JPH05247505A - Production of composite metal powder - Google Patents

Production of composite metal powder

Info

Publication number
JPH05247505A
JPH05247505A JP8039292A JP8039292A JPH05247505A JP H05247505 A JPH05247505 A JP H05247505A JP 8039292 A JP8039292 A JP 8039292A JP 8039292 A JP8039292 A JP 8039292A JP H05247505 A JPH05247505 A JP H05247505A
Authority
JP
Japan
Prior art keywords
powder
molten metal
metal material
composite
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8039292A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ikeda
浩之 池田
Tadashi Fukuda
匡 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8039292A priority Critical patent/JPH05247505A/en
Publication of JPH05247505A publication Critical patent/JPH05247505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To stably produce a high-quality composite metal powder in which the grains of the high-m.p. hard compd. such as a ceramic are uniformly dispersed by the atomization method. CONSTITUTION:When a molten metallic material is injected into a storage vessel 3 from a metal melting furnace 2, a composite of the hard powder of a ceramic, etc., and metal powder or a composite powder 7 obtained by depositing or fixing a metal powder on a hard powder is simultaneously injected. The composite powder is previously heated and then injected, and the molten metallic material is injected to the position shifted from the center of the storage vessel. Since the molten metallic material is agitated, the composite powder is efficiently and uniformly dispersed in the molten metallic material. Consequently, the molten metallic material is not cooled, the injection nozzle is not clogged, and the contamination of the molten metallic material with the gaseous impurities is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、耐摩耗材料、耐熱材
料、高強度材料の素材として好適な高融点、硬質化合物
粒子と金属との複合粉末を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite powder of a high melting point, hard compound particles and a metal, which is suitable as a material for wear resistant materials, heat resistant materials and high strength materials.

【0002】[0002]

【従来の技術】耐摩耗性、耐熱性、強度といった特性の
向上をはかるべく、近年では金属と炭化物、酸化物ある
いは窒化物との複合材料の適用が行われている。これ
は、金属に対して融点の高い炭化物、酸化物あるいは窒
化物からなる硬質粒子を該金属中に分散させることによ
り、耐熱性や耐摩耗性が著しく向上するからである。一
方、金属中に前記硬質粒子を分散させるとその材質が極
めて硬くなり、最終製品である工具やロール等にするた
めには前記硬質粒子混入の粉末原料を冷間成形してから
焼結するという、いわゆる粉末冶金法が利用されてい
る。したがって、前記硬質粒子との複合材料を粉末冶金
法にて製造するには、これらが可及的に均一に混ざり合
った複合粉末の製造が重要となっていた。
2. Description of the Related Art In recent years, in order to improve properties such as wear resistance, heat resistance and strength, composite materials of metal and carbide, oxide or nitride have been applied. This is because by dispersing hard particles made of carbide, oxide, or nitride having a high melting point with respect to the metal in the metal, heat resistance and wear resistance are significantly improved. On the other hand, when the hard particles are dispersed in a metal, the material becomes extremely hard, and in order to obtain a final product such as a tool or a roll, the powder raw material mixed with the hard particles is cold-formed and then sintered. The so-called powder metallurgy method is used. Therefore, in order to manufacture the composite material with the hard particles by the powder metallurgy method, it is important to manufacture the composite powder in which these are mixed as uniformly as possible.

【0003】従来、上記のような複合粉末を製造する方
法としては、機械的合金化法、化学的合金化法、アトマ
イズ法を適用した複合粉末製造方法があり、その中でア
トマイズ法は量産に向き、短時間で品質のよい複合粉末
を製造できるとされている。アトマイズ法で複合金属粉
末を製造する方法としては、例えば添加する硬質粒子の
表面を改質し溶融金属材料との濡れ性を改善する方法
(特開平2−133502号公報参照)、噴霧ノズル中
心孔上方から高融点粒子を供給する方法(特開昭62−
109905号公報参照)、噴霧媒体中に溶融金属材料
温度より100〜500℃低い温度に予熱したセラミッ
クス粉末を混合して吹付ける方法(特開昭63−504
03号公報参照)等が知られている。
Conventionally, as a method for producing the composite powder as described above, there are a composite powder production method to which a mechanical alloying method, a chemical alloying method and an atomizing method are applied. Among them, the atomizing method is used for mass production. It is said that it is possible to produce high quality composite powder in a short time. As a method for producing the composite metal powder by the atomization method, for example, a method of modifying the surface of the hard particles to be added to improve the wettability with the molten metal material (see JP-A-2-133502), the central hole of the spray nozzle Method of supplying high melting point particles from above (Japanese Patent Laid-Open No. 62-
No. 109905), a method of mixing and spraying ceramic powder preheated to a temperature 100 to 500 ° C. lower than the temperature of the molten metal material in a spray medium (JP-A-63-504).
No. 03), etc. are known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記し
たような従来の複合粉末製造方法は、以下に記載する問
題があり、必ずしも有効な方法とは言い得ないものであ
る。すなわち、表面改質粉末を溶融金属材料中に添加す
る方法では、溶融金属材料の強い表面張力のため攪拌中
の溶融金属材料でも添加粒子の分散に時間がかかり、そ
の間に表面改質物質どうしが溶解して凝着が起こり、均
一分散が妨げられるという問題がある。また、噴霧直前
の溶融金属材料近傍にセラミックス等の粒子を供給、あ
るいは衝突させて噴霧を行う方法では、噴霧ガスの一部
がいわゆる巻き上げという現象によって上方に舞い上が
り、流下してくる溶融金属材料の表面を覆うため添加粒
子の溶融金材料中への分散を妨げ、その結果製造された
複合粉末の中には複合化されていないセラミックス粒子
が存在するという問題がある。これは溶融金属貯留容器
内での乱流が粉末の鉛直下方への落下を妨げることも原
因となっている。
However, the above-described conventional method for producing a composite powder has the following problems and cannot be said to be an effective method. That is, in the method of adding the surface-modifying powder to the molten metal material, it takes time to disperse the added particles even in the molten metal material under stirring due to the strong surface tension of the molten metal material, and during this time, the surface-modifying substances do not interact with each other. There is a problem that melting and cohesion occur and uniform dispersion is hindered. Further, in the method of spraying particles such as ceramics in the vicinity of the molten metal material immediately before spraying, or by colliding the particles, a part of the sprayed gas soars upward due to the phenomenon of so-called winding, and the molten metal material flowing down is sprayed. Since the surface is covered, the addition particles are prevented from being dispersed in the molten gold material, and as a result, there is a problem that uncomposited ceramic particles are present in the produced composite powder. This is because the turbulent flow in the molten metal storage container prevents the powder from falling vertically downward.

【0005】一方、流下中の溶融金属流に粒子を吹付け
られるのは、いわゆる自由落下方式のアトマイズ法でな
いと複合化は容易でない。自由落下方式では、溶融金属
材料を噴霧ガスの吹出し力を使わない方法のため注湯管
が不要であり、粉砕点より上方から粒子を供給すること
が可能である。しかしながら、粉末に対する小径粒化、
安定製造の観点から用いられるコンファインド方式で
は、噴霧ガスの吹出し力を利用するので注湯管先端近傍
に噴霧ガスを噴射する方法がとられている。この方式で
は、粒子を溶融金属材料中に取り込まれるように添加す
ることは機構的に困難であり、例えば注湯管近傍に粒子
供給管を設置すると、ガス流れを不安定にして粉末品質
に影響を与えることがあるのみならず、粒子供給装置の
設置により操業前後のセッティング、取外しの工程が複
雑になる外、粉末が該粒子供給装置に付着残留し、操業
後のメンテナンスを困難にする。さらには、噴霧ガスの
すべてが溶融金属材料に衝突、粉砕に寄与しないため供
給された粒子のすべては金属粉末と複合化しないという
問題がある。
On the other hand, it is not easy to form particles by spraying particles into the flowing molten metal flow unless it is a so-called free-fall atomizing method. In the free-fall method, a molten metal material does not require a blowing force of a spray gas, so that a pouring pipe is unnecessary and particles can be supplied from above the crushing point. However, small particle size for powder,
In the confined method used from the viewpoint of stable production, a method of injecting the spray gas near the tip of the pouring pipe is adopted because the blowing force of the spray gas is used. With this method, it is mechanically difficult to add particles so that they are incorporated into the molten metal material.For example, if a particle supply pipe is installed near the pouring pipe, the gas flow becomes unstable and powder quality is affected. In addition to the above-mentioned problems, the installation of the particle supply device complicates the steps of setting and removing before and after the operation, and the powder remains on the particle supply device, making maintenance after the operation difficult. Furthermore, since all of the atomized gas does not collide with the molten metal material and does not contribute to pulverization, all of the supplied particles do not form a composite with the metal powder.

【0006】また、噴霧媒体中に予熱したセラミックス
粒子を混合して吹付ける方法では、予熱したセラミック
ス粒子は混合後ただちに冷却されるため予熱の効果が小
さくなる。すなわち、高圧ガス容器より噴出した噴霧媒
体は断熱膨張のため相当冷却されており、複合材として
実用可能な材料を製造するための添加量程度では、圧倒
的な量の噴霧媒体流中ですぐに熱を奪われるからであ
る。
Further, in the method in which the preheated ceramic particles are mixed and sprayed in the spray medium, the preheated ceramic particles are cooled immediately after mixing, so that the effect of preheating becomes small. That is, the spray medium ejected from the high-pressure gas container has been considerably cooled due to adiabatic expansion, and at an addition amount for producing a material that can be practically used as a composite material, the spray medium immediately flows in an overwhelming amount of spray medium flow. This is because the heat is taken away.

【0007】このように溶融金属材料貯留容器から流下
する溶融金属材料あるいは粉化点に粒子を添加する方法
では、完全に複合化した粉末を安定して製造することが
困難である。
As described above, it is difficult to stably produce a completely complexed powder by the method of adding particles to the molten metal material flowing down from the molten metal material storage container or the pulverization point.

【0008】この発明はこのような従来技術の問題点に
鑑み、溶融金属材料貯留容器内で粒子を添加する方法に
より、溶融金属材料中に粒子を迅速に分散させて高品質
複合金属粉末を安定して製造可能な複合金属粉末の製造
方法を提案しようとするものである。
In view of such problems of the prior art, the present invention rapidly disperses particles in a molten metal material by a method of adding particles in a molten metal material storage container to stabilize a high quality composite metal powder. The present invention is intended to propose a method for producing a composite metal powder that can be produced as described above.

【0009】[0009]

【課題を解決するための手段】この発明は、溶融金属流
を流体ジェットにより粉砕して金属粉末を得る方法にお
いて、金属溶解炉より貯留容器へ溶融金属材料を注湯す
る際に、セラミックス等の硬質粉末と金属粉の複合粉
末、またはセラミックス等の硬質粉末の周囲に金属粉を
付着または固着させた複合粉末を同時に投入し、該複合
粉末混合の溶融金属材料を該貯留容器より流下させるこ
と、また上記複合粉末を予め加熱して貯留容器へ投入す
ること、また金属溶解炉より貯留容器へ溶融金属材料を
注入する際、貯留容器の中心位置よりずれた位置に溶融
金属材料を注入することを要旨とするものである。
The present invention relates to a method of pulverizing a molten metal stream by a fluid jet to obtain a metal powder, and when pouring a molten metal material from a metal melting furnace into a storage container A composite powder of a hard powder and a metal powder, or a composite powder in which a metal powder is adhered or fixed around a hard powder such as ceramics is simultaneously charged, and a molten metal material of the composite powder mixture is allowed to flow down from the storage container, It is also possible to preheat the composite powder into a storage container, and to inject the molten metal material into the storage container from the metal melting furnace at a position displaced from the center position of the storage container. It is a summary.

【0010】[0010]

【作用】この発明において、溶融金属材料に粒子を添加
する手段として、溶融金属材料貯留容器内で粒子を添加
する方法を採用したのは、以下に示す理由による。溶融
金属材料にセラミックス等の粒子を添加する場合、該粒
子を供給管を通じ連続的に通過させる方法、ボックスよ
り投入する方法が考えられるが、セラミックス等の粒子
と溶融金属材料との濡れ性の悪さ、大きな比重差のた
め、いずれの方法も簡単に複合化できない。これに対
し、溶融金属材料容器内で添加する方法の場合は、金属
溶解炉より溶融金属材料が注湯されるので、該溶融金属
材料容器内で溶湯の回転を伴う攪拌が行われる。したが
って、この注湯の際に粒子を同時に添加することにより
溶融金属材料中へ効率よく巻き込むことが可能となる。
さらに、添加用の粒子あるいは粉末を予め複合化した粒
子あるいは粉末とすることにより、溶融金属材料との比
重差を小さくすることができるので均質分散が容易とな
る。
In the present invention, the method of adding particles in the molten metal material storage container is adopted as the means for adding particles to the molten metal material for the following reason. When particles such as ceramics are added to the molten metal material, a method of continuously passing the particles through a supply pipe or a method of charging from a box can be considered, but poor wettability between the particles of ceramics and the molten metal material Because of the large difference in specific gravity, neither method can be easily combined. On the other hand, in the case of the method of adding in the molten metal material container, since the molten metal material is poured from the metal melting furnace, the molten metal material is stirred in the molten metal material container while rotating. Therefore, by simultaneously adding particles during this pouring, the molten metal material can be efficiently rolled up.
Furthermore, by making the particles or powders for addition into composite particles or powders in advance, the difference in specific gravity from the molten metal material can be reduced, so that homogeneous dispersion is facilitated.

【0011】また、上記複合粉末(以下「第1複合粉
末」と称する)を予め加熱して溶融金属材料貯留容器に
投入するのは、第1複合粉末を予め加熱することによ
り、溶解雰囲気に挿入される前に該複合粉末表面に吸着
したガス成分を脱離させることができ溶融金属材料の不
純物ガス成分による汚染を防止できるとともに、溶融金
属材料温度の低下を抑えられ、未溶解粉末が溶湯ノズル
内で凝固し閉塞する現象も抑制できるからである。この
第1複合粉末の加熱温度としては投入前において粉末ど
うしが融着しない程度の温度が望ましい。粉末どうしが
融着すると溶融金属材料中での当該複合粉末の均一分散
が妨げられるからである。また、第1複合粉末の加熱方
法としては、ヒーターによる加熱、誘導加熱方式のいず
れでもよいが、誘導加熱方式では短時間に添加粉末を高
温に加熱することができるので、ヒーターによる長時間
加熱の場合に起こりがちな焼結を生じさせない条件で加
熱することができるので誘導加熱が好ましい。誘導加熱
条件は粉末添加量、第1複合粉末の組成によって決めら
れる。第1複合粉末の加熱温度はガス成分が除去される
温度、例えば200℃以上であればよいが、望ましくは
融点の10分の6程度が焼結の進行が少なく、溶融金属
材料温度に近いので添加の時に溶融金属材料温度に与え
る影響が少なくてすむ。しかしながら、加熱装置の加熱
上限温度、加熱時間が長時間かかることによるコストの
上昇、工数の増大を考慮した場合、300〜500℃程
度の温度が好ましい。また、この温度域に加熱すること
により焼結の進行が十分に抑えられる。ただし、第1複
合粉末の粒径が例えば数μmである場合焼結が進行する
ことがあるので加熱時間を短くする必要がある。適正な
加熱時間としては、第1複合粉末の組成、粒径から冶金
学的に焼結の進行する条件を調査して決めるのが望まし
い。
The above-mentioned composite powder (hereinafter referred to as "first composite powder") is preheated and charged into the molten metal material storage container by preheating the first composite powder and inserting it into the melting atmosphere. The gas components adsorbed on the surface of the composite powder before being desorbed can be desorbed, the contamination of the molten metal material with the impurity gas components can be prevented, the temperature drop of the molten metal material can be suppressed, and the undissolved powder is melted by the molten metal nozzle. This is because the phenomenon of solidification and blockage inside can be suppressed. The heating temperature of the first composite powder is preferably a temperature at which the powders do not fuse before being charged. This is because if the powders are fused together, the uniform dispersion of the composite powder in the molten metal material is hindered. Further, the heating method of the first composite powder may be either heating by a heater or induction heating method. However, in the induction heating method, since the added powder can be heated to a high temperature in a short time, it is possible to perform heating by a heater for a long time. Induction heating is preferred because it can be heated under conditions that do not cause the sintering that tends to occur in some cases. The induction heating conditions are determined by the powder addition amount and the composition of the first composite powder. The heating temperature of the first composite powder may be a temperature at which the gas component is removed, for example, 200 ° C. or higher, but desirably, about 6/10 of the melting point does not progress the sintering and is close to the temperature of the molten metal material. The effect on the temperature of the molten metal material during addition is small. However, considering the heating upper limit temperature of the heating device, the cost increase due to the long heating time, and the increase in the number of processes, the temperature of about 300 to 500 ° C. is preferable. Moreover, the progress of sintering can be sufficiently suppressed by heating in this temperature range. However, if the particle size of the first composite powder is, for example, several μm, the sintering may proceed, so it is necessary to shorten the heating time. The appropriate heating time is preferably determined by investigating the conditions under which metallurgical sintering progresses from the composition and particle size of the first composite powder.

【0012】また、金属溶解炉から貯留容器へ注入する
溶融金属を該貯留容器の中心位置よりずれた位置に注入
することとしたのは、以下に示す理由による。すなわ
ち、溶融金属材料貯留容器中へ溶融金属材料を注ぐ際
に、金属溶解炉の注湯口は該溶解炉と溶融金属材料容器
のそれぞれの中心を結ぶ水平中心線上に位置させるのが
普通であるが、注湯口を該線上に置かず水平中心線に対
し斜めに配置することにより、溶融金属材料貯留容器内
の溶融金属材料がよく回転し攪拌が促進される効果が得
られ、添加された粉末が効率よく溶融金属材料中に分散
されるからである。
Further, the reason why the molten metal to be injected from the metal melting furnace into the storage container is injected at a position deviated from the center position of the storage container is as follows. That is, when pouring the molten metal material into the molten metal material storage container, the pouring port of the metal melting furnace is usually located on the horizontal center line connecting the centers of the melting furnace and the molten metal material container. By arranging the pouring port diagonally with respect to the horizontal center line without placing it on the line, the molten metal material in the molten metal material storage container is rotated well and the effect of promoting stirring is obtained, and the added powder is This is because they are efficiently dispersed in the molten metal material.

【0013】なお、添加粒子を複合粉末としたのは、添
加粒子が単体の粉末では溶融金属材料中への分散は容易
でなく、複合粉末とすることにより溶融金属材料中へ添
加しても浮上しにくくなり分散が容易となるからであ
る。第1複合粉末の製造方法としては、特に限定するも
のではなく、例えばボールミル等により混合する方法を
用いることができる。
It should be noted that the reason why the additive particles are made into a composite powder is that it is not easy to disperse the additive particles in the molten metal material if the additive particles are a single powder, and even if the additive particles are added to the molten metal material, they will float. This is because it becomes difficult to do so and dispersion becomes easy. The method for producing the first composite powder is not particularly limited, and for example, a method of mixing with a ball mill or the like can be used.

【0014】[0014]

【実施例】図1はこの発明方法を実施するためのアトマ
イズ装置の一例を示す概略図、図2は同上装置における
粉末供給装置を拡大して示す概略図、図3は同上装置に
おける溶融金属材料貯留容器内での複合粉末添加時の挙
動を示す概略図であり、1は溶融金属材料、2は溶解
炉、3は溶融金属材料貯留容器、4は誘導加熱装置、5
はストッパー、6は粉末供給管、7は第1複合粉末、8
は粉末供給装置、9はチャンバー、10はアトマイザ
ー、11はタンク、12はサイクロン、13は排気弁、
14−1、14−2は不活性ガスボンベである。
1 is a schematic diagram showing an example of an atomizing apparatus for carrying out the method of the present invention, FIG. 2 is an enlarged schematic diagram showing a powder supplying apparatus in the same apparatus, and FIG. 3 is a molten metal material in the same apparatus. It is the schematic which shows the behavior at the time of adding a composite powder in a storage container, 1 is a molten metal material, 2 is a melting furnace, 3 is a molten metal material storage container, 4 is an induction heating device, 5
Is a stopper, 6 is a powder supply pipe, 7 is a first composite powder, 8
Is a powder supply device, 9 is a chamber, 10 is an atomizer, 11 is a tank, 12 is a cyclone, 13 is an exhaust valve,
14-1 and 14-2 are inert gas cylinders.

【0015】粉末供給装置8は図2に拡大して示すごと
く、内部に焼結金属あるいは発泡金属等のフィルター8
−1を配し、内壁に加熱装置8−2が内蔵されており、
フィルター8−1の下部より溶解雰囲気と同種の不活性
ガスを流し、フィルター8−1上で流動床が形成される
構造となっており、かつ熱電対15により内部の温度を
測定して温度調整できるようになっている。
As shown in an enlarged scale in FIG. 2, the powder feeding device 8 has a filter 8 made of a sintered metal or a foam metal inside.
-1 is arranged, and the heating device 8-2 is built in the inner wall,
An inert gas of the same type as the melting atmosphere is made to flow from the lower part of the filter 8-1 to form a fluidized bed on the filter 8-1, and the temperature inside is measured by the thermocouple 15 to adjust the temperature. You can do it.

【0016】上記アトマイズ装置において、溶解炉2よ
り溶融金属材料貯留容器3に注湯される溶融金属材料1
は該貯留容器3内で回転を伴う攪拌が生じ、粉末供給装
置8より粉末供給管6を介して同時に添加される第1複
合粉末7が溶融金属材料中に効率よく巻き込まれ容易に
均質分散される。第1複合粉末7は不活性ガスボンベ1
4−1より供給される不活性ガスにより装置内のフィル
ター8−1上部で流動し、添加の際には不活性ガスボン
ベ14−1のガス圧を増すことによって溶融金属材料貯
留容器3内に添加される。溶融金属材料貯留容器3内で
第1複合粉末7が均質に分散された溶融金属材料1は、
該貯留容器3内のストッパー5を上昇させることにより
開く底部開口部より棒状あるいは板状に流下し、タンク
11内でアトマイザー10より噴射される噴霧媒体によ
り粉砕され、製造された複合金属粉末はサイクロン12
を介して回収される。
In the atomizing apparatus, the molten metal material 1 is poured from the melting furnace 2 into the molten metal material storage container 3.
Stirring with rotation occurs in the storage container 3, and the first composite powder 7 simultaneously added from the powder supply device 8 through the powder supply pipe 6 is efficiently entrained in the molten metal material and easily homogeneously dispersed. It The first composite powder 7 is an inert gas cylinder 1
4-1 is flown in the upper part of the filter 8-1 in the apparatus by the inert gas supplied and is added to the molten metal material storage container 3 by increasing the gas pressure of the inert gas cylinder 14-1 at the time of addition. To be done. The molten metal material 1 in which the first composite powder 7 is homogeneously dispersed in the molten metal material storage container 3 is
The composite metal powder produced by flowing down in a rod-like or plate-like manner from the bottom opening opened by raising the stopper 5 in the storage container 3 and pulverized by the atomizing medium sprayed from the atomizer 10 in the tank 11 is a cyclone. 12
Be recovered via.

【0017】また、第1複合粉末を添加するに際し、粉
末供給装置8内で加熱装置8−2により予め加熱してお
くことにより、溶解雰囲気に装入される前に吸着したガ
ス成分が除去され溶融金属材料1の不純物ガス成分によ
る汚染が防止されるとともに、溶融金属材料温度の低下
が抑えられ未溶解粉末による溶湯ノズルの閉塞が防止さ
れ、安定操業が行える。
Further, when the first composite powder is added, it is preheated by the heating device 8-2 in the powder supply device 8 to remove the gas component adsorbed before being charged into the melting atmosphere. Contamination of the molten metal material 1 with an impurity gas component is prevented, the temperature of the molten metal material is prevented from decreasing, and the molten metal nozzle is prevented from being clogged with unmelted powder, so that stable operation can be performed.

【0018】次に、溶融金属材料貯留容器3内に溶融金
属材料1を注ぐ際に、溶解炉2の注湯口2−1を該溶解
炉2と溶融金属材料貯留容器3のそれぞれの中心を結ぶ
水平中心線に対し斜めに配置させて注湯すると、該溶融
金属材料貯留容器3内の溶融金属材料1の回転がさらに
よくなり、大きな攪拌効果が得られ、第1複合粉末の溶
融金属材料中への溶解、均一分散がより促進される。
Next, when pouring the molten metal material 1 into the molten metal material storage container 3, the pouring port 2-1 of the melting furnace 2 connects the respective centers of the melting furnace 2 and the molten metal material storage container 3. When the molten metal material 1 in the molten metal material storage container 3 is rotated at a slant with respect to the horizontal center line, the rotation of the molten metal material 1 is further improved, and a large stirring effect is obtained. Dissolution and uniform dispersion into

【0019】なお、溶融金属材料貯留容器3に溶融金属
材料1が注湯されると同時に誘導加熱装置4により溶融
金属材料1を加熱すると該容器内の溶融金属材料が攪拌
されるので、添加された第1複合粉末がより効率よく溶
融金属材料中に分散される。この時の誘導加熱条件は溶
融金属材料貯留容器3の構造、溶融金属材料の量等によ
って溶融金属材料が攪拌されるような条件を選べばよ
い。
When the molten metal material 1 is poured into the molten metal material storage container 3 and the molten metal material 1 is heated by the induction heating device 4 at the same time, the molten metal material in the container is agitated. The first composite powder is more efficiently dispersed in the molten metal material. The induction heating condition at this time may be selected such that the molten metal material is stirred depending on the structure of the molten metal material storage container 3, the amount of the molten metal material, and the like.

【0020】実施例1 溶解炉の注湯口を溶融金属貯留容器と溶解炉とを結ぶ水
平中心線上に位置させた図1に示すアトマイズ装置によ
り、複合金属粉末を製造した。その際、粒度0.5〜2
0μmのアルミナ粉末500gと40μm以上で平均粒
径150μmのCu粉末1000gを、内壁およびボー
ルをアルミナ製としたボールミルにて30分間混合させ
て得た第1複合粉末とし、粉末供給装置で第1複合粉末
を500℃に1時間保持した。本実施例では溶融金属材
料であるCuを1350℃で溶解した後、溶融金属貯留
容器に約30kg/分の速度で注湯し、注湯と同時に粉
末供給装置から第1複合粉末全量を約500g/分の速
度で全量を供給した。そして、最終的に、第1複合粉末
とCuとを合わせて50kgをタンディッシュに投入
し、含有アルミナ量が1%となるように溶解量を調節し
た。
Example 1 A composite metal powder was produced by the atomizing apparatus shown in FIG. 1 in which the pouring port of the melting furnace was located on the horizontal center line connecting the molten metal storage container and the melting furnace. At that time, particle size 0.5 to 2
As a first composite powder obtained by mixing 500 g of 0 μm alumina powder and 1000 g of Cu powder having an average particle size of 150 μm with a size of 40 μm or more for 30 minutes in a ball mill having inner walls and balls made of alumina, and using a powder supply device for the first composite powder. The powder was held at 500 ° C for 1 hour. In this embodiment, after Cu, which is a molten metal material, is melted at 1350 ° C., it is poured into a molten metal storage container at a rate of about 30 kg / min, and at the same time as pouring, the total amount of the first composite powder is about 500 g from a powder supply device. All was fed at a rate of / min. Then, finally, 50 kg of the first composite powder and Cu were put together into a tundish, and the amount of dissolution was adjusted so that the amount of alumina contained was 1%.

【0021】実施例2 溶解炉の注湯口を溶融金属貯留容器と溶解炉とを結ぶ水
平中心線に対して20度の角度をもって斜めに配置し、
他は実施例1と同じ条件でアトマイズし複合金属粉末を
製造した。
Example 2 The pouring port of the melting furnace was arranged obliquely at an angle of 20 degrees with respect to the horizontal center line connecting the molten metal storage container and the melting furnace.
Others were atomized under the same conditions as in Example 1 to produce a composite metal powder.

【0022】実施例3 溶解炉の注湯口を溶融金属貯留容器と溶解炉とを結ぶ水
平中心線に対して20度の角度をもって斜めに配置し、
第1複合粉末として平均粒径50μmのアルミナ粉末5
00gに平均粒径20μmのCu粉末500gをメカノ
フュージョン法でコーティングさせたものを用い、他は
実施例1と同じ条件でアトマイズし複合金属粉末を製造
した。
Example 3 The pouring port of the melting furnace was disposed obliquely at an angle of 20 degrees with respect to the horizontal center line connecting the molten metal storage container and the melting furnace.
Alumina powder 5 having an average particle size of 50 μm as the first composite powder
A composite metal powder was manufactured by atomizing under the same conditions as in Example 1 except that 00 g was coated with 500 g of Cu powder having an average particle size of 20 μm by the mechanofusion method.

【0023】比較例 溶解炉の注湯口を溶融金属貯留容器と溶解炉とを結ぶ水
平中心線上に位置させた従来の注湯方法により、第1複
合粉末を0.5〜20μmのアルミナのみとした以外実
施例1と同じ条件でアトマイズを行った。
Comparative Example By the conventional pouring method in which the pouring port of the melting furnace was located on the horizontal center line connecting the molten metal storage container and the melting furnace, the first composite powder was made of only 0.5 to 20 μm alumina. Other than that, atomization was performed under the same conditions as in Example 1.

【0024】以上4種類の方法で製造した各粉末を分級
して含有アルミナ量を測定し、各粒度のアルミナ量を比
較した結果を表1に示す。表1には4粒度の粉末の分析
値(重量%)を示した。表1の結果より明らかなごと
く、本発明法適用の実施例1〜3における各粒度の分析
値は、いずれも目標の1%を外れることなく一定であ
る。これはアルミナが均一に複合化したことによるもの
と推察される。これに対し、比較例では分析値がかなり
低く、アルミナが溶融金属材料中に取り込まれていない
ことを示している。これはセラミックス単体では溶融金
属材料中に容易に取り込まれないからである。
Table 1 shows the results of classifying the powders produced by the above four methods, measuring the amount of alumina contained, and comparing the amount of alumina of each particle size. Table 1 shows the analysis values (% by weight) of the powders having four particle sizes. As is clear from the results in Table 1, the analytical values of each particle size in Examples 1 to 3 to which the method of the present invention is applied are constant without deviating from the target of 1%. It is speculated that this is because the alumina was uniformly compounded. On the other hand, in the comparative example, the analysis value is considerably low, indicating that alumina is not incorporated in the molten metal material. This is because ceramics alone are not easily incorporated into the molten metal material.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】以上説明したごとく、この発明方法によ
れば、添加複合粉末を溶融金属材料貯留容器内で容易に
均一に分散させることができるので、量産規模で噴霧装
置の構造、噴霧条件、メンテナンスを複雑にすることな
く、セラミックス等高融点・硬質化合物粒子が極めて均
一に分散した高品質の複合金属粉末を安定して製造する
ことができるという、大なる効果を奏するものである。
As described above, according to the method of the present invention, it is possible to easily and uniformly disperse the added composite powder in the molten metal material storage container. This is a great effect that a high quality composite metal powder in which high melting point and hard compound particles such as ceramics are extremely uniformly dispersed can be stably produced without complicating maintenance.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明方法を実施するためのアトマイズ装置
の一例を示す概略図である。
FIG. 1 is a schematic view showing an example of an atomizing device for carrying out the method of the present invention.

【図2】同上装置における粉末供給装置を拡大して示す
概略図である。
FIG. 2 is an enlarged schematic view showing a powder supply device in the same device.

【図3】同上装置における溶融金属材料貯留容器内での
複合粉末添加時の挙動を示す概略図である。
FIG. 3 is a schematic view showing the behavior of the same apparatus when a composite powder is added in a molten metal material storage container.

【符号の説明】[Explanation of symbols]

1 溶融金属材料 2 溶解炉 3 溶融金属材料貯留容器 4 誘導加熱装置 5 ストッパー 6 粉末供給管 7 複合粉末 8 粉末供給装置 9 チャンバー 10 アトマイザー 11 タンク 12 サイクロン 13 排気弁 14−1、14−2 不活性ガスボンベ 1 Molten Metal Material 2 Melting Furnace 3 Molten Metal Material Storage Container 4 Induction Heating Device 5 Stopper 6 Powder Supply Pipe 7 Composite Powder 8 Powder Supply Device 9 Chamber 10 Atomizer 11 Tank 12 Cyclone 13 Exhaust Valve 14-1, 14-2 Inert Gas cylinder

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶融金属流を流体ジェットにより粉砕し
て金属粉末を得る方法において、金属溶解炉より貯留容
器へ溶融金属材料を注湯する際に、セラミックス等の硬
質粉末と金属粉の複合粉末、またはセラミックス等の硬
質粉末の周囲に金属粉を付着または固着させた複合粉末
を同時に投入し、該複合粉末混合の溶融金属材料を該貯
留容器より流下させることを特徴とする複合金属粉末の
製造方法。
1. A method of pulverizing a molten metal flow by a fluid jet to obtain a metal powder, wherein when a molten metal material is poured from a metal melting furnace into a storage container, a composite powder of hard powder such as ceramics and metal powder. , Or a composite powder in which a metal powder is adhered or fixed around a hard powder such as ceramics and the molten metal material mixed with the composite powder is allowed to flow down from the storage container. Method.
【請求項2】 セラミックス等の硬質粉末と金属粉の複
合粉末、またはセラミックス等の硬質粉末の周囲に金属
粉を付着または固着させた複合粉末を予め加熱して溶融
金属材料貯留容器へ投入することを特徴とする請求項1
記載の複合金属粉末の製造方法。
2. A composite powder of hard powder such as ceramics and metal powder, or a composite powder in which metal powder is adhered or fixed around a hard powder such as ceramics is preheated and charged into a molten metal material storage container. Claim 1 characterized by the above-mentioned.
A method for producing the described composite metal powder.
【請求項3】 金属溶解炉から貯留容器へ注湯する溶融
金属材料を該貯留容器の中心位置よりずれた位置に注入
することを特徴とする請求項1ないしは2記載の複合金
属粉末の製造方法。
3. The method for producing a composite metal powder according to claim 1, wherein the molten metal material to be poured from the metal melting furnace into the storage container is poured into a position displaced from the central position of the storage container. ..
JP8039292A 1992-03-02 1992-03-02 Production of composite metal powder Pending JPH05247505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8039292A JPH05247505A (en) 1992-03-02 1992-03-02 Production of composite metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8039292A JPH05247505A (en) 1992-03-02 1992-03-02 Production of composite metal powder

Publications (1)

Publication Number Publication Date
JPH05247505A true JPH05247505A (en) 1993-09-24

Family

ID=13717021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8039292A Pending JPH05247505A (en) 1992-03-02 1992-03-02 Production of composite metal powder

Country Status (1)

Country Link
JP (1) JPH05247505A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819534B1 (en) * 2006-02-23 2008-04-07 (주)나노아이텍 High-pressure water spray system and method for fabricating metallic powders having super small particle sizes using the same
WO2011074720A1 (en) * 2009-12-15 2011-06-23 한국기계연구원 Production method and production device for a composite metal powder using the gas spraying method
KR101143888B1 (en) * 2009-12-15 2012-05-11 한국기계연구원 The method for preparation of metal matrix powder with mechanical alloying and metal matrix powder thereby
KR101143887B1 (en) * 2009-12-15 2012-05-11 한국기계연구원 The method for preparation of metal matrix powder using gas atomization and metal matrix powder thereby

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819534B1 (en) * 2006-02-23 2008-04-07 (주)나노아이텍 High-pressure water spray system and method for fabricating metallic powders having super small particle sizes using the same
WO2011074720A1 (en) * 2009-12-15 2011-06-23 한국기계연구원 Production method and production device for a composite metal powder using the gas spraying method
KR101143888B1 (en) * 2009-12-15 2012-05-11 한국기계연구원 The method for preparation of metal matrix powder with mechanical alloying and metal matrix powder thereby
KR101143887B1 (en) * 2009-12-15 2012-05-11 한국기계연구원 The method for preparation of metal matrix powder using gas atomization and metal matrix powder thereby
CN102712044A (en) * 2009-12-15 2012-10-03 韩国机械研究院 Production method and production device for a composite metal powder using the gas spraying method
US9267190B2 (en) 2009-12-15 2016-02-23 Korea Institute Of Machinery And Materials Production method and production device for a composite metal powder using the gas spraying method

Similar Documents

Publication Publication Date Title
US5032176A (en) Method for manufacturing titanium powder or titanium composite powder
EP0682578B1 (en) Production of powder
US4592781A (en) Method for making ultrafine metal powder
US5366204A (en) Integral induction heating of close coupled nozzle
US20100226810A1 (en) Process for Manufacturing Metal Particles
JPS60211005A (en) Apparatus and method for spraying unstable molten liquid stream
US4613371A (en) Method for making ultrafine metal powder
US4897111A (en) Method for the manufacture of powders from molten materials
US5114471A (en) Hydrometallurgical process for producing finely divided spherical maraging steel powders
CN111470481B (en) Method for preparing high-purity aluminum nitride spherical powder by plasma reaction atomization
AU2004216300A1 (en) Method and apparatus for producing fine particles
JPS61226163A (en) Production of metal product
CN106112000A (en) A kind of 3D prints the preparation method of metal dust
US20050115360A1 (en) Method for producing particle-shaped material
JPH05247505A (en) Production of composite metal powder
CN107755708A (en) The preparation method of submicron metal
CA1105295A (en) Nickel and cobalt irregularly shaped granulates
CN105665728A (en) Preparation method for metal-based titanium carbide magnetic abrasive material by adopting double free-falling spray nozzles to mix powder and adopting gas-atomizing, water-cooling and quick-setting method
JPH05247504A (en) Production of composite metal powder
KR20070014314A (en) Method and device for manufacturing al alloy powder included high si
US7097688B1 (en) Method for producing silicon based alloys in atomized form
CN100594974C (en) Apparatus and method for producing spherical powder, burner for treating powder
JP4230554B2 (en) Method for producing spherical particles
EP1627679A1 (en) Apparatus for producing spherical powder, burner for treating powder, method for producing spherical powder, spherical oxide powder and oxide powder
JP4140834B2 (en) Method for producing spherical oxide powder