JPS6337749B2 - - Google Patents

Info

Publication number
JPS6337749B2
JPS6337749B2 JP55076949A JP7694980A JPS6337749B2 JP S6337749 B2 JPS6337749 B2 JP S6337749B2 JP 55076949 A JP55076949 A JP 55076949A JP 7694980 A JP7694980 A JP 7694980A JP S6337749 B2 JPS6337749 B2 JP S6337749B2
Authority
JP
Japan
Prior art keywords
passage
flow rate
valve
throttle
union
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55076949A
Other languages
Japanese (ja)
Other versions
JPS574469A (en
Inventor
Susumu Honaga
Akihiko Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP7694980A priority Critical patent/JPS574469A/en
Priority to US06/225,263 priority patent/US4361166A/en
Publication of JPS574469A publication Critical patent/JPS574469A/en
Publication of JPS6337749B2 publication Critical patent/JPS6337749B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)
  • Power Steering Mechanism (AREA)

Description

【発明の詳細な説明】 本発明はポンプより吐出された圧力流体を絞り
通路を介して動力舵取装置に送出し、余剰流をバ
イパス通路より吸入側に還流する動力舵取用作動
流体の流量制御装置、とりわけポンプ回転数の上
昇につれて動力舵取装置に送出する流量を降下さ
せる流量制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for controlling the flow rate of working fluid for power steering by sending pressure fluid discharged from a pump to a power steering device through a throttle passage, and returning surplus flow to the suction side through a bypass passage. The present invention relates to a control device, particularly a flow rate control device that reduces the flow rate sent to a power steering device as the pump rotation speed increases.

本発明の目的は、絞り通路を流量調整用スプー
ル弁の変位に関係なくポンプ回転数の上昇による
ポンプ吐出流量の増加に基いて可変制御し、以つ
て動力舵取装置の圧力作用時に流量が復帰するの
を防止することである。
An object of the present invention is to variably control the throttle passage based on an increase in the pump discharge flow rate due to an increase in the pump rotation speed, regardless of the displacement of the flow rate adjustment spool valve, so that the flow rate is restored when the pressure of the power steering device is applied. The goal is to prevent people from doing so.

本発明の他の目的は、上記の流量可変制御機能
をユニオン内に組込み、以つて既存の動力舵取シ
ステムに容易に適用できるようにするとともに、
構成の簡素化を図ることである。
Another object of the present invention is to incorporate the above variable flow rate control function into the union so that it can be easily applied to an existing power steering system, and
The goal is to simplify the configuration.

自動車の動力舵取装置に用いられるポンプ装置
には流量調整弁が備えられ、この流量調整弁は自
動車の走行速度が上昇し、従つてポンプの回転速
度が上昇するにつれてバイパス通路を大きく開
き、それによつてポンプより吐出された流量の大
部分を吸入側にバイパスし、動力舵取装置への制
御流を所定量に保つようにしているが、自動車の
高速走行時においては、走行速度の上昇につれて
運転者に感覚される操舵反力が増大されることが
要求され、ポンプ回転速度の上昇により動力舵取
装置への制御流量を減少させることが行われてお
り、これはまた高速走行時における省馬力化に寄
与している。
A pump device used in a power steering system of an automobile is equipped with a flow regulating valve, and as the traveling speed of the automobile increases and the rotational speed of the pump increases, this flow regulating valve widens the bypass passage. Therefore, most of the flow discharged from the pump is bypassed to the suction side to maintain the control flow to the power steering device at a predetermined amount. It is required to increase the steering reaction force felt by the driver, and the control flow to the power steering system is reduced by increasing the pump rotation speed, which also reduces the amount of control flow during high-speed driving. It contributes to increased horsepower.

しかしながら、従来のこの種の流量制御装置の
多くは、流量調整弁の変位に基いて絞り通路を可
変制御するようになつているため、動力舵取装置
の無負荷時(非作動時)においては予定された流
量降下特性が得られるが、動力舵取装置の作動に
より圧力が作用されると、この圧力作用により流
量調整弁がバイパス流を制限するように働き、こ
れによつて降下された流量が復帰してしまう好ま
しくない結果を招く。
However, most of the conventional flow control devices of this type are designed to variably control the throttle passage based on the displacement of the flow rate adjustment valve, so when the power steering device is not loaded (non-operating), The planned flow rate drop characteristic is obtained, but when pressure is applied due to the operation of the power steering device, the flow rate regulating valve acts to limit the bypass flow due to this pressure effect, thereby reducing the decreased flow rate. This leads to an undesirable result in which the

よつて本発明は、動力舵取装置に圧力流体を送
出する絞り通路を設け、この絞り通路を流量調整
用スプール弁の変位に関係なくポンプ回転数の上
昇による吐出流量の増加に基いて可変制御せしめ
るようになし、ポンプ回転数の上昇につれて降下
した流量が動力舵取装置の負荷圧力の上昇によつ
て復帰するのを防止し得る動力舵取用作動流体の
流量制御装置を提供せんとするものである。
Therefore, the present invention provides a power steering device with a throttle passage for delivering pressurized fluid, and variably controls this throttle passage based on an increase in the discharge flow rate due to an increase in the pump rotation speed, regardless of the displacement of the flow rate adjustment spool valve. An object of the present invention is to provide a flow rate control device for a working fluid for power steering, which can prevent the flow rate that has decreased as the pump rotation speed increases from returning due to an increase in the load pressure of the power steering device. It is.

以下本発明の実施例を図面に基いて説明する。
第1図において、10はポンプハウジングを示
し、このポンプハウジング10には弁収納穴11
が貫通され、この弁収納穴11の一端にユニオン
12が螺着され、他端に止め栓13が嵌着されて
いる。ユニオン12は略円筒状をなし、その一端
は弁収納穴11内に突入され、その先端外周は弁
収納穴11に遊嵌されており、他端には動力舵取
装置のノーマルオープン形サーボ弁装置に接続さ
れる圧力流体送出口23が開口されている。弁収
納穴11には供給通路14とバイパス通路15が
軸線方向に離間して開口され、この供給通路14
はユニオン12の一端外周と弁収納穴11との間
に形成された環状の制限通路16を通じて弁収納
穴11内に常時連通されている。かかる制限通路
16は供給通路14に供給されたポンプ吐出流量
が多くなると、その流路抵抗により上流側と下流
側、すなわち供給通路14と弁収納穴11との間
に圧力差を生起するようになつている。なお、図
示していないが供給通路14はポンプの吐出室に
連通され、バイパス通路15はポンプの吸入室に
連通される。
Embodiments of the present invention will be described below based on the drawings.
In FIG. 1, 10 indicates a pump housing, and this pump housing 10 has a valve housing hole 11.
A union 12 is screwed into one end of the valve storage hole 11, and a stopper 13 is fitted into the other end. The union 12 has a substantially cylindrical shape, one end of which is inserted into the valve housing hole 11, the outer periphery of its tip is loosely fitted into the valve housing hole 11, and the other end is fitted with a normally open type servo valve of the power steering device. A pressure fluid outlet 23 connected to the device is open. A supply passage 14 and a bypass passage 15 are opened in the valve housing hole 11 and are spaced apart from each other in the axial direction.
is constantly communicated with the inside of the valve housing hole 11 through an annular restriction passage 16 formed between the outer periphery of one end of the union 12 and the valve housing hole 11. The restriction passage 16 is configured such that when the pump discharge flow rate supplied to the supply passage 14 increases, a pressure difference is generated between the upstream side and the downstream side, that is, between the supply passage 14 and the valve housing hole 11 due to the flow passage resistance. It's summery. Although not shown, the supply passage 14 communicates with the discharge chamber of the pump, and the bypass passage 15 communicates with the suction chamber of the pump.

前記弁収納穴11には供給通路14とバイパス
通路15との連通路を閉止しかつその連通路の開
度を調整可能にするべく流量調整用スプール弁1
7が摺動可能に嵌装され、このスプール弁17の
両側に第1弁室18と第2弁室19が形成されて
いる。第2弁室19にはスプール弁17を第1弁
室18に向けて押圧するスプリング20が設けら
れ、このスプリング20の発力によつて通常スプ
ール弁17を前記ユニオン12に衝接する位置に
保持し、第1弁室18に開口する供給通路14と
バイパス通路15との連通を遮断している。
A flow rate adjustment spool valve 1 is installed in the valve housing hole 11 in order to close the communication path between the supply passage 14 and the bypass passage 15 and to adjust the degree of opening of the communication passage.
A first valve chamber 18 and a second valve chamber 19 are formed on both sides of the spool valve 17. The second valve chamber 19 is provided with a spring 20 that presses the spool valve 17 toward the first valve chamber 18, and the force of this spring 20 normally holds the spool valve 17 in a position where it collides with the union 12. However, communication between the supply passage 14 that opens into the first valve chamber 18 and the bypass passage 15 is blocked.

前記ユニオン12には送出口23に近接して絞
り部材24が嵌着され、この絞り部材24の中心
部に前記第1弁室18と送出口23とを後述する
流体通路を介して連通する第1の絞り通路25が
形成されている。また絞り部材24には第1の絞
り通路25のまわりに前記流体通路を介して第1
弁室18と送出口23とを連通する複数の小孔群
からなる第2の絞り通路26が形成されている。
これにより第1弁室18と送出口23は並列配置
された2つの絞り通路25,26を介して互いに
連通され、第1の絞り通路25は後述する制御ス
プールにより適宜閉止制御される。絞り部材24
と送出口23との間には制御ノズル27が開口さ
れ、この制御ノズル27はユニオン12およびポ
ンプハウジング10に穿設した連通孔28,29
を介して前記第2弁室19に連通されている。こ
れにより絞り通路25,26を通過した流体が第
2弁室19に導かれるので、スプール弁17の両
端面には絞り通路25,26通過前の圧力と通過
後の圧力が作用するため、絞り通路25,26に
おける圧力降下に応じてスプール弁17が軸方向
に移動され、絞り通路25,26における圧力降
下を一定値に保つべくバイパス通路15の開度を
調整する。
A throttle member 24 is fitted into the union 12 in the vicinity of the outlet 23, and a first valve chamber 24 communicates with the first valve chamber 18 and the outlet 23 via a fluid passage described later. One throttle passage 25 is formed. Further, the throttle member 24 is provided with a first fluid passage around the first throttle passage 25 via the fluid passage.
A second throttle passage 26 is formed which is made up of a plurality of small hole groups that communicate the valve chamber 18 and the outlet port 23 .
As a result, the first valve chamber 18 and the outlet 23 are communicated with each other via two throttle passages 25 and 26 arranged in parallel, and the first throttle passage 25 is appropriately controlled to be closed by a control spool to be described later. Aperture member 24
A control nozzle 27 is opened between the pump housing 10 and the union 12 and the pump housing 10.
It communicates with the second valve chamber 19 via. As a result, the fluid that has passed through the throttle passages 25 and 26 is guided to the second valve chamber 19, so that the pressure before and after passing through the throttle passages 25 and 26 act on both end faces of the spool valve 17, so that The spool valve 17 is moved in the axial direction according to the pressure drop in the passages 25 and 26, and the opening degree of the bypass passage 15 is adjusted to maintain the pressure drop in the throttle passages 25 and 26 at a constant value.

前記ユニオン12には制御スプール30が摺動
可能に嵌挿され、この制御スプール0に前記第1
弁室18と絞り通路25,26とを連通する流体
通路31が貫通されている。制御スプール30の
一端には第1の絞り通路25を開閉制御する制御
軸部32が突設されている。制御スプール30と
前記絞り部材24との間にはスプリング33が弾
発した状態で介挿され、このスプリング33の発
力により制御スプール30を通常ユニオン12に
形成された段部34に係止する位置に保持し、こ
れにより制御スプール30の制御軸部32は絞り
部材24より離間されて第1の絞り通路25を開
口している。またユニオン12には前記流体通路
31と隔絶された制御スプール30とユニオン段
部34との接合面に開口する圧力導入孔36が穿
設され、この圧力導入孔36は前記供給通路14
に連通されている。なお圧力導入孔36は、供給
圧力の変動によつて制御スプール30が振動しな
いように、その孔径を絞つてダンピング効果をも
たせている。
A control spool 30 is slidably inserted into the union 12, and the first control spool 30 is slidably inserted into the union 12.
A fluid passage 31 that communicates the valve chamber 18 with the throttle passages 25 and 26 is passed through. A control shaft portion 32 that controls the opening and closing of the first throttle passage 25 is protruded from one end of the control spool 30 . A spring 33 is inserted between the control spool 30 and the aperture member 24 in a resilient state, and the force of the spring 33 locks the control spool 30 to a step 34 formed on the union 12. The control shaft portion 32 of the control spool 30 is thus spaced apart from the throttle member 24 and opens the first throttle passage 25 . Further, the union 12 is provided with a pressure introduction hole 36 that opens at the joint surface between the control spool 30 and the union step 34, which are isolated from the fluid passage 31.
is communicated with. The diameter of the pressure introduction hole 36 is narrowed to provide a damping effect so that the control spool 30 does not vibrate due to fluctuations in the supply pressure.

次に上記したように構成された本発明装置の作
動について説明する。
Next, the operation of the apparatus of the present invention constructed as described above will be explained.

自動車エンジンによつてポンプロータが回転駆
動されると、吸入室内の作動流体が吸入ポートよ
りポンプ室に吸入され、圧力流体が吐出ポートを
経て吐出室に吐出される。吐出室に吐出された圧
力流体は供給通路14を介してユニオン12と弁
収納穴11との間の制限通路16より弁収納穴1
1の第1弁室18に供給され、この第1弁室18
より流体通路31、第1および第2の絞り通路2
5,26を経て送出口23より動力舵取装置に送
出される。
When a pump rotor is rotationally driven by an automobile engine, working fluid in a suction chamber is sucked into the pump chamber through a suction port, and pressurized fluid is discharged into a discharge chamber through a discharge port. The pressure fluid discharged into the discharge chamber is supplied to the valve housing hole 1 via the supply passage 14 and from the restriction passage 16 between the union 12 and the valve housing hole 11.
1, and this first valve chamber 18
The fluid passage 31, the first and second throttle passages 2
5 and 26, and is sent out from the outlet 23 to the power steering device.

ポンプ回転速度が低いうちはポンプ吐出流量も
少ないのでスプール弁17はバイパス通路15を
閉止し、ポンプ吐出流量の全量が両絞り通路2
5,26を経て動力舵取装置に送出されるが、ポ
ンプ回転速度が上昇するにつれて吐出流量も増大
し、絞り通路25,26前後の圧力差を一定にす
るようにスプール弁17が摺動されてバイパス通
路15を開き、余剰流をバイパス通路15にバイ
パスする。これにより動力舵取装置に送出される
圧力流体は2つの絞り通路25,26により決定
される所定量Q1に維持される。
When the pump rotation speed is low, the pump discharge flow rate is also small, so the spool valve 17 closes the bypass passage 15, and the entire pump discharge flow rate is transferred to both throttle passages 2.
5 and 26 to the power steering device, but as the pump rotational speed increases, the discharge flow rate also increases, and the spool valve 17 is slid to keep the pressure difference before and after the throttle passages 25 and 26 constant. to open the bypass passage 15 and bypass the excess flow to the bypass passage 15. Thereby, the pressure fluid sent to the power steering device is maintained at a predetermined amount Q1 determined by the two throttle passages 25 and 26.

自動車の高速走行への移行に伴つてポンプ回転
数がさらに上昇し、供給通路14に供給されるポ
ンプ吐出流量が増加すると、制限通路16におけ
る流路抵抗により供給通路14中の流体圧力が上
昇し、供給通路14と第1弁室18との間で圧力
差が生起される。かかる供給通路14の圧力は圧
力導入孔36を介して制御スプール30とユニオ
ン12との接合面間に導入され、制御スプール3
0をスプリング33に対抗して押圧する軸方向推
力として作用するため、前述した如くポンプ吐出
流量の増加に伴つて供給通路14中の圧力が上昇
して前記軸方向推力がスプリング33の発力に打
勝つまで高められると、制御スプール30がスプ
リング33に抗して変位され始める。従つて制御
スプール30の制御軸部32により第1の絞り通
路25が漸次制限され、遂には第3図に示すよう
に閉止されるようになるので、第1弁室18と送
出口23とは第2の絞り通路26のみを介して連
通されるようになり、動力舵取装置に送出される
圧力流体は第4図に示すように第2の絞り通路2
6によつて決定される所定量Q2まで減少される。
これにより高速走行時においては、動力舵取装置
への供給流量の減少によつて得られる操舵反力を
運転者に享受でき、高速安定性が高められるとと
もに、高速走行時における省馬力化が達成され
る。
When the pump rotation speed further increases as the automobile shifts to high-speed running, and the pump discharge flow rate supplied to the supply passage 14 increases, the fluid pressure in the supply passage 14 increases due to the passage resistance in the restriction passage 16. , a pressure difference is created between the supply passage 14 and the first valve chamber 18. The pressure of the supply passage 14 is introduced between the joint surfaces of the control spool 30 and the union 12 through the pressure introduction hole 36, and the pressure of the control spool 3
0 acts as an axial thrust that presses against the spring 33, so as described above, as the pump discharge flow rate increases, the pressure in the supply passage 14 increases, and the axial thrust becomes the force generated by the spring 33. Once raised to the point of overcoming, control spool 30 begins to be displaced against spring 33. Therefore, the first throttle passage 25 is gradually restricted by the control shaft portion 32 of the control spool 30 and is finally closed as shown in FIG. Communication is now made only through the second throttle passage 26, and the pressure fluid sent to the power steering device is communicated only through the second throttle passage 26, as shown in FIG.
Q2 is reduced to a predetermined amount Q2 determined by 6.
As a result, when driving at high speeds, the driver can enjoy the steering reaction force obtained by reducing the flow rate supplied to the power steering device, improving high-speed stability and achieving horsepower savings when driving at high speeds. be done.

ところで高速走行時に動力舵取装置が作動され
ると、操舵抵抗に応じた圧力が作用し、この圧力
によつてスプール弁17がバイパス通路15を閉
じる方向に変位されるため、スプール弁の変位に
基いて流量を降下させる従来装置においては、降
下された流量が動力舵取装置の負荷圧力の上昇に
伴つて復帰してしまうが、本発明においては、2
つの絞り通路25,26の一方をスプール弁17
の変位に関係なく閉止制御するようにした、すな
わちポンプ吐出流量の増加による制限通路16の
流路抵抗によつて得られる圧力に基いて閉止制御
するものであるため、動力舵取装置の負荷圧力の
上昇に拘らず、流量降下特性を不変的に保持でき
る。
By the way, when the power steering device is operated during high-speed driving, pressure corresponding to the steering resistance acts, and this pressure displaces the spool valve 17 in the direction of closing the bypass passage 15. In the conventional device that lowers the flow rate based on the base, the lowered flow rate returns as the load pressure of the power steering device increases, but in the present invention,
One of the two throttle passages 25 and 26 is connected to the spool valve 17.
Since the closing control is performed regardless of the displacement of the pump, that is, the closing control is performed based on the pressure obtained by the flow path resistance of the restriction passage 16 due to an increase in the pump discharge flow rate, so that the load pressure of the power steering device Regardless of the increase in the flow rate, the flow rate drop characteristic can be maintained unchanged.

以下述べたように本発明は、ポンプより吐出さ
れた圧力流体を供給通路より制限通路および絞り
通路を介して動力舵取装置に送出するようにな
し、ポンプ回転数の上昇により供給通路を流れる
流量が増加すると、制限通路の流路抵抗によつて
生ずる供給通路中の圧力上昇に応動する制御スプ
ールにより絞り通路を可変制御して動力舵取装置
に送出する流量を降下せしめるようにしたので、
動力舵取装置の負荷圧力に拘らず流量降下特性を
一定不変に保持でき、高速安定性が高められるよ
うになる。
As described below, the present invention is configured such that the pressure fluid discharged from the pump is sent from the supply passage to the power steering device via the restriction passage and the throttle passage, and the flow rate flowing through the supply passage as the pump rotational speed increases. When the flow rate increases, the control spool responds to the pressure increase in the supply passage caused by the flow resistance of the restriction passage, and the throttle passage is variably controlled to reduce the flow rate sent to the power steering device.
The flow rate drop characteristic can be maintained constant regardless of the load pressure of the power steering device, and high-speed stability can be improved.

しかも本発明によれば、弁収納穴の一端にユニ
オンを固着することによつて制限通路を形成で
き、またユニオンに動力舵取装置に送出する流量
を可変制御する機構を備えた構成であるので、構
成を簡素化できるとともに、ユニオンの組み替え
のみによつて標準のポンプから回転数感応形のポ
ンプに容易に変更できる等の効果も併せて奏せら
れる。
Moreover, according to the present invention, a restriction passage can be formed by fixing a union to one end of the valve storage hole, and the union is equipped with a mechanism for variably controlling the flow rate sent to the power steering device. In addition to simplifying the configuration, the present invention also has the advantage that it is possible to easily change from a standard pump to a rotation speed sensitive pump by simply changing the union.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は
動力舵取用作動流体の流量制御装置の断面図、第
2図は第1図の−線矢視断面図、第3図は第
1図の作動状態図、第4図はポンプ回転数に対す
る流量特性を示す線図である。 10……ポンプハウジング、11……弁収納
穴、12……ユニオン、14……供給通路、15
……バイパス通路、16……制限通路、17……
流量調整用スプール弁、23……送出口、24…
…絞り部材、25……第1の絞り通路、26……
第2の絞り通路、30……制御スプール、31…
…流体通路、36……圧力導入孔。
The drawings show embodiments of the present invention, in which FIG. 1 is a cross-sectional view of a flow rate control device for a working fluid for power steering, FIG. 2 is a cross-sectional view taken along the - line in FIG. FIG. 1 is an operating state diagram, and FIG. 4 is a diagram showing flow characteristics with respect to pump rotation speed. 10... Pump housing, 11... Valve housing hole, 12... Union, 14... Supply passage, 15
...Bypass passage, 16...Restricted passage, 17...
Spool valve for flow rate adjustment, 23... Outlet port, 24...
... Throttle member, 25... First throttle passage, 26...
Second throttle passage, 30... Control spool, 31...
...Fluid passage, 36...Pressure introduction hole.

Claims (1)

【特許請求の範囲】 1 ポンプより吐出された圧力流体を供給通路よ
り絞り通路を介して重力舵取装置に送出し、余剰
流をバイパス通路の開度を調整する流量調整用ス
プール弁によりポンプの吸入側に還流する動力舵
取用作動流体の流量制御装置にして、ハウジング
に前記スプール弁を摺動可能に嵌装する弁収納穴
を設け、この弁収納穴の一端にユニオンを固着
し、このユニオンの一端外周と前記ハウジング側
との間に前記供給通路と弁収納穴とを制限的に連
通する制限通路を設け、またユニオン内に前記絞
り通路を設け、ポンプ回転数の上昇による流量の
増加によつて生ずる供給通路と弁収納穴との差圧
に応動して前記絞り通路を可変制御する制御スプ
ールを前記ユニオンに摺動可能に嵌装したことを
特徴とする動力舵取用作動流体の流量制御装置。 2 前記絞り通路は並列配置された2つの絞り通
路からなり、前記制御スプールによつて2つの絞
り通路の一方を閉止制御するようにしてなる特許
請求の範囲第1項に記載の動力舵取用作動流体の
流量制御装置。
[Claims] 1 Pressurized fluid discharged from the pump is sent from the supply passage to the gravity steering device via the throttle passage, and the surplus flow is controlled by the pump by a flow rate adjustment spool valve that adjusts the opening degree of the bypass passage. A flow rate control device for power steering working fluid flowing back to the suction side is provided with a valve storage hole in which the spool valve is slidably fitted in the housing, a union is fixed to one end of the valve storage hole, and A restriction passage for restricting communication between the supply passage and the valve storage hole is provided between the outer periphery of one end of the union and the housing side, and the restriction passage is provided within the union to increase the flow rate by increasing the pump rotation speed. A control spool for variably controlling the throttle passage in response to a pressure difference between the supply passage and the valve housing hole generated by the above is slidably fitted in the union. Flow control device. 2. The power steering device according to claim 1, wherein the throttle passage includes two throttle passages arranged in parallel, and the control spool controls closing of one of the two throttle passages. Working fluid flow control device.
JP7694980A 1980-01-24 1980-06-06 Controller for flow rate of working fluid for power steering Granted JPS574469A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7694980A JPS574469A (en) 1980-06-06 1980-06-06 Controller for flow rate of working fluid for power steering
US06/225,263 US4361166A (en) 1980-01-24 1981-01-15 Flow controlling apparatus for power steering, operating fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7694980A JPS574469A (en) 1980-06-06 1980-06-06 Controller for flow rate of working fluid for power steering

Publications (2)

Publication Number Publication Date
JPS574469A JPS574469A (en) 1982-01-11
JPS6337749B2 true JPS6337749B2 (en) 1988-07-27

Family

ID=13620009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7694980A Granted JPS574469A (en) 1980-01-24 1980-06-06 Controller for flow rate of working fluid for power steering

Country Status (1)

Country Link
JP (1) JPS574469A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160668A (en) * 1983-03-04 1984-09-11 Koyo Seiko Co Ltd Pressure fluid supply control device for power steering apparatus
JPS59164267A (en) * 1983-03-10 1984-09-17 Nissan Motor Co Ltd Flow controlling valve of power steering system
JPS59176163A (en) * 1983-03-24 1984-10-05 Koyo Seiko Co Ltd Flow control valve
JPS59209965A (en) * 1983-05-12 1984-11-28 Koyo Seiko Co Ltd Pressure fluid feed control device of power steering unit
JPS60111772U (en) * 1983-12-29 1985-07-29 カヤバ工業株式会社 Power steering flow control device
DE3532602C2 (en) * 1984-09-25 1994-07-28 Jidosha Kiki Co Flow control valve
US4753264A (en) * 1986-03-19 1988-06-28 Jidosha Kiki Co., Ltd. Flow control valve
JPH01133077U (en) * 1988-02-29 1989-09-11

Also Published As

Publication number Publication date
JPS574469A (en) 1982-01-11

Similar Documents

Publication Publication Date Title
US4361166A (en) Flow controlling apparatus for power steering, operating fluid
JPS6210870B2 (en)
JPS6337749B2 (en)
JPH0127308B2 (en)
JPS6365544B2 (en)
JPS6345342B2 (en)
JPS6350236B2 (en)
JPH03550B2 (en)
JPS6347570Y2 (en)
JPS6080974A (en) Flowrate control device of actuating fluid for power steering
JP2569367Y2 (en) Flow control valve
JPS6060073A (en) Flow controller for power steering operating fluid
JP3543570B2 (en) Flow control device in power steering device
JPS6151194B2 (en)
JPS60107460A (en) Controller of flow rate of working fluid for power steering
JP2000025628A (en) Flow rate control device for working fluid for power steering
JP2600568Y2 (en) Flow control device for power steering device
JP2600282Y2 (en) Flow control device for power steering
JPH0321332Y2 (en)
JPS59213569A (en) Flow controller for power steering system
JPS59213568A (en) Flow controller for power steering system
JPH0321383B2 (en)
JPH03602Y2 (en)
JP3404685B2 (en) Flow control valve
JPH0121109Y2 (en)