JPH0524549A - Flow rate controller - Google Patents

Flow rate controller

Info

Publication number
JPH0524549A
JPH0524549A JP3206358A JP20635891A JPH0524549A JP H0524549 A JPH0524549 A JP H0524549A JP 3206358 A JP3206358 A JP 3206358A JP 20635891 A JP20635891 A JP 20635891A JP H0524549 A JPH0524549 A JP H0524549A
Authority
JP
Japan
Prior art keywords
flow rate
pump
spool
valve
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3206358A
Other languages
Japanese (ja)
Inventor
Yoshinori Takeuchi
義則 竹内
Tomohiro Ishikawa
智洋 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Seisakusho Co Ltd filed Critical Showa Seisakusho Co Ltd
Priority to JP3206358A priority Critical patent/JPH0524549A/en
Publication of JPH0524549A publication Critical patent/JPH0524549A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Power Steering Mechanism (AREA)

Abstract

PURPOSE:To reduce the burden applied to the engine of a flow rate controller and reduce the production cost. CONSTITUTION:When the revolution speed of an engine increases and the discharge flow rate of a pump increases, the pressure acting to a front pressure chamber S3 increases, and the differential pressure between the parts before and behind a main orifice and a variable orifice increases, and a return flow rate adjusting spool 13 shifts to the left side against a spring, and a subpassage 6 and a bypass passage 7 communicate, and a portion of the discharge flow rate supplied from the pump returns to the suction side of the pump, passing through the bypass passage 7. Further, when the number of revolution of the engine increases and the discharge flow rate of the pump increases, the pressure difference between a feeding chamber S1 and an expansion chamber $2 increases, and a control spool 11 shifts to the left side against the sprigy force of the spring 12, and the opening area of the variable orifice 9 reduces, and the quantity of the pressurized fluid which flows into a power steering device 4 is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車のパワーステアリ
ング装置等に適用される流量制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow control device applied to a power steering device of an automobile.

【0002】[0002]

【従来の技術】自動車のパワーステアリング装置に適用
される流量制御装置は、高速走行時にはパワーステアリ
ング装置に供給する圧力流体の量を少なくしてハンドル
操作をある程度重くし、低速走行時には多量の圧力流体
をパワーステアリング装置に供給してハンドル操作を軽
くしたいという要請がある。
2. Description of the Related Art A flow rate control device applied to an automobile power steering device reduces the amount of pressure fluid supplied to the power steering device at high speed to make the steering wheel operation heavy to some extent, and a large amount of pressure fluid at low speed travel. There is a request to supply the power steering device to make the steering wheel lighter.

【0003】上記の要請に応える流量制御装置として特
公平1−27308号に開示されるものが知られてい
る。この流量制御装置は図4に示すように、ポンプハウ
ジング100にポンプの吐出側につながるメイン通路1
01及びポンプの吸入側につながるバイパス通路102
を穿設するとともに弁収納穴103を形成し、この弁収
納穴103内にスプール104を摺動自在に収納し、ま
た弁収納穴103の一端開口にパワーステアリング装置
105につながるコネクタ106を取付け、このコネク
タ106内に絞り部材107を固着するとともに制御ス
プール108を摺動自在に収納し、またハウジング10
0には絞り部材107の下流側の供給室S1’とスプー
ル104の後圧室S2’との間を連通孔109で連通
し、更に前記コネクタ106に制御スプール108の圧
力作用室110に連通する連通孔111及び制限通路1
12を形成した構造となっている。
A flow rate control device disclosed in Japanese Patent Publication No. 1-27308 is known as a flow rate control device that meets the above demands. As shown in FIG. 4, this flow rate control device includes a main passage 1 connected to the pump housing 100 on the discharge side of the pump.
01 and the bypass passage 102 connected to the suction side of the pump
And a valve housing hole 103 is formed, a spool 104 is slidably housed in the valve housing hole 103, and a connector 106 connected to the power steering device 105 is attached to one end opening of the valve housing hole 103. The throttle member 107 is fixed in the connector 106 and the control spool 108 is slidably accommodated therein.
0, the downstream side supply chamber S1 ′ of the throttle member 107 and the rear pressure chamber S2 ′ of the spool 104 communicate with each other through a communication hole 109, and further, the connector 106 communicates with the pressure action chamber 110 of the control spool 108. Communication hole 111 and restricted passage 1
It has a structure in which 12 is formed.

【0004】そしてその作用は、ポンプ回転速度が低い
うちはポンプ吐出量も少ないので、スプール104は図
に示す位置よりも左側に位置してバイパス通路102を
閉塞し、ポンプ吐出流量の全量が絞り部材107を通っ
てパワーステアリング装置105に供給される。次い
で、エンジンの回転速度が上昇しポンプからの吐出流量
も増大すると、前記絞り部材107の前後の圧力差に応
じてスプール104が図に示すように右側に移動し、ポ
ンプから送出された流体の一部がバイパス通路102を
介してポンプに戻る。更にエンジンが高回転(走行速度
が大)となりポンプからの吐出流量が高くなると、制限
通路112における抵抗によってメイン通路101内の
流体圧力が上昇し、この上昇した圧力が制御スプール1
08の圧力作用室110に作用し、制御スプール108
の下流側の供給室S1’との圧力差により制御スプール
108が図において左方へ移動し、絞り部材107の絞
り穴107aを閉じ、パワーステアリング装置105へ
の供給流量を制限するとともに、スプール104が図に
おいて右方へ移動し、バイパス通路102への戻り流量
を多くしバランスをとるようになっている。
Since the pump discharge amount is small while the pump rotation speed is low, the spool 104 is located on the left side of the position shown in the figure and closes the bypass passage 102 so that the entire pump discharge flow amount is reduced. It is supplied to the power steering device 105 through the member 107. Next, when the rotational speed of the engine increases and the discharge flow rate from the pump also increases, the spool 104 moves to the right side as shown in the figure in accordance with the pressure difference between the front and rear of the throttle member 107, and the fluid discharged from the pump is discharged. A portion returns to the pump via bypass passage 102. When the engine further rotates at high speed (the traveling speed is high) and the discharge flow rate from the pump becomes high, the fluid pressure in the main passage 101 rises due to the resistance in the restriction passage 112, and this raised pressure increases the control spool 1.
08 pressure acting chamber 110 and control spool 108.
The control spool 108 moves to the left in the drawing due to the pressure difference between the downstream side supply chamber S1 'and the throttle hole 107a of the throttle member 107 to limit the supply flow rate to the power steering device 105, and Is moved to the right in the figure, and the flow rate returning to the bypass passage 102 is increased to achieve balance.

【0005】[0005]

【発明が解決しようとする課題】上述した従来装置で
は、圧力差により制御スプール108を移動させるべ
く、コネクタ106に制限通路112を設けている。そ
してこの制限通路112を介して余剰流がバイパス通路
102に戻るため、それだけ大きな圧力差を必要とし、
エンジンの負担増となる。
In the above-mentioned conventional device, the connector 106 is provided with the restriction passage 112 in order to move the control spool 108 due to the pressure difference. Then, since the excess flow returns to the bypass passage 102 via the restriction passage 112, a large pressure difference is required,
This will increase the load on the engine.

【0006】また従来装置では、絞り部材107前後の
圧力降下を一定に保つべくハウジング100に供給室S
1’と後圧室S2’との間をつなぐ連通孔109を形成
しているが、この連通孔109を形成するために3本の
直線孔と盲栓を設けなければならず、コンパクト化を図
れず作業も面倒でコストアップになっている。
Further, in the conventional apparatus, the supply chamber S is provided in the housing 100 in order to keep the pressure drop across the throttle member 107 constant.
Although a communication hole 109 connecting between 1'and the rear pressure chamber S2 'is formed, in order to form this communication hole 109, three straight holes and a blind plug must be provided, which leads to compactness. The work is troublesome and costly.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すべく本
願の第1発明に係る流量制御装置は、ハウジングにバル
ブ収納孔、ポンプからの圧力流体をパワーステアリング
装置に供給するメイン通路、ポンプからの圧力流体のう
ちの余剰流を前記バルブ収納孔に流入せしめるサブ通路
及びバルブ収納孔に流入した余剰流をポンプの吸入側に
還流するバイパス通路をそれぞれ設け、また前記バルブ
収納孔に前記メイン通路からパワーステアリング装置へ
の供給通路へ流れる流体量をポンプの吐出流量に応じて
制御する制御バルブ(スプール)と、ポンプの吐出流量
に応じて前記バイパス通路の開口面積を制御する戻り流
量調整スプールとを対向して収納し、これら制御バルブ
と戻り流量調整スプールとの間を後圧室とし、前記制御
バルブを挟んで後圧室と反対側を前記メイン通路が開口
する中継室とし、前記戻り流量調整スプールを挟んで後
圧室と反対側を前記サブ通路が開口する前圧室とした。
In order to solve the above-mentioned problems, a flow rate control device according to the first invention of the present application includes a valve housing hole in a housing, a main passage for supplying a pressure fluid from the pump to a power steering device, and a pump. A sub-passage for introducing an excess flow of the pressure fluid into the valve storage hole and a bypass passage for returning the excess flow flowing into the valve storage hole to the suction side of the pump, and the main passage for the valve storage hole. A control valve (spool) for controlling the amount of fluid flowing from the engine to the power steering device in accordance with the discharge flow rate of the pump, and a return flow rate adjusting spool for controlling the opening area of the bypass passage in accordance with the discharge flow rate of the pump. Are housed opposite to each other, and a rear pressure chamber is provided between the control valve and the return flow rate adjusting spool, and the control valve is placed between the rear pressure chamber and the rear pressure chamber. The chamber opposite to the relay chamber in which the main passage is opened, the return said opposite side of the rear pressure chamber across the flow regulating spool sub passage has a pressure chamber prior to opening.

【0008】また本願の第2発明に係る流量制御装置
は、ハウジングに形成したバルブ収納孔の一端開口にパ
ワーステアリング装置への供給通路を有するコネクタを
固着し、このコネクタ内に制御スプールを摺動自在に収
納するとともに制御スプールの摺動により開口面積が変
化する可変オリフィスをコネクタ側壁に形成し、更に制
御スプールとコネクタとの間にはハウジングに形成した
メイン通路に連通孔を介して連通する膨張室を形成し、
この膨張室と可変オリフィスよりも下流側の中継室との
圧力差により制御スプールの位置が変化するようにした
Further, in the flow rate control device according to the second invention of the present application, a connector having a supply passage to the power steering device is fixed to one end opening of the valve accommodating hole formed in the housing, and the control spool is slid in the connector. A variable orifice whose opening area is changed by sliding the control spool is formed on the side wall of the connector, and the expansion between the control spool and the connector communicates with the main passage formed in the housing through the communication hole. Forming a chamber,
The position of the control spool is changed by the pressure difference between the expansion chamber and the relay chamber downstream of the variable orifice.

【0009】[0009]

【作用】ポンプから吐出した圧力流体の一部はメイン通
路、制御バルブ及び供給通路を介してパワーステアリン
グ装置に供給され、一方、ポンプから吐出した残りの圧
力流体はサブ通路、前圧室及びバイパス通路を介してポ
ンプの吸入側に還流する。
A part of the pressure fluid discharged from the pump is supplied to the power steering device via the main passage, the control valve and the supply passage, while the remaining pressure fluid discharged from the pump is supplied to the sub passage, the front pressure chamber and the bypass. Return to the suction side of the pump through the passage.

【0010】[0010]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明に係る流量制御装置の
一部を断面とした全体図、図2は同流量制御装置の要部
拡大断面図、図3は同流量制御装置の作用を説明する要
部拡大断面図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is an overall view in which a part of the flow rate control device according to the present invention is shown in section, FIG. 2 is an enlarged cross-sectional view of a main part of the flow rate control device, and FIG. 3 is a diagram for explaining the operation of the flow rate control device. FIG.

【0011】ハウジング1はポンプ2を収納するハウジ
ングと流量制御装置を収納するハウジングを兼ね、この
ハウジング1には一端が開口するバルブ収納孔3を形成
し、このバルブ収納孔3にポンプ2からの圧力流体をパ
ワーステアリング装置4に供給するメイン通路5、ポン
プ2からの圧力流体のうちの残りの余剰流が流れるサブ
通路6及びバルブ収納孔3内に流入した余剰流をポンプ
の吸入側に還流するバイパス通路7がそれぞれ開口して
いる。
The housing 1 serves both as a housing for accommodating the pump 2 and a housing for accommodating the flow rate control device. A valve accommodating hole 3 having one end opened is formed in the housing 1, and the valve accommodating hole 3 is provided with a valve accommodating hole 3 from the pump 2. The main passage 5 that supplies the pressure fluid to the power steering device 4, the sub passage 6 in which the remaining excess flow of the pressure fluid from the pump 2 flows, and the excess flow that has flowed into the valve housing hole 3 are returned to the suction side of the pump. The bypass passages 7 are opened respectively.

【0012】また前記バルブ収納孔3の一端開口にはパ
ワーステアリング装置のアクチュエータ4への供給通路
8を有する筒状コネクタ9を螺着し、このコネクタ9内
にシート部材10を固着し、このシート部材10よりも
上流側のコネクタ9内に制御バルブとしての制御スプー
ル11を摺動自在に設け、シート部材10と制御スプー
ル11との間の中継室S1に制御スプール11を内方へ
付勢するスプリング12を配置している。
A tubular connector 9 having a supply passage 8 to the actuator 4 of the power steering device is screwed into one end of the valve accommodating hole 3, and a seat member 10 is fixed in the connector 9 to secure the seat. A control spool 11 as a control valve is slidably provided in the connector 9 on the upstream side of the member 10, and the control spool 11 is biased inward in a relay chamber S1 between the seat member 10 and the control spool 11. The spring 12 is arranged.

【0013】前記コネクタ9の側壁にはメインオリフィ
ス9a及び可変オリフィス9bが形成され、また前記制
御スプール11は隔壁部11aを境にして先端をコネク
タ9の先端孔に挿入し、中継室S1に臨む部分にコネク
タ9の内周面に摺接するとともに前記可変オリフィス9
bの開口面積を制御する大径部11bと、コネクタ側壁
に形成されたオリフィス9a,9bからの圧力流体を整
流すべくコネクタ側壁との間に隙間をもって配置される
小径部11cとを形成し、また制御スプール11とコネ
クタ9内底部との間には膨張室S2を形成し、この膨張
室S2とメイン通路5とをコネクタ9に形成した連通孔
9cにて連通している。
A main orifice 9a and a variable orifice 9b are formed on the side wall of the connector 9, and the tip end of the control spool 11 is inserted into the tip hole of the connector 9 with the partition wall 11a as a boundary to face the relay chamber S1. The variable orifice 9 is slidably in contact with the inner peripheral surface of the connector 9
a large diameter portion 11b for controlling the opening area of b, and a small diameter portion 11c arranged with a gap between the large diameter portion 11b and the connector side wall for rectifying the pressure fluid from the orifices 9a, 9b formed in the connector side wall, An expansion chamber S2 is formed between the control spool 11 and the inner bottom portion of the connector 9, and the expansion chamber S2 and the main passage 5 are communicated with each other through a communication hole 9c formed in the connector 9.

【0014】一方、前記ハウジングのバルブ収納孔3内
には戻り流量調整スプール13を摺動自在に配設してい
る。この戻り流量調整スプール13はポンプ2への圧力
流体の戻り量を制御するためのものであり、戻り流量調
整スプール13とバルブ収納孔3内底部との間を前記サ
ブ通路6が開口する前圧室S3とし、戻り流量調整スプ
ール13と制御スプール11を収納した前記コネクタ9
との間を後圧室S4としている。
On the other hand, a return flow rate adjusting spool 13 is slidably arranged in the valve housing hole 3 of the housing. The return flow rate adjusting spool 13 is for controlling the return amount of the pressurized fluid to the pump 2, and the front pressure at which the sub passage 6 is opened between the return flow rate adjusting spool 13 and the inner bottom of the valve housing hole 3. The connector 9 which is the chamber S3 and accommodates the return flow rate adjusting spool 13 and the control spool 11
A rear pressure chamber S4 is provided between the and.

【0015】そして、この後圧室S4と前記中継室S1
とは制御スプール11の隔壁部11aに形成したダンパ
オリフィス11dを介して連通し、中継室S1の内圧が
後圧室S4に作用する構成にしている。
The rear pressure chamber S4 and the relay chamber S1
Is communicated via a damper orifice 11d formed in the partition wall portion 11a of the control spool 11, and the internal pressure of the relay chamber S1 acts on the rear pressure chamber S4.

【0016】更に、戻り流量調整スプール13には軸方
向のバルブ収納孔14を形成し、このバルブ収納孔14
内にチェックバルブ15を設け、後圧室S4内の圧力が
上昇した場合にチェックバルブ15が開き、後圧室S4
内の圧力流体を前記バイパス通路7に戻すようにしてい
る。
Further, an axial valve accommodating hole 14 is formed in the return flow rate adjusting spool 13, and this valve accommodating hole 14 is formed.
A check valve 15 is provided inside, and when the pressure in the rear pressure chamber S4 rises, the check valve 15 opens and
The pressure fluid inside is returned to the bypass passage 7.

【0017】以上において、エンジンの回転数が低く、
ポンプ2の吐出流量が少ない時、換言すれば走行速度が
遅い時には、図2に示すように、ポンプ2から吐出した
圧力流体はメイン通路5、メインオリフィス9a、可変
オリフィス9b、中継室S1及び供給通路8を介してパ
ワーステアリング装置4に流入する。
In the above, the engine speed is low,
When the discharge flow rate of the pump 2 is small, in other words, when the traveling speed is slow, as shown in FIG. 2, the pressure fluid discharged from the pump 2 is supplied to the main passage 5, the main orifice 9a, the variable orifice 9b, the relay chamber S1 and the supply chamber. It flows into the power steering device 4 via the passage 8.

【0018】上記のエンジンの回転数が低い時には、流
量調整スプール13はスプリング16の弾発力で図中右
側に押され、サブ通路6とバイパス通路7との間の連通
は遮断され、ポンプからの吐出流量の全量が前記通路を
通ってパワーステアリング装置4に供給され、小さな力
でハンドル操作を行なうことができる。
When the engine speed is low, the flow rate adjusting spool 13 is pushed to the right side in the figure by the elastic force of the spring 16, the communication between the sub passage 6 and the bypass passage 7 is cut off, and the pump is disconnected from the pump. The entire discharge flow rate of is supplied to the power steering device 4 through the passage, and the steering wheel can be operated with a small force.

【0019】次いで、エンジンの回転速度が上昇しポン
プからの吐出流量が増大すると、前圧室S3に作用する
圧力が高くなり、その結果流量調整スプール13がスプ
リング16に抗して図中左側に移動し、サブ通路6とバ
イパス通路7との間が連通し、ポンプからの吐出流量の
一部がバイパス通路7を通ってポンプの吸入側に環流す
る。尚、この時にはパワーステアリング装置4への供給
流量も増加しているので、ハンドル操作力は更に軽くな
る。
Next, when the engine speed increases and the discharge flow rate from the pump increases, the pressure acting on the front pressure chamber S3 increases, and as a result, the flow rate adjusting spool 13 resists the spring 16 and moves to the left side in the figure. The sub passage 6 and the bypass passage 7 are moved to communicate with each other, and a part of the discharge flow rate from the pump is circulated to the suction side of the pump through the bypass passage 7. At this time, since the flow rate supplied to the power steering device 4 is also increasing, the steering wheel operating force is further reduced.

【0020】更にエンジンの回転数が高くなりポンプ2
の吐出流量が高くなると、換言すれば走行速度が速くな
ると、中継室S1と膨張室S2との圧力差が大きくな
り、図3に示すようにスプリング12の弾発力に抗して
制御スプール11が図中左側に移動し、可変オリフィス
9bの開口面積を小さくし、パワーステアリング装置4
に流入する圧力流体の量が少なくする。その結果、エン
ジンの回転数が高い時つまり高速走行の際にはハンドル
操作に適度の抵抗が生じるようになる。
As the engine speed further increases, the pump 2
When the discharge flow rate of the control spool 11 increases, in other words, when the traveling speed increases, the pressure difference between the relay chamber S1 and the expansion chamber S2 increases, and as shown in FIG. Moves to the left side in the figure, the opening area of the variable orifice 9b is reduced, and the power steering device 4
Reduce the amount of pressure fluid flowing into. As a result, when the engine speed is high, that is, when the vehicle is traveling at high speed, an appropriate resistance is generated in the steering wheel operation.

【0021】[0021]

【発明の効果】以上に説明したように本発明に係る流量
制御装置にあっては、従来装置のようにポンプに戻る流
体が制限通路を介してバイパス通路に入らず、直接バイ
パス通路に入るのでポンプ圧とパワーステアリング装置
への供給通路との圧力差が小さくなり、トルクアップを
防止でき、エンジン出力を効率良く配分することができ
る。
As described above, in the flow rate control device according to the present invention, the fluid returning to the pump does not enter the bypass passage through the restriction passage but directly enters the bypass passage unlike the conventional device. The pressure difference between the pump pressure and the supply passage to the power steering device is reduced, torque increase can be prevented, and the engine output can be distributed efficiently.

【0022】また流量制御装置の構造が、余剰流をポン
プの吸入側に還流するスプールの後圧室を制御バルブ
(制御スプール)寄りの部分に設けたものになっている
ので、スプールを移動させるための長い通路をハウジン
グに穿設せずに、例えば制御ルバルブに後圧室と供給通
路を連通するオリフィスを形成するだけで足りる。
Further, since the structure of the flow rate control device is such that the rear pressure chamber of the spool that recirculates the excess flow to the suction side of the pump is provided in the portion near the control valve (control spool), the spool is moved. It suffices to form an orifice that connects the rear pressure chamber and the supply passage, for example, in the control valve without forming a long passage for the purpose in the housing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る流量制御装置の一部を断面とした
全体図
FIG. 1 is an overall view of a cross section of a part of a flow rate control device according to the present invention.

【図2】同流量制御装置の要部拡大断面図FIG. 2 is an enlarged cross-sectional view of the main part of the same flow control device.

【図3】同流量制御装置の作用を説明する要部拡大断面
FIG. 3 is an enlarged sectional view of an essential part for explaining the operation of the flow rate control device.

【図4】従来の流量制御装置の要部拡大断面図FIG. 4 is an enlarged sectional view of a main part of a conventional flow control device.

【符号の説明】[Explanation of symbols]

1…ハウジング、2…ポンプ、3…バルブ収納孔、5…
メイン通路、6…サブ通路、7…バイパス通路、8…供
給通路、9…コネクタ、10…シート部材、11…コン
トロールバルブ、13…スプール、S1…中継室、S2
…環状室、S2…膨張室、S3…前圧室、S4…後圧
室。
1 ... Housing, 2 ... Pump, 3 ... Valve storage hole, 5 ...
Main passage, 6 ... Sub passage, 7 ... Bypass passage, 8 ... Supply passage, 9 ... Connector, 10 ... Seat member, 11 ... Control valve, 13 ... Spool, S1 ... Relay chamber, S2
... annular chamber, S2 ... expansion chamber, S3 ... front pressure chamber, S4 ... rear pressure chamber.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 パワーステアリング装置に供給される流
体量をポンプの吐出流量に応じて制限する流量制御装置
において、この流量制御装置のハウジングにはバルブ収
納孔、ポンプからの圧力流体をパワーステアリング装置
に供給するメイン通路、ポンプからの圧力流体のうちの
余剰流を前記バルブ収納孔に流入せしめるサブ通路及び
バルブ収納孔に流入した余剰流をポンプの吸入側に還流
するバイパス通路がそれぞれ設けられ、また前記バルブ
収納孔には前記メイン通路からパワーステアリング装置
への供給通路へ流れる流体量をポンプの吐出流量に応じ
て制御する制御バルブと、ポンプの吐出流量に応じて前
記バイパス通路の開口面積を制御する戻り流量調整スプ
ールとを対向して収納し、これら制御バルブと戻り流量
調整スプールとの間を後圧室とし、前記制御バルブを挟
んで後圧室と反対側を前記メイン通路が開口する中継室
とし、前記戻り流量調整スプールを挟んで後圧室と反対
側を前記サブ通路が開口する前圧室としたことを特徴と
する流量制御装置。
1. A flow control device for limiting the amount of fluid supplied to a power steering device according to a discharge flow rate of a pump, wherein a housing of the flow control device has a valve accommodating hole and pressure fluid from the pump is supplied to the power steering device. A sub-passage for supplying an excess flow of the pressure fluid from the pump to the valve storage hole and a bypass passage for returning the excess flow flowing into the valve storage hole to the suction side of the pump. A control valve for controlling the amount of fluid flowing from the main passage to the supply passage to the power steering device according to the discharge flow rate of the pump and an opening area of the bypass passage according to the discharge flow rate of the pump are provided in the valve storage hole. The return flow rate adjusting spool to be controlled is housed facing each other, and the space between these control valve and the return flow rate adjusting spool is stored. Is a rear pressure chamber, a side opposite to the rear pressure chamber across the control valve is a relay chamber in which the main passage is opened, and a side opposite to the rear pressure chamber across the return flow rate adjusting spool is opened in the sub passage. A flow rate control device characterized in that it is a front pressure chamber.
【請求項2】前記制御バルブはスプールバルブとし、こ
のスプールバルブには前記後圧室と中継室とを連通する
オリフィスが形成されていることを特徴とする請求項1
に記載の流量制御装置。
2. The control valve is a spool valve, and the spool valve is formed with an orifice that connects the rear pressure chamber and the relay chamber.
The flow control device according to.
【請求項3】 パワーステアリング装置に供給される流
体量をポンプの吐出流量に応じて制限する流量制御装置
において、この流量制御装置のハウジングに形成したバ
ルブ収納孔の一端開口にパワーステアリング装置への供
給通路を有するコネクタを固着し、このコネクタ内に制
御スプールを摺動自在に収納するとともに制御スプール
の摺動により開口面積が変化する可変オリフィスをコネ
クタ側壁に形成し、更に制御スプールとコネクタとの間
にはハウジングに形成したメイン通路に連通孔を介して
連通する膨張室を形成し、この膨張室と可変オリフィス
よりも下流側の中継室との圧力差により制御スプールの
位置が変化するようにしたことを特徴とする流量制御装
置。
3. A flow control device for limiting the amount of fluid supplied to a power steering device according to a discharge flow rate of a pump, wherein a valve housing hole formed in a housing of the flow control device is provided at one end opening of the power steering device. A connector having a supply passage is fixed, a control spool is slidably accommodated in the connector, and a variable orifice whose opening area is changed by sliding of the control spool is formed on the connector side wall. An expansion chamber that communicates with a main passage formed in the housing through a communication hole is formed between the expansion chamber and the relay chamber downstream of the variable orifice so that the position of the control spool changes. A flow control device characterized by the above.
【請求項4】 前記制御スプールの側壁にはコネクタ内
周面に摺接するとともに前記可変オリフィスの開口面積
を制御する大径部と、コネクタ側壁に形成されたオリフ
ィスからの圧力流体を整流すべくコネクタ側壁との間に
隙間をもって配置される小径部とを備えていることを特
徴とする請求項3に記載の流量制御装置。
4. A large-diameter portion, which slidably contacts the inner peripheral surface of the connector on the side wall of the control spool and controls the opening area of the variable orifice, and a connector for rectifying the pressure fluid from the orifice formed in the connector side wall. The flow control device according to claim 3, further comprising a small-diameter portion arranged with a gap between the side wall and the side wall.
JP3206358A 1991-07-23 1991-07-23 Flow rate controller Withdrawn JPH0524549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3206358A JPH0524549A (en) 1991-07-23 1991-07-23 Flow rate controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3206358A JPH0524549A (en) 1991-07-23 1991-07-23 Flow rate controller

Publications (1)

Publication Number Publication Date
JPH0524549A true JPH0524549A (en) 1993-02-02

Family

ID=16522000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3206358A Withdrawn JPH0524549A (en) 1991-07-23 1991-07-23 Flow rate controller

Country Status (1)

Country Link
JP (1) JPH0524549A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005545A1 (en) * 1996-08-02 1998-02-12 Kayaba Kogyo Co., Ltd. Flow rate regulating valve of hydraulic pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005545A1 (en) * 1996-08-02 1998-02-12 Kayaba Kogyo Co., Ltd. Flow rate regulating valve of hydraulic pump
US6058962A (en) * 1996-08-02 2000-05-09 Kayaba Kogyo Co., Ltd. Flow rate regulating valve of hydraulic pump

Similar Documents

Publication Publication Date Title
US5577573A (en) Hydraulic power steering apparatus
US5474145A (en) Hydraulic power steering apparatus
JPH05246335A (en) Flow control valve device
JPH0127308B2 (en)
JPH0524549A (en) Flow rate controller
JPS6337749B2 (en)
JP3237457B2 (en) Flow control device in power steering device
JP2569367Y2 (en) Flow control valve
JP2600541Y2 (en) Flow control valve
JP2591373Y2 (en) Flow control valve device
JPS582100B2 (en) Steering force control device for power steering device
JP2556168Y2 (en) Flow control valve for power steering device
JP2000025628A (en) Flow rate control device for working fluid for power steering
JPS6345342B2 (en)
JPH0584567U (en) Flow control valve device
JPH1067332A (en) Power steering device
JP2002070749A (en) Control unit of pump discharge pressure
JP2600282Y2 (en) Flow control device for power steering
JPH05246334A (en) Flow control valve device
JPH08164865A (en) Motive power steering device
EP0678672B1 (en) Flow control mechanism for power steering
JPH0321332Y2 (en)
JP2525715Y2 (en) Flow control valve for power steering device
JP2600568Y2 (en) Flow control device for power steering device
JPS6146230Y2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008