JPH05247540A - High strength cold-rolled steel sheet for deep drawing and its manufacture - Google Patents

High strength cold-rolled steel sheet for deep drawing and its manufacture

Info

Publication number
JPH05247540A
JPH05247540A JP8137192A JP8137192A JPH05247540A JP H05247540 A JPH05247540 A JP H05247540A JP 8137192 A JP8137192 A JP 8137192A JP 8137192 A JP8137192 A JP 8137192A JP H05247540 A JPH05247540 A JP H05247540A
Authority
JP
Japan
Prior art keywords
less
temperature
steel sheet
rolled steel
deep drawing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8137192A
Other languages
Japanese (ja)
Other versions
JP3280692B2 (en
Inventor
Hideko Yasuhara
英子 安原
Takashi Sakata
坂田  敬
Toshiyuki Kato
俊之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP08137192A priority Critical patent/JP3280692B2/en
Publication of JPH05247540A publication Critical patent/JPH05247540A/en
Application granted granted Critical
Publication of JP3280692B2 publication Critical patent/JP3280692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high strength cold-rolled steel sheet for deep drawing excellent in secondary working brittleness and plane anisotropy. CONSTITUTION:Steel contg., as essential components, <=0.004% C, <= l.0% Si, <=2.0% Mn, <=0.2% P, <=0.01% S, 0.05 to 0.1% Al, <=0.006% N, 0.01 to 0.1% Ti, 0.003 to 0.03% Nb and 0.0015 to 0.005% B and contg., as selective components, one or >= two kinds among Cu, Ni, Cr, Mo and Co is hot-rolled at 800 to 900 deg.C finishing temp., is coiled at <=650 deg.C, is cold-rolled, is thereafter subjected to continuous annealing within the temp. range of >=830 deg.C to the Ac3 transformation point or below and is subsequently subjected to skin pass rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐二次加工脆性に優れ
るとともに面内異方性の小さい深絞り用高強度冷延鋼板
およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength cold-rolled steel sheet for deep drawing which is excellent in secondary work embrittlement resistance and has small in-plane anisotropy, and a method for producing the same.

【0002】[0002]

【従来の技術】最近、特に自動車用冷延鋼板としては、
燃料消費量を少なくするための車体重量軽減や乗員の安
全確保のために高強度鋼板の需要が著しく高まってい
る。このような高強度冷延鋼板は、自動車の内板はもち
ろんフード、トランク、フェンダー等の外板にも使用さ
れるためプレス加工性とともに加工後の耐低温割れ性に
も優れた特性を有していなければならない。従来より加
工性の良好な高強度冷延鋼板について多くの技術が提案
されている。これらは材質劣化の少ないPを強化成分と
し添加したものであるが、Pを添加した鋼板を箱焼鈍を
行う方法では、箱焼鈍そのものが能率面や消費エネルギ
ーなどの面で連続焼鈍に比べ、はるかに劣っており、高
水準の生産性を期待することはできない。一方、生産性
に優れる連続焼鈍法では極低C鋼に多量の強化成分を添
加する必要がある。特開昭61−104031号公報に
は基本強化成分としてMn、Pを、特開昭63−243
226号公報には基本強化成分としてSi、Mn、Pを
添加した鋼を用いる技術が開示されている。しかしなが
ら上記多量の強化成分を含むため耐二次加工脆性の劣化
は避けがたい。また特開昭61−2467344号公報
に開示されているように、高強度鋼板では高い加工性と
優れた耐二次加工脆性の両方の特性を有することは困難
である。
2. Description of the Related Art Recently, as cold rolled steel sheets for automobiles,
The demand for high-strength steel sheets is significantly increasing in order to reduce the weight of the vehicle body to reduce fuel consumption and to ensure the safety of passengers. Such high-strength cold-rolled steel sheets are used not only for the inner plates of automobiles, but also for the outer plates of hoods, trunks, fenders, etc., so they have excellent properties not only in press workability but also in cold crack resistance after working. Must be Conventionally, many technologies have been proposed for high-strength cold-rolled steel sheets having good workability. These are those in which P with less material deterioration is added as a strengthening component. However, in the method of performing box annealing of a steel sheet containing P, box annealing itself is far more efficient than continuous annealing in terms of efficiency and energy consumption. It is inferior to the above and cannot expect a high level of productivity. On the other hand, in the continuous annealing method which is excellent in productivity, it is necessary to add a large amount of strengthening component to the ultra low C steel. Japanese Patent Application Laid-Open No. 61-104031 discloses Mn and P as basic strengthening components, and
Japanese Patent No. 226 discloses a technique of using steel to which Si, Mn, and P are added as a basic strengthening component. However, since it contains the above-mentioned large amount of reinforcing components, deterioration of secondary work brittleness resistance is inevitable. Further, as disclosed in Japanese Patent Laid-Open No. 61-2467344, it is difficult for a high strength steel sheet to have both properties of high workability and excellent secondary work embrittlement resistance.

【0003】[0003]

【発明が解決しようとする課題】本発明は、深絞り性を
劣化することなしに、また添加元素量および製造条件等
の微細な制御を必要とせずに、材質上充分な特性、特に
面内異方性が少ないと共に、耐二次加工脆性の優れた深
絞り用高強度冷延鋼板およびその製造方法を提供するた
めになされたものである。
DISCLOSURE OF THE INVENTION The present invention has sufficient characteristics in terms of material, especially in-plane, without deteriorating the deep drawability and without requiring fine control of the amount of added elements and manufacturing conditions. The present invention has been made to provide a high strength cold rolled steel sheet for deep drawing which has little anisotropy and is excellent in secondary processing brittleness resistance, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明は、上述の欠点を
改善するため、化学組成および製造条件について種々検
討した結果、必須成分として、重量組成で、C :0.
004%以下、Si:1.0%以下、Mn:2.0%以
下、P :0.2%以下、S :0.01%以下、A
l:0.05〜0.1%、N :0.006%以下、T
i:0.01〜0.1%、Nb:0.003〜0.03
%、B :0.0015〜0.005%を含み、残部F
eおよび不可避的不純物からなる化学組成の鋼を鋼片と
し、仕上温度800〜900℃の範囲で熱間圧延し、コ
イル巻取温度(以下巻取温度と略す)650℃以下で巻
取り後、冷間圧延し、830℃以上、Ac3 変態温度以
下の範囲で連続焼鈍した後、スキンパス圧延を施すこと
を特徴とする深絞り用高強度冷延鋼板およびその製造方
法であり、また
In order to ameliorate the above-mentioned drawbacks, the present invention has conducted various studies on chemical composition and manufacturing conditions, and as a result, as an essential component, by weight composition, C: 0.
004% or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.2% or less, S: 0.01% or less, A
1: 0.05 to 0.1%, N: 0.006% or less, T
i: 0.01 to 0.1%, Nb: 0.003 to 0.03
%, B: 0.0015 to 0.005%, balance F
Steel having a chemical composition consisting of e and unavoidable impurities is used as a billet, hot-rolled at a finishing temperature in the range of 800 to 900 ° C., and wound at a coil winding temperature (hereinafter abbreviated as a winding temperature) of 650 ° C. or less, A high-strength cold-rolled steel sheet for deep drawing and a method for producing the same, which comprises cold rolling, continuous annealing in a range of 830 ° C. or higher and Ac 3 transformation temperature or lower, and then skin pass rolling.

【0005】さらに選択成分として重量組成で、Cu:
0.05〜2.00%、Ni:0.05〜2.00%、
Cr:0.05〜2.00%、Mo:0.02〜1.0
0%、Co:0.05〜1.00%、の1種または2種
以上を含むことを特徴とする前項記載の深絞り用高強度
冷延鋼板およびその製造方法である。
Further, by weight composition as a selective component, Cu:
0.05-2.00%, Ni: 0.05-2.00%,
Cr: 0.05 to 2.00%, Mo: 0.02 to 1.0
The high-strength cold-rolled steel sheet for deep drawing and the method for producing the same according to the preceding paragraph, characterized by containing one or more of 0% and Co: 0.05 to 1.00%.

【0006】[0006]

【作用】まず、化学組成の限定理由およびその作用につ
いて説明する。 C:0.004%以下 Cは低い程材質に有利である。またCが多いと必然的に
Cを固定するために必要なTi量が増し、複合析出物の
生成量が増えるために材質の低下を招く。特にCが0.
004%を超えると材質が大幅に低下しはじめるので
0.004%以下に限定する。 Si:1.0%以下 SiはMnとともに鋼に適正な強度をあたえる有効な元
素であり、必要とする強度に応じて積極的に添加する
が、Siは脆性を助長する元素であり、また化成処理性
を阻害する元素でもあるため1.0%以下とする。 Mn:2.0%以下 MnはSiと同様、鋼に適正な強度をあたえる有効な元
素であるが、コスト面から2.0%以下とする。 P:0.2%以下 Pは強度の向上に有効な元素で、高い引張り強度が要求
される場合は積極的に添加するが、多量に含まれると粒
界偏析量が多くなって脆化、すなわち耐二次加工脆性の
劣化をもたらすため0.2%以下とする。
First, the reason for limiting the chemical composition and its action will be described. C: 0.004% or less The lower the C, the more advantageous the material. Further, if the amount of C is large, the amount of Ti necessary for fixing C is inevitably increased, and the amount of composite precipitates produced is increased, resulting in deterioration of the material. Especially when C is 0.
If it exceeds 004%, the quality of the material will start to deteriorate significantly, so the content is limited to 0.004% or less. Si: 1.0% or less Si is an effective element that gives proper strength to steel together with Mn, and is positively added according to the required strength, but Si is an element that promotes brittleness and chemical conversion. Since it is also an element that impedes processability, it is set to 1.0% or less. Mn: 2.0% or less Mn is an effective element that gives proper strength to steel similarly to Si, but is 2.0% or less in terms of cost. P: 0.2% or less P is an element effective for improving the strength, and is positively added when high tensile strength is required, but if it is contained in a large amount, the amount of grain boundary segregation increases and embrittlement occurs. That is, the secondary processing brittleness resistance is deteriorated, so the content is made 0.2% or less.

【0007】S:0.01%以下 Sも多量に含まれると粒界脆化を発生させやすく、耐二
次加工脆性の劣化をもたらす。したがって極力低減する
ことが望ましく0.01%以下とした。 Al:0.05〜0.1% 本発明にかかる鋼はTi、Nbの共存による(Ti、N
b)Cおよび(Ti、Al)Nと推定される複合析出物
を形成することにより、C、Nを固定してその害をなく
しており、したがってAlは、析出物形成元素として有
用である。また、後述のΔr値で示される面内異方性の
低下に有利であることから0.05%以上の添加が必要
である。一方、0.1%を超えて添加してもその効果の
増大は望めず、むしろコスト的に不利となる。したがっ
てAlは0.05〜0.1%の範囲とする。 N:0.006%以下 NはCと同様に成形性、深絞り性の改善のため極力低減
することが望ましい。また、耐時効性も劣化させてしま
うので0.006%以下とした。
S: 0.01% or less If a large amount of S is also contained, grain boundary embrittlement is likely to occur, resulting in deterioration of secondary work embrittlement resistance. Therefore, it is desirable to reduce the amount as much as possible and the content is set to 0.01% or less. Al: 0.05 to 0.1% The steel according to the present invention is produced by coexistence of Ti and Nb (Ti, N
b) By forming composite precipitates presumed to be C and (Ti, Al) N, C and N are fixed and their harm is eliminated, and thus Al is useful as a precipitate forming element. Further, it is necessary to add 0.05% or more because it is advantageous for lowering the in-plane anisotropy represented by the Δr value described later. On the other hand, even if added in excess of 0.1%, the effect cannot be expected to increase, which is rather disadvantageous in terms of cost. Therefore, Al is made 0.05 to 0.1% in range. N: 0.006% or less It is desirable to reduce N as much as possible in order to improve the formability and the deep drawability like C. Further, the aging resistance is also deteriorated, so the content is made 0.006% or less.

【0008】Ti:0.01〜0.1% N、Cの低減だけでは、箱焼鈍材と同等あるいはそれ以
上の成形性、深絞り性をえることはできず、Ti、Nb
等の炭窒化物形成元素を添加して固溶C、固溶Nを完全
に固定することによって成形性、深絞り性が良好とな
る。また、NをTiNとして析出固定することにより、
添加したBを2次加工脆性を改善する効果のある固溶B
の状態で存在させることができる。つまり、TiはN、
Cを析出固定するため、C、Nに対して原子当量以上の
添加が有効である。しかしながら、その添加量が0.0
1%に満たないとその添加効果は顕著に現れない。一
方、0.1%を超えて添加しても効果の増大は望めない
ので、Tiは0.01〜0.1%とする。 Nb:0.003〜0.03% NbはTiとの複合添加によってr値、伸びの向上に有
効であり、0.003%以上でその効果が顕著になる
が、0.03%をこえて添加すると、伸びの低下を招
く。したがってNbは0.003〜0.03%とする。 B :0.0015〜0.005% 前述したように、BはCと同様結晶粒界を強化する働き
があるとされているが、過剰のB添加はr値、伸びを低
下させる傾向が強いため材質劣化が大きく深絞り用鋼板
としては好ましくない。したがって、Bは上述した効果
が有効に発現する0.0015〜0.005%の範囲で
添加する。
Ti: 0.01 to 0.1% Only by reducing N and C, the formability and deep drawability equivalent to or better than those of the box annealed material cannot be obtained.
Formability and deep drawability are improved by adding carbonitride forming elements such as the above to completely fix the solid solution C and the solid solution N. Also, by precipitating and fixing N as TiN,
The added B is a solid solution B having an effect of improving the secondary working brittleness.
It can exist in the state of. That is, Ti is N,
In order to precipitate and fix C, it is effective to add C in an atomic equivalent amount or more to N. However, the addition amount is 0.0
If it is less than 1%, the effect of addition is not significant. On the other hand, since Ti cannot be expected to increase in effect even if added over 0.1%, Ti is set to 0.01 to 0.1%. Nb: 0.003 to 0.03% Nb is effective in improving the r value and elongation by the combined addition of Ti, and the effect becomes remarkable at 0.003% or more, but exceeds 0.03%. Addition causes a decrease in elongation. Therefore, Nb is made 0.003 to 0.03%. B: 0.0015 to 0.005% As described above, B is said to have a function of strengthening the crystal grain boundary like C, but excessive addition of B has a strong tendency to reduce the r value and the elongation. Therefore, the material is largely deteriorated, which is not preferable as a deep-drawing steel sheet. Therefore, B is added in the range of 0.0015 to 0.005% in which the above-mentioned effects are effectively exhibited.

【0009】Cu:0.05〜2.00% Ni:0.05〜2.00% Cr:0.05〜2.00% Mo:0.02〜1.00% Co:0.05〜1.00% これらの元素はいずれも強度の向上に有効な元素で、高
い引張り強度が要求される場合に積極的に添加するが、
過剰に添加してもその効果の増大は望めず、コストの上
昇を招くだけとなる。したがってその上限をCu、N
i、Crについては2.00%、Mo、Coについては
1.00%とする。一方、あまりにも添加量が少ないと
その効果を顕著に発揮することができないのでその下限
をCu、Ni、CrおよびCoについては0.05%、
Moについては0.02%とする。また、本発明の効果
を充分に発揮するにはCu、Ni、Cr、CoおよびM
oの1種または2種以上を選択的に添加する。
Cu: 0.05 to 2.00% Ni: 0.05 to 2.00% Cr: 0.05 to 2.00% Mo: 0.02 to 1.00% Co: 0.05 to 1 0.000% All of these elements are effective for improving the strength, and are added positively when high tensile strength is required.
Even if added excessively, the effect cannot be expected to increase, and it will only increase the cost. Therefore, the upper limit is Cu, N
i and Cr are 2.00%, and Mo and Co are 1.00%. On the other hand, if the addition amount is too small, the effect cannot be remarkably exhibited, so the lower limit thereof is 0.05% for Cu, Ni, Cr and Co,
Mo is set to 0.02%. Further, in order to fully exert the effects of the present invention, Cu, Ni, Cr, Co and M
One or two or more of o are selectively added.

【0010】次に、本発明の製造条件の限定理由および
その作用について説明する。 熱間圧延の仕上温度:800〜900℃ 熱間圧延の仕上温度が800℃未満では歪の残留による
r値および伸びの低下を招き、一方、900℃を超える
と結晶粒の粗大化によるr値の低下を招来する。したが
って熱間圧延の仕上温度は800〜900℃の範囲に限
定する。 巻取温度:650℃以下 従来、巻取温度はTiC析出物のサイズがより大きくな
り、高いr値、伸びが得られる高温巻取りが有用である
として、600〜800℃の巻取り温度が一般的であっ
た。他方、低めの巻取温度では、TiC、(Ti、A
l)Nの核が発生し難く、また析出速度も遅いため、析
出物の析出が完了しないので、析出固定が充分におこな
われず、結果としてr値、伸びの低下をもたらすとされ
ていた。発明者等は、巻取温度と材料特性との関係につ
いて種々実験、検討を重ねた結果、低温巻取りにおいて
も良好な耐二次加工脆性および低い面内異方性を示すと
の全く新しい知見を得ることができた。すなわち、図1
および図2に示すように、低温巻取りにおいても低い面
内異方性(Δr)および優れた耐二次加工脆性(脆性遷
移温度℃で示した)を示す深絞り用高強度冷延鋼板の製
造が可能であることを発見した。
Next, the reasons for limiting the manufacturing conditions of the present invention and the operation thereof will be described. Finishing temperature of hot rolling: 800 to 900 ° C When the finishing temperature of hot rolling is less than 800 ° C, r value due to residual strain and decrease in elongation are caused, while when it exceeds 900 ° C, r value due to coarsening of crystal grains. Bring about a decline. Therefore, the finishing temperature of hot rolling is limited to the range of 800 to 900 ° C. Winding temperature: 650 ° C. or lower Conventionally, the winding temperature is generally 600 to 800 ° C., because the size of TiC precipitates is larger, and high temperature winding that provides a high r value and elongation is useful. It was target. On the other hand, at lower winding temperatures, TiC, (Ti, A
l) N nuclei are less likely to be generated, and the precipitation rate is slow, so that precipitation of precipitates is not completed, so that precipitation fixation is not sufficiently performed, resulting in reduction of r value and elongation. The inventors have conducted various experiments and studies on the relationship between the winding temperature and the material properties, and as a result, have a completely new finding that they exhibit good secondary work embrittlement resistance and low in-plane anisotropy even at low temperature winding. I was able to get That is, FIG.
As shown in FIG. 2 and FIG. 2, a high strength cold rolled steel sheet for deep drawing showing low in-plane anisotropy (Δr) and excellent secondary work embrittlement resistance (shown in brittleness transition temperature ° C) even at low temperature winding. It was discovered that it can be manufactured.

【0011】本発明にかかる化学組成の鋼では、Al添
加によって熱間圧延の仕上げ前の高温からの(Ti、N
b)C、(Ti、Al)N等の複合析出物の析出がおこ
り、さらに低温巻取りによって析出が促進され、C、N
の析出固定が充分におこるとともに、同時に熱間圧延後
の結晶粒も微細化されたため、面内異方性(Δr)が低
くなったものと推定される。また、耐二次加工脆性が向
上したのは、このような析出物の形成がBの粒界への偏
析を促進し、またSを極力低減させ、さらには熱間圧延
低温巻き取りにより結晶粒が微細化された結果と推定さ
れる。このような実験、検討の結果、耐二次加工脆性に
優れるとともに面内異方性が小さい値を示す巻取り温度
は650℃以下に限定する。実際の操業では冷却所要時
間、冷却能力、巻取ったコイルの形状等を考慮すれば3
00℃以上が望ましい。なお、図1および図2の供試鋼
はC=0.003%、Si=0.2%、Mn=0.3
%、P=0.07%、S=0.006%、Al=0.0
6%、N=0.003%、Ti=0.03%、Nb=
0.005%、B=0.004%の本発明の範囲内の化
学組成の鋼を用い、次の製造条件で製造した。 熱間圧延の仕上温度:850℃ 巻取温度:300〜850℃ 連続焼鈍温度および時間:860℃×20s スキンパス圧延:1%
In the steel of the chemical composition according to the present invention, by adding Al, the (Ti, N
b) C, (Ti, Al) N or other complex precipitates are precipitated, and the precipitation is promoted by low-temperature winding.
It is presumed that the in-plane anisotropy (Δr) was lowered because the precipitation and fixation of No. 2 occurred sufficiently and the crystal grains after hot rolling were also refined at the same time. The secondary work embrittlement resistance was improved because the formation of such precipitates promotes the segregation of B to the grain boundaries, reduces S as much as possible, and further reduces the grain size by hot rolling low temperature winding. Is presumed to have been miniaturized. As a result of such experiments and examinations, the winding temperature at which the in-plane anisotropy is small and the secondary working brittleness resistance is excellent is limited to 650 ° C or lower. In the actual operation, if you take into consideration the required cooling time, cooling capacity, coiled coil shape, etc., 3
00 ° C or higher is desirable. The test steels in FIGS. 1 and 2 had C = 0.003%, Si = 0.2%, and Mn = 0.3.
%, P = 0.07%, S = 0.006%, Al = 0.0
6%, N = 0.003%, Ti = 0.03%, Nb =
It was manufactured under the following manufacturing conditions using a steel having a chemical composition within the range of the present invention of 0.005% and B = 0.004%. Finishing temperature of hot rolling: 850 ° C. Winding temperature: 300 to 850 ° C. Continuous annealing temperature and time: 860 ° C. × 20 s Skin pass rolling: 1%

【0012】連続焼鈍温度:830℃以上、Ac3 変態
温度以下 材料の特性は熱間圧延時の条件で決定されるものと考え
られ、連続焼鈍時の焼鈍温度については従来は特に論じ
られておらず、特開昭62−205231号公報、特開
昭58−19442号公報には再結晶温度以上、Ac3
変態温度以下と記載されているが、実際は規定されてい
ないに等しい。しかしながら、発明者等が焼鈍温度に関
して詳細に実験、検討を重ねた結果、図3および図4に
示すように焼鈍温度によって面内異方性(Δr)、耐二
次加工脆性(脆性遷移温度℃)は大きな影響を受けるこ
とを見出した。これは830℃以下での焼鈍ではBの粒
界への析出が不充分であるため、耐二次加工脆性が改善
されるに至らないためであり、また、面内異方性に関し
ては、再結晶直後の方位が熱間圧延時に形成された方位
の影響を受けたため、面内異方性(Δr)の低下が認め
られなかったものと推定される。
Continuous annealing temperature: 830 ° C. or higher and Ac 3 transformation temperature or lower It is considered that the characteristics of the material are determined by the conditions during hot rolling, and the annealing temperature during continuous annealing has not been particularly discussed in the past. However, in JP-A-62-205231 and JP-A-58-19442, the recrystallization temperature or higher, Ac 3
Although it is described as being below the transformation temperature, it is actually not specified. However, as a result of the inventors performing detailed experiments and studies on the annealing temperature, as shown in FIGS. 3 and 4, in-plane anisotropy (Δr), secondary work embrittlement resistance (brittleness transition temperature ° C. ) Was found to be greatly affected. This is because the precipitation at the grain boundaries of B is insufficient in annealing at 830 ° C. or lower, so that the secondary work embrittlement resistance cannot be improved. Further, regarding the in-plane anisotropy, It is estimated that the in-plane anisotropy (Δr) did not decrease because the orientation immediately after the crystal was influenced by the orientation formed during hot rolling.

【0013】一方、Ac3 変態温度以上では結晶粒粗大
化による耐二次加工脆性の劣化、変態による面内異方性
(Δr)の増大がおこる。これらの結果から連続焼鈍温
度は、良好な耐二次加工脆性および低い面内異方性のえ
られる830℃以上、Ac3 変態温度(約930℃)以
下の範囲に限定する。なお、図3および図4の供試鋼は
C=0.004%、Si=0.4%、Mn=0.3%、
P=0.07%、S=0.006%、Al=0.06
%、N=0.003%、Ti=0.025%、Nb=
0.01%、B=0.0025%の本発明の化学組成の
鋼を用い、次の製造条件で製造した。 熱間圧延の仕上温度:880℃ 巻取温度:600℃ 連続焼鈍温度および時間:700〜950℃×20s スキンパス圧延:1%
On the other hand, above the Ac 3 transformation temperature, deterioration of secondary work embrittlement resistance due to grain coarsening and increase of in-plane anisotropy (Δr) due to transformation occur. From these results, the continuous annealing temperature is limited to a range of 830 ° C. or higher and Ac 3 transformation temperature (about 930 ° C.) or lower, which provides good secondary work embrittlement resistance and low in-plane anisotropy. The test steels in FIGS. 3 and 4 have C = 0.004%, Si = 0.4%, Mn = 0.3%,
P = 0.07%, S = 0.006%, Al = 0.06
%, N = 0.003%, Ti = 0.025%, Nb =
Using the steel having the chemical composition of the present invention of 0.01% and B = 0.0025%, the steel was manufactured under the following manufacturing conditions. Finishing temperature of hot rolling: 880 ° C. Winding temperature: 600 ° C. Continuous annealing temperature and time: 700 to 950 ° C. × 20 s Skin pass rolling: 1%

【0014】[0014]

【実施例】実験用真空溶解炉を用いて、表1に示す化学
組成の鋼を溶製し、表2に示す条件で熱間圧延を行い、
厚さ3.5mmとした。熱間圧延後、表2に示す条件で
コイル巻取処理を行い、1.2mm厚まで冷間圧延し
た。次いで表2の条件で連続焼鈍を行った後、1%のス
キンパス圧延を施した。このようにしてえられた鋼板の
材質、二次加工割れ試験の結果を表2に示した。なお、
2次加工割れ試験はJIS(Z−2249)に規定され
ているコニカルカップ試験において、試験片直径=50
mmで試験片を打ち抜き後、ダイス穴直径=24.4m
m、ポンチ直径=20.64mmで円筒成形後、圧潰試
験を行った場合の脆性割れの発生する最高温度を示し
た。本発明の化学組成および製造条件を満足する供試鋼
記号A、B、C、D、E、F、G、HおよびIによる試
験番号1〜9では、いずれもTS≧39.9kgf/m
2 、伸び≧25%、r値≧1.8の優れた材質が得ら
れ、かつ脆性割れの発生する最高温度(脆性遷移温度)
≦−100℃、Δr≦0.22と実質的に脆性割れを殆
ど発生せず、面内異方性も非常に小さい。これに対し
て、化学組成は好適でも製造条件が本発明の範囲を外れ
ている供試鋼記号AおよびBによる試験番号11〜12
では、脆性割れの発生温度が高く、かつΔr≧0.75
と面内異方性も大きい。
[Example] Using a laboratory vacuum melting furnace, steel having the chemical composition shown in Table 1 was melted and hot-rolled under the conditions shown in Table 2,
The thickness was 3.5 mm. After hot rolling, coil winding treatment was performed under the conditions shown in Table 2, and cold rolling was performed to a thickness of 1.2 mm. Next, continuous annealing was performed under the conditions shown in Table 2, and then 1% skin pass rolling was performed. Table 2 shows the materials of the steel plates thus obtained and the results of the secondary work cracking test. In addition,
The secondary work crack test is a conical cup test defined in JIS (Z-2249), and the test piece diameter is 50.
Die hole diameter = 24.4m after punching out test pieces with mm
m, punch diameter = 20.64 mm, and the maximum temperature at which brittle cracking occurs when a crushing test is performed after cylindrical molding. In the test steel numbers A, B, C, D, E, F, G, H, and I, which satisfy the chemical composition and manufacturing conditions of the present invention, the test numbers 1 to 9 are all TS ≧ 39.9 kgf / m.
Maximum temperature at which brittle cracks occur (brittle transition temperature) with excellent materials with m 2 , elongation ≧ 25% and r value ≧ 1.8
≦ −100 ° C., Δr ≦ 0.22, practically no brittle cracking occurs, and the in-plane anisotropy is very small. On the other hand, test numbers 11 to 12 according to the test steel symbols A and B whose chemical composition is suitable but whose manufacturing conditions are outside the scope of the present invention
Then, the temperature at which brittle cracks occur is high, and Δr ≧ 0.75
And the in-plane anisotropy is also large.

【0015】また、比較例の供試鋼記号Kによる試験番
号13では、高S、B無添加のため耐二次加工脆性が劣
化し、脆性遷移温度も高くなっている。また、Tiの添
加量が微量にすぎるため、固溶C、N、Sが残り、伸
び、r値を低下させる。また、比較例の供試鋼記号Lに
よる試験番号14では、Siが高すぎるため耐二次加工
脆性が劣化し、さらに低Alのために面内異方性(Δ
r)の増大、Ti無添加のための伸び、r値の低下を招
いている。また、比較例の供試鋼記号Mによる試験番号
15では、高P、高S、低Bのため、耐二次加工脆性が
劣化し、低Al、Nb無添加のため伸び、r値の低下を
招いている。これらの原因のため、製造条件が本発明の
範囲内であるにもかかわらず、脆性割れ発生最高温度
(脆性遷移温度)≧−60℃、Δr≧0.65となって
おり、良好な特性は得られていない。以上、詳述したよ
うに、本発明で限定した化学組成と製造条件とを併せて
満足する場合のみに、優れた耐二次加工脆性を有し、面
内異方性の小さい深絞り用高強度冷延鋼板を製造するこ
とができる。
Further, in Test No. 13 using the symbol K of the test steel of the comparative example, the secondary work brittleness resistance is deteriorated and the brittleness transition temperature is also high because the high S and B are not added. Further, since the amount of addition of Ti is too small, solid solutions C, N, and S remain, and elongation and r value are reduced. Further, in the test number 14 using the test steel symbol L of the comparative example, since Si is too high, the secondary work embrittlement resistance deteriorates, and due to the low Al, the in-plane anisotropy (Δ
This results in an increase in r), an elongation due to no addition of Ti, and a decrease in r value. Further, in Test No. 15 based on the test steel symbol M of the comparative example, high P, high S, and low B deteriorate secondary work embrittlement resistance, and low Al and Nb do not add elongation and decrease in r value. Is invited. Due to these causes, even though the manufacturing conditions are within the range of the present invention, the brittle cracking maximum temperature (brittle transition temperature) ≧ −60 ° C. and Δr ≧ 0.65, and good characteristics are Not obtained. As described above in detail, only when both the chemical composition and the manufacturing conditions limited by the present invention are satisfied, the secondary processing brittleness resistance is excellent and the in-plane anisotropy is high. It is possible to manufacture a high-strength cold-rolled steel sheet.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】従来、Bを添加すると材質に悪影響をお
よぼすため、極微量の添加によってB無添加鋼よりも2
次加工脆性が改善されていた。これに対して本発明によ
ると、AlおよびBを添加し、さらに巻取り温度、連続
焼鈍温度等を限定することによって、耐二次加工脆性に
優れるとともに面内異方性の小さい深絞り用高強度冷延
鋼板を得ることができる。
EFFECTS OF THE INVENTION Conventionally, the addition of B adversely affects the quality of the material.
Subsequent processing brittleness was improved. On the other hand, according to the present invention, by adding Al and B and further limiting the coiling temperature, the continuous annealing temperature, etc., the secondary working brittleness resistance is excellent and the in-plane anisotropy is small and the deep drawing height is high. A strong cold-rolled steel sheet can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】巻取温度(℃)と面内異方性(Δr)との関係
を示すグラフである。
FIG. 1 is a graph showing a relationship between a winding temperature (° C.) and an in-plane anisotropy (Δr).

【図2】巻取温度(℃)と脆性遷移温度(℃)との関係
を示すグラフである。
FIG. 2 is a graph showing a relationship between a winding temperature (° C.) and a brittle transition temperature (° C.).

【図3】連続焼鈍温度(℃)と面内異方性(Δr)との
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between continuous annealing temperature (° C.) and in-plane anisotropy (Δr).

【図4】連続焼鈍温度(℃)と脆性遷移温度(℃)との
関係を示すグラフである。
FIG. 4 is a graph showing the relationship between continuous annealing temperature (° C.) and brittle transition temperature (° C.).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 必須成分として、重量組成で、 C :0.004%以下、 Si:1.0%以下、 Mn:2.0%以下、 P :0.2%以下、 S :0.01%以下、 Al:0.05〜0.1%、 N :0.006%以下、 Ti:0.01〜0.1%、 Nb:0.003〜0.03%、 B :0.0015〜0.005%、 を含み、残部Feおよび不可避的不純物からなる化学組
成の鋼を鋼片とし、仕上温度800〜900℃の範囲で
熱間圧延し、コイル巻取温度650℃以下で巻取り後、
冷間圧延し、830℃以上、Ac3 変態温度以下の範囲
で連続焼鈍した後、スキンパス圧延を施すことを特徴と
する深絞り用高強度冷延鋼板およびその製造方法。
1. As essential components, by weight composition, C: 0.004% or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.2% or less, S: 0.01 % Or less, Al: 0.05 to 0.1%, N: 0.006% or less, Ti: 0.01 to 0.1%, Nb: 0.003 to 0.03%, B: 0.0015 to Steel having a chemical composition containing 0.005% of the balance Fe and unavoidable impurities is used as a slab, hot-rolled at a finishing temperature of 800 to 900 ° C., and wound at a coil winding temperature of 650 ° C. or less. ,
A high-strength cold-rolled steel sheet for deep drawing, which comprises cold rolling, continuous annealing in the range of 830 ° C. or higher and Ac 3 transformation temperature or lower, and then skin pass rolling, and a method for producing the same.
【請求項2】 選択成分として重量組成で、 Cu:0.05〜2.00%、 Ni:0.05〜2.00%、 Cr:0.05〜2.00%、 Mo:0.02〜1.00%、 Co:0.05〜1.00%、 の1種または2種以上を含むことを特徴とする請求項1
記載の深絞り用高強度冷延鋼板およびその製造方法。
2. As a selective component, by weight composition, Cu: 0.05 to 2.00%, Ni: 0.05 to 2.00%, Cr: 0.05 to 2.00%, Mo: 0.02. .About.1.00%, Co: 0.05 to 1.00%, and one or more types thereof are included.
A high-strength cold-rolled steel sheet for deep drawing and a method for producing the same.
JP08137192A 1992-03-04 1992-03-04 Manufacturing method of high strength cold rolled steel sheet for deep drawing Expired - Fee Related JP3280692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08137192A JP3280692B2 (en) 1992-03-04 1992-03-04 Manufacturing method of high strength cold rolled steel sheet for deep drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08137192A JP3280692B2 (en) 1992-03-04 1992-03-04 Manufacturing method of high strength cold rolled steel sheet for deep drawing

Publications (2)

Publication Number Publication Date
JPH05247540A true JPH05247540A (en) 1993-09-24
JP3280692B2 JP3280692B2 (en) 2002-05-13

Family

ID=13744453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08137192A Expired - Fee Related JP3280692B2 (en) 1992-03-04 1992-03-04 Manufacturing method of high strength cold rolled steel sheet for deep drawing

Country Status (1)

Country Link
JP (1) JP3280692B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5542994A (en) * 1993-12-24 1996-08-06 Kawasaki Steel Corporation Method for manufacturing a high-formable, high-strength cold-rolled steel sheet excellent in resistance to secondary working embrittlement
KR100530076B1 (en) * 2001-12-21 2005-11-22 주식회사 포스코 Drawing High Strength Steel Sheet With Secondary Working Brittleness Resistance and Press Formability and A Method for Manufacturing thereof
KR100530049B1 (en) * 2001-03-12 2005-11-22 주식회사 포스코 A method for manufacturing ultra high formability and high strength steel sheet with good planar anisotropy
KR100544737B1 (en) * 2001-12-17 2006-01-24 주식회사 포스코 Blackplates with excellent formability and method for manufacturing thereof
KR100544575B1 (en) * 2001-12-21 2006-01-24 주식회사 포스코 High Strength Bake Hardening Steel Sheet With Good Formability and Non Aging Property at Room Temperature and A Method for Manufacturing Thereof
WO2008126945A1 (en) * 2007-04-11 2008-10-23 Nippon Steel Corporation Hot-dip metal coated high-strength steel sheet for press working excellent in low-temperature toughness and process for production thereof
KR100979020B1 (en) * 2002-06-28 2010-08-31 주식회사 포스코 Super formable high strength steel sheet and method of manufacturing thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5542994A (en) * 1993-12-24 1996-08-06 Kawasaki Steel Corporation Method for manufacturing a high-formable, high-strength cold-rolled steel sheet excellent in resistance to secondary working embrittlement
KR100530049B1 (en) * 2001-03-12 2005-11-22 주식회사 포스코 A method for manufacturing ultra high formability and high strength steel sheet with good planar anisotropy
KR100544737B1 (en) * 2001-12-17 2006-01-24 주식회사 포스코 Blackplates with excellent formability and method for manufacturing thereof
KR100530076B1 (en) * 2001-12-21 2005-11-22 주식회사 포스코 Drawing High Strength Steel Sheet With Secondary Working Brittleness Resistance and Press Formability and A Method for Manufacturing thereof
KR100544575B1 (en) * 2001-12-21 2006-01-24 주식회사 포스코 High Strength Bake Hardening Steel Sheet With Good Formability and Non Aging Property at Room Temperature and A Method for Manufacturing Thereof
KR100979020B1 (en) * 2002-06-28 2010-08-31 주식회사 포스코 Super formable high strength steel sheet and method of manufacturing thereof
WO2008126945A1 (en) * 2007-04-11 2008-10-23 Nippon Steel Corporation Hot-dip metal coated high-strength steel sheet for press working excellent in low-temperature toughness and process for production thereof
JPWO2008126945A1 (en) * 2007-04-11 2010-07-22 新日本製鐵株式会社 Hot-dip hot-dip steel sheet for press working with excellent low-temperature toughness and method for producing the same
AU2008238998B2 (en) * 2007-04-11 2011-02-24 Nippon Steel Corporation Hot-dip metal coated high-strength steel sheet for press working excellent in low-temperature toughness and process for production thereof
JP5079795B2 (en) * 2007-04-11 2012-11-21 新日本製鐵株式会社 Hot-dip hot-dip steel sheet for press working with excellent low-temperature toughness and method for producing the same
US8889264B2 (en) 2007-04-11 2014-11-18 Nippon Steel & Sumitomo Metal Corporation Hot dip plated high strength steel sheet for press forming use superior in low temperature toughness

Also Published As

Publication number Publication date
JP3280692B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
JP6043801B2 (en) Steel plate for warm press forming, warm press forming member, and manufacturing method thereof
CN109154051B (en) TWIP steel sheet with austenitic matrix
WO2008078940A1 (en) High manganese high strength steel sheets with excellent crashworthiness, and method for manufacturing of it
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
JP2005097725A (en) Steel sheet for hot press having hydrogen embrittlement resistance, automobile member and its production method
JP2007016296A (en) Steel sheet for press forming with excellent ductility after forming, its forming method and automotive parts using the steel sheet for press forming
WO2010011790A2 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
CN111684091B (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing these
JPH05179396A (en) Low yield ratio high strength hot rolled steel sheet and manufacture thereof
CN114502760B (en) Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member
JP5094888B2 (en) Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility
JP4833698B2 (en) High strength steel plate for die quench
JP2004027249A (en) High tensile hot rolled steel sheet and method of producing the same
JP4471688B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP4299774B2 (en) High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same
JP3280692B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JPH0559187B2 (en)
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
CN111315909B (en) Ultra-high strength and high ductility steel sheet having excellent cold formability and method for producing same
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPH11279682A (en) High strength steel sheet good in workability and spot weldability and its production
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
KR101185337B1 (en) Batch annealing furnace type cold rolled steel plate having good surface quality and good formability and method for manufacturing the same
JP2021155789A (en) Steel plate for hot-stamping component and method for manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees