JPH05244729A - Method of charging battery - Google Patents

Method of charging battery

Info

Publication number
JPH05244729A
JPH05244729A JP1113892A JP1113892A JPH05244729A JP H05244729 A JPH05244729 A JP H05244729A JP 1113892 A JP1113892 A JP 1113892A JP 1113892 A JP1113892 A JP 1113892A JP H05244729 A JPH05244729 A JP H05244729A
Authority
JP
Japan
Prior art keywords
battery
charging
voltage
membership function
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1113892A
Other languages
Japanese (ja)
Inventor
Takashi Kawakami
孝志 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP1113892A priority Critical patent/JPH05244729A/en
Publication of JPH05244729A publication Critical patent/JPH05244729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To prevent overcharging and permit efficient charging within a short period of time by a method wherein fuzzy inference is effected from the difference between the ambient temperature and the battery temperature and the increasing rate of a voltage to control the cutting rate of a switching circuit and infer the finishing time of charging. CONSTITUTION:A/D conversion is effected by obtaining the temperature of a battery 1 to be charged by a sensor 5 and obtaining the ambient temperature by another sensor 7 to convert them into voltages through a converter 4. The battery 1 is charged by putting a DC current, obtained by rectifying AC from an AC wiring through a power supply circuit 2, ON/OFF by a switching circuit 6. The terminal voltage of the battery is also converted through an A/D converter 8. A control unit 3 effects the fuzzy inference of a charging current from the temperature of the battery 1, the ambient temperature and the voltage of the battery 1 upon starting charging to obtain the cutting rate of the switching circuit 6 and start charging. The fuzzy inferring is effected by the difference between the battery temperature and the ambient temperature and the increasing rate of the voltage of the battery to control the cutting rate of the switching circuit during charging. At the same time, the finishing time of the charging of the battery is inferred. According to this method, the overcharging of the battery can be prevented and quick charging can be effected efficiently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビデオカメラや携帯電
話などの携帯用機器に使用されるNiCd、Ni水素等
の電池の充電方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method of charging a battery such as NiCd or Ni hydrogen used in a portable device such as a video camera or a mobile phone.

【0002】[0002]

【従来の技術】従来より電池の充電には、標準充電(お
よそ12から14時間で充電)方式と急速充電(数10
分から5時間で充電)方式がある。この違いは、充電の
為の供給電流の違いであるが、急速充電の場合は短時間
で充電を完了する反面、充電の完了を速やかに検知しな
ければ、電池の急速な温度上昇並びに内部ガス圧の上昇
を招き電池劣化の原因となる。
2. Description of the Related Art Conventionally, standard charging (charging in about 12 to 14 hours) and rapid charging (several tens)
There is a method of charging from 5 minutes to 5 hours. This difference is the difference in the supply current for charging, but in the case of quick charging, charging is completed in a short time, but if the completion of charging is not detected promptly, the battery temperature rises rapidly and internal gas This causes an increase in pressure and causes deterioration of the battery.

【0003】図6に周囲温度と最大許容電流の関係を示
す。ここでCmAとは、充電時の電流の単位で時間率電
流と言い、即ち放電した電池を充電するとき、10時間
かけて充電するときの電流値を0.1CmAと表す。
尚、以下では電流値NCmAで充電することをNC充電
と称し、逆に電流値NCmAで放電することをNC放電
と称す。
FIG. 6 shows the relationship between the ambient temperature and the maximum allowable current. Here, CmA is a time rate current in the unit of current during charging, that is, when charging a discharged battery, the current value when charging for 10 hours is 0.1 CmA.
In the following, charging with a current value NCmA is referred to as NC charging, and conversely discharging with a current value NCmA is referred to as NC discharge.

【0004】この最高充電許容電流を定めているのは、
充電時に電池内部で発生するガスが増加するためで、温
度が低いほどまた、充電電流が高いほど平衡ガス圧が高
くなる。ガス圧が高くなると電池のシール機構の破壊等
により電池劣化を来す。図7にこのガス圧と温度との関
係を示す。これは、低温になると陰極のガス消費反応が
低下するためガス圧が高くなる。従って低温に於いては
充電電流を低く抑える必要がある事を示す。また、充電
完了を越えて充電を継続すると、このガス化反応のため
発生する熱により、電池の急速な温度上昇を来し同様に
電池の劣化を促進させる。
The maximum allowable charging current is determined by
This is because the gas generated inside the battery during charging increases, and the lower the temperature and the higher the charging current, the higher the equilibrium gas pressure. When the gas pressure becomes high, the battery is deteriorated due to breakage of the battery sealing mechanism. FIG. 7 shows the relationship between this gas pressure and temperature. This is because when the temperature becomes low, the gas consumption reaction of the cathode decreases and the gas pressure increases. Therefore, it is necessary to keep the charging current low at low temperatures. Further, when the charging is continued beyond the completion of the charging, the heat generated by the gasification reaction causes a rapid temperature rise of the battery and similarly accelerates the deterioration of the battery.

【0005】電池の充電は短時間で完了するに越したこ
とはないが、以上のような要因により単純に充電電流を
増やすわけには行かない。
Although it is best to finish charging the battery in a short time, it is not possible to simply increase the charging current due to the above factors.

【0006】これを克服する方法としては、電池が満充
電となった時速やかに充電を停止することがもっとも簡
単な方法であり、従来は、電池が満充電となった時若干
の電圧降下が生じるという特性を利用したマイナスデル
タブイ方式と呼ばれる充電方法(例えば、特開昭59−
194640号公報、米国特許第4354148号明細
書 、米国特許4387332号明細書等参照)や、電
池自身の発熱温度の変化を測定することにより充電状態
を検出する方法(例えば、特開昭59−6731号公報
参照)等が採用されていた。
The easiest way to overcome this is to stop charging immediately when the battery is fully charged. Conventionally, there is a slight voltage drop when the battery is fully charged. A charging method called a minus delta buoy system that utilizes the characteristic of occurrence (for example, Japanese Patent Laid-Open No. 59-
194640, U.S. Pat. No. 4,354,148, U.S. Pat. No. 4,387,332, etc.) and a method of detecting the state of charge by measuring the change in the heat generation temperature of the battery itself (for example, Japanese Patent Laid-Open No. 59-6731). (See Japanese Patent Publication) and the like were adopted.

【0007】[0007]

【発明が解決しようとする課題】しかし、このような従
来方法には以下のような問題点があった。
However, such a conventional method has the following problems.

【0008】1)充電許容電流値は本来、周囲温度によ
り変えることが望ましい。
1) It is originally desirable that the charge allowable current value be changed depending on the ambient temperature.

【0009】2)ガス圧の増加と内部温度上昇について
は、温度上昇特性の方が若干後れるほか、実際の温度検
出の遅れがこれに加算される。そのためガス圧の上昇は
ある程度避けられない。特に急速充電時は影響が大き
い。
2) Regarding the increase in gas pressure and the rise in internal temperature, the temperature rise characteristic is slightly behind, and the actual temperature detection delay is added to this. Therefore, an increase in gas pressure is unavoidable to some extent. The effect is particularly great during rapid charging.

【0010】3)電池内部温度や電池端子電圧は、周囲
温度をパラメータとして変化するため、判定基準として
一意的に決められない。
3) The battery internal temperature and the battery terminal voltage cannot be uniquely determined as a criterion because they change with the ambient temperature as a parameter.

【0011】[0011]

【課題を解決するための手段】本発明はこの様な点を考
慮してなされたもので、その第1の特徴は、電池の周囲
温度の高低を示す第1のメンバ−シップ関数と上記電池
に対する充電電流の大きさを示す第2のメンバ−シップ
関数との相関関係よりファジィ推論された充電電流に関
する第1の推論結果を導き出す第1ステップと、上記電
池電圧の高低を示す第3のメンバ−シップ関数と上記第
2のメンバ−シップ関数との相関関係よりファジィ推論
された充電電流に関する第2の推論結果を導き出す第2
ステップと、上記第1、第2の推論結果の論理和の重心
位置より上記電池に対する最適な充電電流値を決定する
第3ステップとからなることにある。
The present invention has been made in view of the above points, and a first feature thereof is a first membership function indicating the high and low of the ambient temperature of the battery and the battery. To the second member-ship function indicating the magnitude of the charging current with respect to the first step of deriving a first inference result regarding the charging current which is fuzzy inferred, and a third member indicating the level of the battery voltage. A second inference result regarding the charging current which is fuzzy inferred from the correlation between the ship function and the second member ship function;
It consists of a step and a third step of determining an optimum charging current value for the battery from the position of the center of gravity of the logical sum of the first and second inference results.

【0012】また第2の特徴は、電池電圧の所定時間毎
の変化量を示す第1のメンバーシップ関数と上記電池に
対する充電電流のカット率を示す第2のメンバ−シップ
関数との相関関係よりファジィ推論された充電電流のカ
ット率に関する第1の推論結果を導き出す第1ステップ
と、上記電池の所定時間毎の温度の変化量を示す第3の
メンバ−シップ関数と上記第2のメンバ−シップ関数と
の相関関係よりファジィ推論された充電電流のカット率
に関する第2の推論結果を導き出す第2ステップと、上
記第1、第2の推論結果の論理和の重心位置より充電電
流の最適なカット率を決定する第3ステップとからなる
ことにある。
The second feature is that the correlation between the first membership function indicating the change amount of the battery voltage at each predetermined time and the second membership function indicating the cut rate of the charging current for the battery is obtained. A first step of deriving a first inference result relating to the fuzzy inferred cut rate of the charging current, a third membership function indicating the amount of change in temperature of the battery for each predetermined time, and the second membership. The second step of deriving a second inference result regarding the cut rate of the charging current which is fuzzy inferred from the correlation with the function, and the optimal cutting of the charging current from the position of the center of gravity of the logical sum of the first and second inference results. And the third step of determining the rate.

【0013】更に第3の特徴は、電池の放電時の電圧に
関する第1のメンバーシップ関数と上記電池の充電完了
予想時間に関する第2のメンバーシップ関数との相関関
係よりファジィ推論された充電完了予想時間に関する第
1の推論結果を導き出す第1ステップと、上記電池の充
電時の電圧を示す第3のメンバーシップ関数と上記第2
のメンバーシップ関数との相関関係よりファジィ推論さ
れた充電完了予想時間に関する第2の推論結果を導き出
す第2ステップと、上記第1、第2の推論結果の論理和
の重心位置より上記電池の充電完了予想時間を決定する
第3ステップからなることにある。
A third feature is that the charge completion prediction is fuzzy inferred from the correlation between the first membership function related to the voltage when the battery is discharged and the second membership function related to the battery charge completion expected time. A first step of deriving a first inference result regarding time, a third membership function indicating a voltage during charging of the battery, and the second step.
The second step of deriving a second inference result regarding the expected completion time of charging, which is fuzzy inferred from the correlation with the membership function of, and the charging of the battery from the center of gravity position of the logical sum of the first and second inference results. It consists of the third step of determining the expected completion time.

【0014】[0014]

【作用】本発明は上述のごとく構成したので、電池を選
ばず最適な充電電流が設定され、急速充電にあり勝ちな
電池の劣化を防止することが出来ると共に、利用者に充
電完了時間を前もって提示する等、最適な充電システム
を得ることが出来る。
Since the present invention is configured as described above, the optimum charging current is set regardless of the battery, and it is possible to prevent the deterioration of the battery which is likely to be caused by quick charging, and the user can set the charging completion time in advance. It is possible to obtain the optimal charging system by presenting it.

【0015】[0015]

【実施例】図1は本発明を適用した実施例を示し、その
構成は、屋内配線等の交流電圧を例えばNiCd電池か
らなる被充電電池(1)の充電に適する直流電流(充電
電流)に変換し出力する電源回路(2)と、この電源回
路(2)から出力される充電電流の上記電池(1)への
供給を制御するための例えばスイッチングトランジスタ
からなるスイッチ手段(6)と、上記電池(1)自身の
温度を検出するための第1温度センサ(5)と、上記電
池(1)の周囲温度を検出するための第2温度センサ
(7)と、上記両温度センサ(5)(7)の検出温度に
対応した電圧値を出力する温度検出電圧変換回路(4)
と、この変換回路(4)の出力及び上記電池(1)の電
圧値をアナログ−デジタル変換するA/D変換器(8)
と、このA/D変換器(8)からの出力に基づいて電源
回路(2)より出力される充電電流の制御や上記スイッ
チ手段(6)のオン−オフ等の制御を司る制御部(3)
とを備える。
FIG. 1 shows an embodiment to which the present invention is applied, in which the AC voltage of indoor wiring is converted into a direct current (charging current) suitable for charging a battery (1) to be charged, which is a NiCd battery, for example. A power supply circuit (2) for converting and outputting, a switch means (6) comprising, for example, a switching transistor for controlling the supply of the charging current output from the power supply circuit (2) to the battery (1), A first temperature sensor (5) for detecting the temperature of the battery (1) itself, a second temperature sensor (7) for detecting the ambient temperature of the battery (1), and both temperature sensors (5) Temperature detection voltage conversion circuit (4) that outputs a voltage value corresponding to the detection temperature of (7)
And an A / D converter (8) for analog-digital converting the output of the conversion circuit (4) and the voltage value of the battery (1).
And a control unit (3) which controls the charging current output from the power supply circuit (2) based on the output from the A / D converter (8) and the on / off control of the switch means (6). )
With.

【0016】上記制御部(3)は、具体的には上記電池
(1)電圧値、電池(1)自身の温度及び電池(1)の
周囲温度を基に、充電開始時の充電電流値及び充電中の
充電電流のカット率をファジィ推論し上記電源回路
(2)の出力電流値を制御すると共に、充電予想時間を
も推論する。
The control unit (3) specifically, based on the voltage value of the battery (1), the temperature of the battery (1) itself and the ambient temperature of the battery (1), a charging current value at the start of charging and The cut rate of the charging current during charging is fuzzy inferred to control the output current value of the power supply circuit (2) and infer the expected charging time.

【0017】次に、上記各ファジィ推論の決定ルールに
ついて説明する。
Next, the decision rules for each of the above fuzzy inferences will be described.

【0018】<充電開始時の充電電流値の決定ルール>
先ず、充電電流の決定ルールについて説明する。周囲温
度及び電池(1)電圧をパラメータとして充電電流値を
推論する。具体的には以下の様な記述のもとに推論を行
う。
<Rules for determining the charging current value at the start of charging>
First, the rule for determining the charging current will be described. The charging current value is inferred using the ambient temperature and the battery (1) voltage as parameters. Specifically, inference is performed based on the following description.

【0019】 周囲温度が低ければ :充電電流をやや低く 周囲温度がやや低ければ:充電電流をやや低く 周囲温度が中くらいなら:充電電流を中くらいに 周囲温度がやや高ければ:充電電流をやや高く 周囲温度が高ければ :充電電流をやや高く 電池電圧が低ければ :充電電流を高く 電池電圧がやや低ければ:充電電流をやや高く 電池電圧が中くらいなら:充電電流を中くらいに 電池電圧がやや高ければ:充電電流をやや低く 電池電圧が高ければ :充電電流を低く 温度が高い、低い、という概念は抽象的な表現である
が、数値として分かりやすく例えれば、「高い」とは周
囲温度40℃以上、又逆に「低い」とは−10℃以下と
設定し、その間を等分してセンサ(7)で検出した温度
に該当するメンバーシップ関数に対応させればよい。ま
た電池電圧について「高い」とは、電池の単位セル当り
の電圧で1.3V以上、逆に「低い」とは1.2V以下
を当てはめ、この間を等分すると考える。更に充電電流
については「高い」を0.35C、「低い」を0.05
Cとしこの間を等分する。
If ambient temperature is low: charging current is slightly low Ambient temperature is slightly low: charging current is slightly low Ambient temperature is medium: charging current is medium If ambient temperature is slightly high: charging current is slightly High If ambient temperature is high: charging current is slightly high Battery voltage is low: charging current is high Battery voltage is low: charging current is slightly high Battery voltage is medium: charging current is medium If it is a little high: the charging current is a little low. If the battery voltage is high: The charging current is a low temperature is high or low. It is an abstract expression.
However, if you compare it as a numerical value, "high" is
The ambient temperature is 40 ° C or higher, and conversely “low” means −10 ° C or lower.
Temperature set and set in equal intervals and detected by the sensor (7)
It should correspond to the membership function corresponding to. Well
About battery voltage "High" means per battery unit cell
Voltage is 1.3V or more, conversely "low" is 1.2V or less
And divide it into equal parts. Further charging current
About "high" is 0.35C, "low" is 0.05
It is set to C and this space is equally divided.

【0020】この様にして図2(a)に周囲温度に関す
るメンバーシップ関数、図2(b)に電池(1)電圧に
関するメンバーシップ関数、そして図2(c)に充電電
流に関するメンバーシップ関数を示す。
Thus, FIG. 2A shows the membership function concerning the ambient temperature, FIG. 2B shows the membership function concerning the battery (1) voltage, and FIG. 2C shows the membership function concerning the charging current. Show.

【0021】図2において例えば、周囲温度がT(℃)
で電池電圧がv(V)とすると、前述のルールから、 周囲温度が中くらいならば:充電電流を中くらいとする 電池電圧がやや高ければ :充電電流をやや低くする という条件が成立する。初めの条件から図2(c)のエ
リア(X)の部分が論理積として得られる。また次の条
件から同様に図2(c)のエリア(Y)の部分が論理積
として得られる。そしてこの結果、エリア(X)、エリ
ア(Y)の論理和の重心位置(矢印のG)で示す所に相
当する充電電流(中くらい)が最適値として設定され
る。(min−max重心法と呼ばれる) この例では、「高く」を0.35C充電、低くを0.0
5C充電と決めているので、例題の場合はおよそ0.1
7C充電となる。
In FIG. 2, for example, the ambient temperature is T (° C.)
Then, if the battery voltage is v (V), from the above-mentioned rule, the conditions are satisfied: if the ambient temperature is medium: the charging current is medium, and if the battery voltage is slightly high: the charging current is slightly low. The area (X) in FIG. 2C is obtained as a logical product from the first condition. Similarly, from the following conditions, the area (Y) in FIG. 2C is obtained as a logical product. As a result, the charging current (medium) corresponding to the position indicated by the barycentric position (G in the arrow) of the logical sum of area (X) and area (Y) is set as the optimum value. (This is called the min-max centroid method) In this example, "high" is charged at 0.35C and low is 0.0
Since it is decided to charge 5C, in the case of the example, it is about 0.1.
It becomes 7C charge.

【0022】<充電中の充電電流のカット率の決定ルー
ル>次に充電電流のカット率を決めるルールについて説
明する。なお、この判定ルーチンの実行は、前述のルー
ルにより決定された充電電流にて充電を開始後、所定の
時間間隔(数10秒〜数分)を決めて実行する。実行の
タイミングについては図5のフローチャートを基に後で
説明する。
<Rules for Determining Charging Current Cut Rate during Charging> Next, rules for determining a charging current cut rate will be described. The determination routine is executed by setting a predetermined time interval (several tens of seconds to several minutes) after starting charging with the charging current determined by the above-described rule. The timing of execution will be described later based on the flowchart of FIG.

【0023】まず、パラメータとして電池(1)自身の
温度と周囲温度との差分と電池(1)電圧の変化量(実
際には所定時間(数10秒〜数分)毎の電圧の変化分,
以下では単に電圧差という)を測定し、これをもとに充
電の完了を推論する。具体的には、以下のような記述を
基にメンバーシップ関数を決める。
First, as a parameter, the difference between the temperature of the battery (1) itself and the ambient temperature and the amount of change in the voltage of the battery (1) (actually, the amount of change in voltage for each predetermined time (several tens of seconds to several minutes),
In the following, it will be simply referred to as voltage difference), and based on this, the completion of charging is inferred. Specifically, the membership function is determined based on the following description.

【0024】 電圧差ゼロ :充電電流減少 電圧差微増 :充電電流微減少 電圧差増(+):現行充電電流継続 電圧差減(−):充電停止 温度差大 :充電中止 温度差有り :充電電流減少 温度差やや有り:現行充電電流継続 温度差なし :現行充電電流継続 上記「電圧差増」とは0.01V以上の電圧上昇を言
い、このような電圧上昇は通常充電の範囲内であること
を示す。そして充電が100%を越える辺りからは飽和
の傾向となり「電圧差微増(0.005V程度)」とな
る。ここから徐々に充電電流を減少させる。又、温度上
昇については電圧の傾向と類似であるが、100%を越
える辺りから電池温度の上昇が始まる。そして上昇が大
きくなると充電を停止する。尚、温度差において「大」
とは10℃以上を、「有り」とは7℃程度を、「やや有
り」とは3.5℃程度を、「なし」とは0℃以下をい
う。
Zero voltage difference: Charge current decrease, Voltage difference slight increase: Charge current slight decrease, Voltage difference increase (+): Current charge current continues Voltage difference decrease (-): Charge stop, Large temperature difference: Charge stop, Temperature difference: Charge current Decrease Temperature difference Slightly: Current charging current continues No temperature difference: Current charging current continues The above "voltage difference increase" means a voltage increase of 0.01 V or more, and such a voltage increase is within the range of normal charging. Indicates. Then, when the charge exceeds about 100%, there is a tendency of saturation, which is "a slight increase in voltage difference (about 0.005 V)". From here, the charging current is gradually reduced. The temperature rise is similar to the tendency of the voltage, but the temperature rise of the battery starts around 100%. When the rise becomes large, charging is stopped. In addition, "large" in the temperature difference
Means 10 ° C. or higher, “presence” means about 7 ° C., “slightly present” means about 3.5 ° C., and “none” means 0 ° C. or lower.

【0025】以上の関係から図3(a)に電池の電圧差
に関するメンバーシップ関数、同図(b)に温度差に関
するメンバーシップ関数、そして同図(c)に充電電流
のカット率に関するメンバーシップ関数を示す。ここで
充電電圧の減少の傾向を見た場合、電池の表面温度の上
昇傾向との絡みで充電電流の修正及び充電の停止(完
了)を判定する。電圧変化と温度変化の両方の傾向を見
ることにより、ダイナミックな判定が可能となる。
From the above relationships, FIG. 3 (a) shows the membership function relating to the battery voltage difference, FIG. 3 (b) shows the membership function relating to the temperature difference, and FIG. 3 (c) shows the membership function relating to the charge current cut rate. Indicates a function. Here, when the tendency of the decrease of the charging voltage is observed, the correction of the charging current and the stop (completion) of the charging current are determined in relation to the increasing tendency of the surface temperature of the battery. Dynamic determination is possible by observing both the voltage change and temperature change trends.

【0026】例えば図において、電圧差v(V)で温度
差T(℃)の場合の充電電流の変更の推論のパターンで
は、電圧差分がvの時、メンバーシップ関数は「変化微
増」の関数となり、充電電流の「微減少」のパターンの
エリア(X)が選択される。また温度差Tについては、
温度上昇「なし」と「やや有り」にヒットするがこの場
合、論理積となるため「なし」のメンバーシップ関数が
選択され、「現状維持」のパターンのエリア(Y)が選
択される。(図中の波線α)そしてこの結果、エリア
(X)、エリア(Y)の論理和の重心位置(矢印のG)
で示す所に相当する充電電流が最適値として設定され
る。この場合、充電電流の微減少が選択される。
For example, in the figure, in the pattern of inference of the change of the charging current when the voltage difference v (V) and the temperature difference T (° C.), when the voltage difference is v, the membership function is a function of “slight increase in change”. Then, the area (X) of the pattern of “slight decrease” of the charging current is selected. Regarding the temperature difference T,
The temperature rises hit "none" and "somewhat", but in this case, since they are logical products, the membership function of "none" is selected, and the area (Y) of the pattern "maintain the current state" is selected. (Dotted line α in the figure) As a result, the center of gravity position of the logical sum of area (X) and area (Y) (G in the arrow)
The charging current corresponding to the place indicated by is set as the optimum value. In this case, a slight decrease in charging current is selected.

【0027】図3(c)に於いて現状維持から停止まで
をどの様な数値で現すかについては、例えば以下のよう
に考えられる。即ち現行の充電電流に対しての減少の割
合を(%)で示す。
In FIG. 3 (c), it is possible to consider, for example, what kind of numerical value represents from the current state maintenance to the stoppage as follows. That is, the rate of decrease with respect to the current charging current is indicated by (%).

【0028】 現状維持 0(%)減少 停止 100(%)減少 その間を対数目盛りにて規定する。こうすると微減少の
範囲がほぼ10%減少まで、減少から停止までが11%
〜99%減少の対数目盛りに設定できる。これを例題に
該当させると、およそ5%の充電電流の減少となる。
Maintain the current state 0 (%) decrease Stop 100 (%) decrease The period is defined on a logarithmic scale. In this way, the range of slight decrease is about 10%, and the range from decrease to stop is 11%.
It can be set to a logarithmic scale of 99% reduction. Applying this as an example, the charging current is reduced by about 5%.

【0029】<充電完了予想時間の決定ルール>次に、
充電開始時に算定する充電予想時間の決定方法について
説明する。まず、スイッチ回路(6)をオフにすること
により放電回路を形成し、電池(1)の放電時の電池電
圧を周囲温度で補正した放電電圧を測定する。続いて、
スイッチ回路(6)をオンにすることにより充電回路を
構成し、かつ充電電流として0.2Cに適した充電電流
を電池(1)に供給した状態での電池(1)電圧を周囲
温度で補正した電圧(充電電圧)を測定する。この2つ
の測定結果のメンバーシップ関数から電池残量を推論
し、充電必要時間(充電完了予想時間)を予測する。た
とえば以下のような記述を基にメンバーシップ関数を決
める。なおここでは、放電電圧としては2C放電、充電
電圧は0.2C充電とした。また、放電した電池を満充
電するために必要な充電時間は最大4時間で制御すると
仮定する。
<Rules for Determining Charge Completion Estimated Time> Next,
A method of determining the expected charging time calculated at the start of charging will be described. First, the switch circuit (6) is turned off to form a discharge circuit, and the discharge voltage obtained by correcting the battery voltage during discharge of the battery (1) with the ambient temperature is measured. continue,
The charging circuit is configured by turning on the switch circuit (6), and the voltage of the battery (1) is corrected with the ambient temperature when the charging current suitable for 0.2C is supplied to the battery (1). The measured voltage (charging voltage) is measured. The remaining battery capacity is inferred from the membership function of these two measurement results, and the required charging time (charging completion expected time) is predicted. For example, determine the membership function based on the following description. In addition, here, the discharge voltage was 2 C discharge, and the charge voltage was 0.2 C charge. Further, it is assumed that the charging time required to fully charge the discharged battery is controlled to a maximum of 4 hours.

【0030】 放電電圧が低ければ :4時間充電モード 放電電圧がやや低ければ:3時間充電モード 放電電圧がやや高ければ:2時間充電モード 放電電圧が高ければ :1時間充電モード 充電電圧が低ければ :4時間充電モード 充電電圧がやや低ければ:3時間充電モード 充電電圧がやや高ければ:2時間充電モード 充電電圧が高ければ :1時間充電モード ここで言う放電電圧が「高い」とは電池の単位セル当り
の電圧で1.3V以上、逆に「低い」とは1.2V以下
を当てはめ、この間を等分すると考える。また充電電圧
が「高い」とは電池の単位セル当りの電圧で1.45V
以上、逆に「低い」とは1.35V以下を当てはめ、こ
の間を等分すると考える。もちろん温度による電圧値の
変化分は補正されたものとして考える。
If the discharge voltage is low: 4 hours charge mode If the discharge voltage is slightly low: 3 hours charge mode If the discharge voltage is slightly high: 2 hours charge mode If the discharge voltage is high: 1 hour charge mode If the charge voltage is low : 4 hours charging mode If the charging voltage is a little low: 3 hours charging mode If the charging voltage is a little high: 2 hours charging mode If the charging voltage is high: 1 hour charging mode "Discharge voltage" here means "high" It is considered that the voltage per unit cell is 1.3 V or more, and conversely, "low" is 1.2 V or less, and the interval is considered to be equally divided. The charging voltage is “high”, which means the voltage per unit cell of the battery is 1.45V.
As described above, conversely, "low" is applied at 1.35 V or less, and it is considered that the interval is equally divided. Of course, the change in voltage value due to temperature is considered to have been corrected.

【0031】図4(a)に電池の放電電圧に関するメン
バーシップ関数、図4(b)に充電電圧に関するメンバ
ーシップ関数、そして図4(c)に充電時間に関するメ
ンバーシップ関数を示す。例えば、放電電圧がやや高く
vo(V)、充電電圧がやや低いvi(V)場合の充電
完了予想時間は、前述の例と同様に2時間充電と3時間
充電の論理和となり,充電時間として図中の重心位置で
およそ2.4時間程度となる。
FIG. 4A shows a membership function relating to the discharge voltage of the battery, FIG. 4B shows a membership function relating to the charging voltage, and FIG. 4C shows a membership function relating to the charging time. For example, when the discharge voltage is slightly higher vo (V) and the charge voltage is slightly lower vi (V), the expected charging completion time is the logical sum of 2 hours charging and 3 hours charging as in the above example, and the charging time is It takes about 2.4 hours at the center of gravity in the figure.

【0032】充電時と放電時の2つのパターンの電圧測
定結果にさらに温度補正を加味し、さらにファジィ推論
にて電池残量を予測するため、NiCd電池等の充放電
特性からでも、かなり精度の高い電池残量が推定可能と
なる。
The temperature measurement is further added to the voltage measurement results of the two patterns at the time of charging and discharging, and the remaining battery level is predicted by fuzzy reasoning. A high battery level can be estimated.

【0033】次に、これらの処理を、制御部(3)によ
る実際の電池充電の制御手順に沿って図5に示すフロー
チャートで説明する。
Next, these processes will be described with reference to the flow chart shown in FIG. 5 according to the control procedure of the actual battery charging by the control unit (3).

【0034】まず、S1ステップにおいてスイッチ回路
(6)をオフすることにより放電回路を形成し、所定時
間の後、S2ステップにおいて放電電圧を測定する。具
体的には、A/D変換器(8)を介して入力される電池
電圧値を第2温度センサ(7)で検出された周囲温度で
補正することにより得る。次にS3ステップにおいてス
イッチ回路(6)をオンすることにより充電回路を形成
し、かつ電源回路(2)より充電電流として0.2Cに
適した充電電流を電池(1)に供給することにより充電
を開始し、続くS4ステップにおいてそのときの電池電
圧を測定し、第2温度センサ(7)で検出された周囲温
度で補正することにより充電電圧を測定する。そして、
S5ステップにおいて上記S2、S4ステップにおいて
測定した放電電圧及び充電電圧を基に上述した充電完了
予想時間の決定ルールにより充電完了予想時間を推論す
る。この推論結果は、例えば図示しない表示部等に表示
する。
First, in step S1, the switch circuit (6) is turned off to form a discharge circuit, and after a predetermined time, the discharge voltage is measured in step S2. Specifically, it is obtained by correcting the battery voltage value input via the A / D converter (8) with the ambient temperature detected by the second temperature sensor (7). Next, in step S3, the switch circuit (6) is turned on to form a charging circuit, and the power supply circuit (2) supplies a charging current suitable for 0.2 C as a charging current to the battery (1) for charging. Then, the battery voltage at that time is measured in the subsequent S4 step, and the charging voltage is measured by correcting the ambient temperature detected by the second temperature sensor (7). And
In step S5, the estimated charging completion time is inferred based on the above-described rules for determining the estimated charging completion time based on the discharge voltage and the charging voltage measured in steps S2 and S4. The inference result is displayed on, for example, a display unit (not shown).

【0035】続くS6ステップでは、第2温度センサ
(7)からの出力に基づいて周囲温度を計測すると共
に、この時点での電池(1)電圧を測定し、S7ステッ
プにおいてこの測定結果を基に上述した充電開始時の充
電電流値の決定ルールにより充電開始時の充電電流値を
決定し、この決定結果に従って電源回路(2)から電池
(1)に供給する電圧値を決定する。
In the subsequent step S6, the ambient temperature is measured based on the output from the second temperature sensor (7), and the voltage of the battery (1) at this point is measured. Based on the measurement result in step S7. The charging current value at the start of charging is determined by the above-described rule for determining the charging current value at the start of charging, and the voltage value supplied from the power supply circuit (2) to the battery (1) is determined according to the result of this determination.

【0036】その後、S8ステップにおいて、所定時間
毎に電池(1)電圧の変化量及びその時点での電池
(1)自身の温度と周囲温度との温度差を測定し、続く
S9ステップにおいて上記測定結果を基に上述した充電
中の充電電流のカット率の決定ルールに従って充電電流
のカット率を推論すると共に、この推論結果においてカ
ット率0%、即ち充電電流の変更を要しない場合には、
S8スッテプに処理を戻す。また、推論結果が0%でな
く充電電流の変更を要する場合には、処理をS10ステ
ップに進める。
After that, in step S8, the amount of change in the voltage of the battery (1) and the temperature difference between the temperature of the battery (1) itself and the ambient temperature at that time are measured at predetermined time intervals, and the above measurement is performed in step S9. Based on the result, the charge current cut rate is inferred according to the above-described rule for determining the charge current cut rate during charging, and in the inference result, the cut rate is 0%, that is, when the charge current does not need to be changed,
The processing is returned to the S8 step. If the inference result is not 0% and the charging current needs to be changed, the process proceeds to step S10.

【0037】S10ステップでは、S9ステップにおい
て推論した充電電流カット率が100%であるか否かを
判定し、100%であると判定すると充電を終了する。
一方、充電電流カット率が100%未満であると判定す
ると、S11ステップに処理を進め、上記S9ステップ
で推論された充電電流カット率に従って充電電流値を変
更する。
In step S10, it is determined whether or not the charging current cut rate inferred in step S9 is 100%, and if it is determined to be 100%, the charging is terminated.
On the other hand, if it is determined that the charging current cut rate is less than 100%, the process proceeds to step S11, and the charging current value is changed according to the charging current cut rate inferred in step S9.

【0038】尚、本実施例では充電電流のカット率推論
に用いる温度差を電池(1)自身の温度と周囲温度との
差としたが、この温度差は所定時間毎の電池(1)自身
の温度上昇度とすることも可能である。
In the present embodiment, the temperature difference used for inferring the charging current cut rate is the difference between the temperature of the battery (1) itself and the ambient temperature, but this temperature difference is the battery (1) itself at a predetermined time interval. It is also possible to set the temperature rise degree of.

【0039】[0039]

【発明の効果】以上のように、本発明によれば電池充電
に関連するパラメータ(電圧、温度など)を逐次測定し
その結果からファジィ推論を用いて要望する条件を推論
決定することにより、短時間で最適な電池の充電を実現
でき、また、それに要する時間も推論できる。
As described above, according to the present invention, the parameters (voltage, temperature, etc.) related to battery charging are sequentially measured, and the desired condition is inferred and determined from the result by using fuzzy inference. The optimal battery charging can be realized in time, and the time required for it can be inferred.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用してなる装置の一実施例を示すブ
ロック図である。
FIG. 1 is a block diagram showing an embodiment of an apparatus to which the present invention is applied.

【図2】本実施例の周囲温度、電池電圧及び充電電流に
関するメンバーシップ関数を示す模式図である。
FIG. 2 is a schematic diagram showing a membership function relating to an ambient temperature, a battery voltage and a charging current according to the present embodiment.

【図3】本実施例の電圧差、温度差及び充電電流カット
率に関するメンバーシップ関数を示す模式図である。
FIG. 3 is a schematic diagram showing a membership function regarding a voltage difference, a temperature difference, and a charging current cut rate in the present embodiment.

【図4】本実施例の放電電圧、充電電圧及び充電完了予
想時間に関するメンバーシップ関数を示す模式図であ
る。
FIG. 4 is a schematic diagram showing a membership function relating to a discharge voltage, a charge voltage, and an estimated charging completion time according to the present embodiment.

【図5】本実施例の動作を示すフローチャートである。FIG. 5 is a flowchart showing the operation of this embodiment.

【図6】電池の最大許容充電電流を示すグラフである。FIG. 6 is a graph showing the maximum allowable charging current of a battery.

【図7】電池の過充電電流と平衡ガス圧との関係を示す
グラフである。
FIG. 7 is a graph showing the relationship between battery overcharge current and equilibrium gas pressure.

【符号の説明】[Explanation of symbols]

1 被充電電池 2 電源回路 3 制御部 4 温度検出電圧変換回路 5 第1温度センサ 6 スイッチ回路 7 第2温度センサ 1 Battery to be Charged 2 Power Supply Circuit 3 Control Unit 4 Temperature Detection Voltage Conversion Circuit 5 First Temperature Sensor 6 Switch Circuit 7 Second Temperature Sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電池の周囲温度の高低を示す第1のメン
バ−シップ関数と上記電池に対する充電電流の大きさを
示す第2のメンバ−シップ関数との相関関係よりファジ
ィ推論された充電電流に関する第1の推論結果を導き出
す第1ステップと、上記電池電圧の高低を示す第3のメ
ンバ−シップ関数と上記第2のメンバ−シップ関数との
相関関係よりファジィ推論された充電電流に関する第2
の推論結果を導き出す第2ステップと、上記第1、第2
の推論結果の論理和の重心位置より上記電池に対する最
適な充電電流値を決定する第3ステップとからなること
を特徴とする電池の充電方法。
1. A charging current which is fuzzy inferred from a correlation between a first membership function indicating a high and low ambient temperature of a battery and a second membership function indicating a magnitude of a charging current for the battery. A first step of deriving a first inference result, and a second step of fuzzy inference based on the correlation between the third membership function indicating the level of the battery voltage and the second membership function.
Second step of deriving the inference result of the above, and the above first and second
And a third step of determining an optimum charging current value for the battery from the position of the center of gravity of the logical sum of the inference result of 1.
【請求項2】 電池電圧の所定時間毎の変化量を示す第
1のメンバーシップ関数と上記電池に対する充電電流の
カット率を示す第2のメンバ−シップ関数との相関関係
よりファジィ推論された充電電流のカット率に関する第
1の推論結果を導き出す第1ステップと、上記電池の所
定時間毎の温度の変化量を示す第3のメンバ−シップ関
数と上記第2のメンバ−シップ関数との相関関係よりフ
ァジィ推論された充電電流のカット率に関する第2の推
論結果を導き出す第2ステップと、上記第1、第2の推
論結果の論理和の重心位置より充電電流の最適なカット
率を決定する第3ステップとからなることを特徴とする
電池の充電方法。
2. A charge fuzzy inferred from a correlation between a first membership function indicating a change amount of a battery voltage for each predetermined time and a second membership function indicating a cut rate of a charging current for the battery. A first step of deriving a first inference result regarding the current cut rate, and a correlation between the third membership function indicating the amount of change in temperature of the battery at predetermined time intervals and the second membership function. A second step of deriving a second inference result relating to a more fuzzy inference of the charging current cut rate, and a step of determining an optimal cutting rate of the charging current from the barycentric position of the logical sum of the first and second inference results. A method of charging a battery, which comprises three steps.
【請求項3】 電池の放電時の電圧に関する第1のメン
バーシップ関数と上記電池の充電完了予想時間に関する
第2のメンバーシップ関数との相関関係よりファジィ推
論された充電完了予想時間に関する第1の推論結果を導
き出す第1ステップと、上記電池の充電時の電圧を示す
第3のメンバーシップ関数と上記第2のメンバーシップ
関数との相関関係よりファジィ推論された充電完了予想
時間に関する第2の推論結果を導き出す第2ステップ
と、上記第1、第2の推論結果の論理和の重心位置より
上記電池の充電完了予想時間を決定する第3ステップか
らなることを特徴とする電池の充電方法。
3. A first charge-completion expected time, which is fuzzy inferred from a correlation between a first membership function relating to the voltage when the battery is discharged and a second membership function relating to the battery charge-completion expected time. First step of deriving an inference result, and second inference regarding the expected charging completion time, which is fuzzy inferred from the correlation between the third membership function indicating the voltage when the battery is charged and the second membership function. A battery charging method comprising: a second step of deriving a result; and a third step of determining an expected charging completion time of the battery from the position of the center of gravity of the logical sum of the first and second inference results.
JP1113892A 1992-01-24 1992-01-24 Method of charging battery Pending JPH05244729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1113892A JPH05244729A (en) 1992-01-24 1992-01-24 Method of charging battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1113892A JPH05244729A (en) 1992-01-24 1992-01-24 Method of charging battery

Publications (1)

Publication Number Publication Date
JPH05244729A true JPH05244729A (en) 1993-09-21

Family

ID=11769664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1113892A Pending JPH05244729A (en) 1992-01-24 1992-01-24 Method of charging battery

Country Status (1)

Country Link
JP (1) JPH05244729A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245403A (en) * 1993-02-13 1994-09-02 Japan Storage Battery Co Ltd Storage battery charger
JPH08308018A (en) * 1995-04-28 1996-11-22 Honda Motor Co Ltd Generation controller for hybrid vehicle
US5714866A (en) * 1994-09-08 1998-02-03 National Semiconductor Corporation Method and apparatus for fast battery charging using neural network fuzzy logic based control
US5739673A (en) * 1996-02-27 1998-04-14 Sgs-Thomson Microelectronics S.A. Control device for the charging of at least one battery
US5825156A (en) * 1995-10-31 1998-10-20 U.S. Philips Corporation System for monitoring charging/discharging cycles of a rechargeable battery, and host device including a smart battery
US6064180A (en) * 1996-10-29 2000-05-16 General Motors Corporation Method and apparatus for determining battery state-of-charge using neural network architecture
US6075347A (en) * 1998-02-28 2000-06-13 Makita Corporation Battery charger and charging method
US6124698A (en) * 1998-06-09 2000-09-26 Makita Corporation Battery charger
US6204640B1 (en) 1999-03-26 2001-03-20 Makita Corporation Battery charger and battery charging method
US6225786B1 (en) 1999-03-25 2001-05-01 Makita Corporation Battery charger
US6275009B1 (en) 1999-11-10 2001-08-14 Makita Corporation Battery charging device
US6373228B1 (en) 1999-11-10 2002-04-16 Makita Corporation Battery charging device
US6404167B1 (en) 1999-11-10 2002-06-11 Makita Corporation Battery charging device
US6476584B2 (en) 1999-03-25 2002-11-05 Makita Corporation Battery charger and battery charging method
JP2009044946A (en) * 2007-07-13 2009-02-26 Sanyo Electric Co Ltd Method for charging battery pack
JP2015050041A (en) * 2013-09-02 2015-03-16 ソニー株式会社 Battery pack and electric vehicle
JP2019103384A (en) * 2017-12-07 2019-06-24 國家中山科學研究院 Dynamic balance method of high voltage battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245403A (en) * 1993-02-13 1994-09-02 Japan Storage Battery Co Ltd Storage battery charger
US5714866A (en) * 1994-09-08 1998-02-03 National Semiconductor Corporation Method and apparatus for fast battery charging using neural network fuzzy logic based control
JPH08308018A (en) * 1995-04-28 1996-11-22 Honda Motor Co Ltd Generation controller for hybrid vehicle
US5825156A (en) * 1995-10-31 1998-10-20 U.S. Philips Corporation System for monitoring charging/discharging cycles of a rechargeable battery, and host device including a smart battery
US5739673A (en) * 1996-02-27 1998-04-14 Sgs-Thomson Microelectronics S.A. Control device for the charging of at least one battery
US6064180A (en) * 1996-10-29 2000-05-16 General Motors Corporation Method and apparatus for determining battery state-of-charge using neural network architecture
US6204641B1 (en) 1998-02-28 2001-03-20 Makita Corporation Battery charger and charging method
US6075347A (en) * 1998-02-28 2000-06-13 Makita Corporation Battery charger and charging method
US6124698A (en) * 1998-06-09 2000-09-26 Makita Corporation Battery charger
US6225786B1 (en) 1999-03-25 2001-05-01 Makita Corporation Battery charger
US6476584B2 (en) 1999-03-25 2002-11-05 Makita Corporation Battery charger and battery charging method
US6204640B1 (en) 1999-03-26 2001-03-20 Makita Corporation Battery charger and battery charging method
USRE39691E1 (en) * 1999-03-26 2007-06-12 Makita Corporation Battery charger and battery charging method
US6275009B1 (en) 1999-11-10 2001-08-14 Makita Corporation Battery charging device
US6373228B1 (en) 1999-11-10 2002-04-16 Makita Corporation Battery charging device
US6404167B1 (en) 1999-11-10 2002-06-11 Makita Corporation Battery charging device
JP2009044946A (en) * 2007-07-13 2009-02-26 Sanyo Electric Co Ltd Method for charging battery pack
JP2015050041A (en) * 2013-09-02 2015-03-16 ソニー株式会社 Battery pack and electric vehicle
CN105518924A (en) * 2013-09-02 2016-04-20 索尼公司 Battery apparatus and electric vehicle
CN105518924B (en) * 2013-09-02 2018-09-14 索尼公司 Battery apparatus and electric vehicle
JP2019103384A (en) * 2017-12-07 2019-06-24 國家中山科學研究院 Dynamic balance method of high voltage battery

Similar Documents

Publication Publication Date Title
JPH05244729A (en) Method of charging battery
JP3879981B2 (en) Charge control device for secondary battery
US9086463B2 (en) Power supply apparatus
EP0964497B1 (en) Battery charger
US6495992B1 (en) Method and apparatus for charging batteries utilizing heterogeneous reaction kinetics
JP3198439B2 (en) Method and apparatus for charging a rechargeable battery
JPH0638394A (en) Charger for secondary battery
GB2413226A (en) Battery charge management
JPH08136629A (en) Device for diagnosing service life of battery
EA000240B1 (en) Control and termination of a battery charging process
JPH07105981A (en) Charging method for secondary battery
JP4188981B2 (en) Nickel metal hydride storage battery charging method and charging apparatus for executing the charging method
JP3979628B2 (en) Secondary battery charge control method and secondary battery charge control device
JP3092394B2 (en) Secondary battery charging method and device
JP2002044879A (en) Charging method and apparatus of secondary battery
JP2906862B2 (en) Battery charging method
JPH04281340A (en) Battery charge controller
JPH0479732A (en) Boosting charger
JPH08308131A (en) Battery charger with battery temperature control means
JPH0415582A (en) Battery consumption display device
JP2569795B2 (en) Battery charge control device
JP2928439B2 (en) Secondary battery charge detection method and device
JPH05153735A (en) Charging method for secondary battery
JPH06242195A (en) Estimating device for holding time of battery
JPH01129724A (en) Charge controller for vehicle generator