-23 日東紡績株式会社 Glass melting apparatus, glass fiber manufacturing apparatus, and glass fiber manufacturing method

Similar Documents

Publication Publication Date Title
US8424342B2 (en) Melting and refining in tanks with cooled walls
US4610711A (en) Method and apparatus for inductively heating molten glass or the like
JP5752647B2 (en) Manufacturing method of glass substrate
JP2005022969A (en) Method and apparatus for melting inorganic substance
JPS5837255B2 (en) Method and apparatus for homogenizing and fining glass
JP6010178B2 (en) Method and apparatus for producing glass products from glass melts
JPH0720288A (en) Glass fusion processing method
CN1207224C (en) Device for continuously melting and reinfing inorganic compounds, esp. glasses and glass ceramics
CA1312205C (en) Method for rapid induction heating of molten glass or the like
JP2001080921A (en) Device and method for refining glass or ceramic
CN101955314A (en) The continuous smelting or the purified method and apparatus that are used for melt
JPS59176582A (en) High-frequency induction furnace and method of manufacturingceramic material by using said induction furnace
EP0176897B1 (en) Induction heating vessel
US3937625A (en) Radio frequency preparation of pure glass
JPH0524851A (en) Method for melting glass
CN1513782A (en) Induction heating method and device for ore fusion
JP2018002539A (en) Method of manufacturing glass substrate and glass substrate manufacturing apparatus
EP0176898A1 (en) Method and apparatus for inductively heating molten glass or the like
EP2499101B1 (en) Melting method and apparatus
CN105110646B (en) A kind of devitrified glass containing pyroxferroite crystalline phase and preparation method thereof
JP5126974B2 (en) Induction heating melting furnace and induction heating method
US4017674A (en) Method for starting operation of a resistance melter
EP0235909B1 (en) Near net shape fused cast refractories and process for their manufacture by rapid melting/controlled rapid cooling
CN208791812U (en) A kind of zirconium oxide high frequency crystal growing furnace
JP7090844B2 (en) Manufacturing method of glass articles and glass substrate group

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008