JPH05244611A - Solid-state color image pickup device - Google Patents

Solid-state color image pickup device

Info

Publication number
JPH05244611A
JPH05244611A JP4277040A JP27704092A JPH05244611A JP H05244611 A JPH05244611 A JP H05244611A JP 4277040 A JP4277040 A JP 4277040A JP 27704092 A JP27704092 A JP 27704092A JP H05244611 A JPH05244611 A JP H05244611A
Authority
JP
Japan
Prior art keywords
signal
light receiving
field
solid
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4277040A
Other languages
Japanese (ja)
Other versions
JPH0834590B2 (en
Inventor
Yasushi Watanabe
恭志 渡辺
Kazuo Hashiguchi
和夫 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4277040A priority Critical patent/JPH0834590B2/en
Publication of JPH05244611A publication Critical patent/JPH05244611A/en
Publication of JPH0834590B2 publication Critical patent/JPH0834590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To obtain a solid-state color image pickup device which can improve the resolution of a chrominance signal in horizontal and vertical directions with keeping the resolution of a luminance signal high. CONSTITUTION:At least three kinds of light-receiving elements different in a sensitive spectrum characteristic are arranged in the horizontal and vertical directions. Two light-receiving element signals adjacent in the vertical direction are added, the combination of addition is alternately shifted by one element in the vertical direction at every field and respective addition signals are sequentially read so as to form an output signal. A omitted signal component in said output signal is interpolated by a signal obtained by delaying the output signal by one field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フィルタが2次元に配
列された固体撮像素子を1個用いてカラービデオ信号を
得る単板カラー撮像装置に関し、特に水平及び垂直両方
向の解像度を高める手段に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single-chip color image pickup device for obtaining a color video signal by using one solid-state image pickup device having filters arranged two-dimensionally, and more particularly to a means for increasing resolution in both horizontal and vertical directions. It is a thing.

【0002】[0002]

【従来の技術】固体撮像素子を単板にてカラー化するに
は通常色フィルタを撮像素子の受光面に配置し、各色フ
ィルタと画素を対応させることにより色成分毎に別々に
空間サンプリングする手法が用いられる。この場合カラ
ービデオ信号を構成する各成分信号の解像度は色フィル
タ配列と信号処理の手法により大幅に変化する。なお、
ビデオ信号は通常インターレース走査を行うため以下の
説明では撮像素子はインターレース読み出しを前提とす
る。
2. Description of the Related Art In order to color a solid-state image sensor with a single plate, a normal color filter is arranged on the light-receiving surface of the image sensor, and each color filter and pixel are made to correspond to each other to perform spatial sampling separately for each color component. Is used. In this case, the resolution of each component signal forming the color video signal greatly changes depending on the color filter array and the signal processing method. In addition,
Since the video signal normally performs interlaced scanning, the following description assumes that the image sensor is interlaced readout.

【0003】高い解像度を得るため従来良く知られてい
る色フィルタ配列は、視覚的に高い解像度が求められる
輝度信号の大半を占める緑色(G)フィルタを市松状に
配し、残りの位置に赤色(R)フィルタと青色(B)フ
ィルタを一定周期で配したものであり、図1(a)に示
すベイヤー配列ではRフィルタとBフィルタが走査線周
期で垂直方向に交互し、図1(b)に示すインターライ
ン配列ではRフィルタとBフィルタが2垂直列毎に水平
方向に交互する。これらの場合輝度信号は高い解像度が
得られるが、色信号はR信号,B信号とも解像度は不十
分である。即ちベイヤー配列ではR信号,B信号とも交
互に1水平走査期間(1H)毎に欠落するため1H遅延
した信号によって交互に補間する必要があるが、このた
め垂直解像度は低くなる。特にインターレース読出しで
あることにより垂直方向ナイキスト限界周波数の1/2
においてさえ応答は0となる。一方、インターライン配
列ではR信号,B信号とも垂直方向での解像度の劣化は
ないが、水平方向には解像度は低く、水平方向ナイキス
ト限界周波数の1/2において応答は0となる。
In order to obtain a high resolution, a well-known color filter array has a green (G) filter, which occupies most of the luminance signal for which a visually high resolution is required, arranged in a checkered pattern, and a red color at the remaining positions. The (R) filter and the blue (B) filter are arranged at a constant cycle. In the Bayer array shown in FIG. 1A, the R filter and the B filter alternate in the scanning line cycle in the vertical direction, and In the interline arrangement shown in (), the R filters and the B filters alternate in the horizontal direction every two vertical columns. In these cases, a high resolution can be obtained for the luminance signal, but the resolution of the color signal is insufficient for both the R signal and the B signal. That is, in the Bayer array, both the R signal and the B signal are alternately missing every horizontal scanning period (1H), and therefore it is necessary to interpolate by the signal delayed by 1H, but the vertical resolution is lowered. In particular, due to interlaced readout, 1/2 of the vertical Nyquist limit frequency
Even at, the response is zero. On the other hand, in the interline array, the resolution of both the R and B signals does not deteriorate in the vertical direction, but the resolution is low in the horizontal direction, and the response becomes 0 at 1/2 of the horizontal Nyquist limit frequency.

【0004】以上はG,R,Bの3原色フィルタを用い
た場合であるが、補色フィルタを用いた場合でも基本的
には同じ問題が存在する。例えば図1(a)及び(b)
において、G→W=G+R+B(透明)、R→Cy=G
+B(シアン色)、B→Ye=G+R(黄色)とした場
合を考える。このときG信号は基底バンド成分として高
解像度の信号が得られ、又R及びB信号は変調成分とし
て得られる。しかしR及びB信号の変調される空間領域
は3原色フィルタにおけるR及びB画素の空間領域と同
じである。従って解像度に関し前記と同じ問題を生じ
る。
The above is the case of using the three primary color filters of G, R and B, but basically the same problem exists even if a complementary color filter is used. For example, FIGS. 1 (a) and 1 (b)
, G → W = G + R + B (transparent), R → Cy = G
Consider the case of + B (cyan color) and B → Ye = G + R (yellow). At this time, a high resolution signal is obtained as the G signal as the base band component, and the R and B signals are obtained as the modulation components. However, the spatial area in which the R and B signals are modulated is the same as the spatial area of the R and B pixels in the three primary color filter. Therefore, the same problem as described above occurs with respect to resolution.

【0005】[0005]

【発明の目的】本発明は以上の問題点に鑑みてなされた
ものであり、輝度信号の解像度を高く保ったまま色信号
の解像度を水平・垂直の両方向とも高くし得る固体カラ
ー撮像装置を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a solid-state color image pickup device capable of increasing the resolution of a color signal in both horizontal and vertical directions while keeping the resolution of a luminance signal high. To do.

【0006】[0006]

【発明の構成】本発明の固体カラー撮像装置は各々感応
スペクトル特性の相異なる第1の受光素子、第2の受光
素子及び第3の受光素子と、前記第2の受光素子と同じ
感応スペクトル特性を持つ第4の受光素子とから成り、
第1の水平列は前記第1の受光素子と第2の受光素子が
交互に繰り返し配列され、第2の水平列は前記第3の受
光素子と第4の受光素子が交互に繰り返し配列され、さ
らに、第3の水平列は前記第1の水平列に対し同じ受光
素子組が位相を180°移して配列され、第4の水平列
は前記第2の水平列に対し同じ受光素子組が位相を18
0°移して配列され、前記4水平列が順次繰り返し配列
されて成る固体撮像素子と、垂直方向に隣接する二つの
受光素子信号を加算し、加算の組み合わせをフィールド
毎に垂直方向に1素子交互にずらせて、各加算信号を順
次読み出し、固体撮像素子出力信号を形成する読み出し
手段と、該読み出し手段より出力される前記固体撮像素
子出力信号から、水平方向に隣接する信号の和を取り、
実時間輝度信号を形成する実時間輝度信号形成回路と、
前記固体撮像素子出力信号から、水平方向に隣接する信
号の差を取り、実時間色信号を形成する実時間色信号形
成回路と、前記固体撮像素子出力信号を1フィールド遅
延させたフィールド遅延出力信号から、水平方向に隣接
する信号の差を取り、フィールド遅延色信号を形成する
フィールド遅延色信号形成回路とを設けて成ることを特
徴とするものである。また、各々感応スペクトル特性の
相異なる第1の受光素子、第2の受光素子及び第3の受
光素子と、前記第2の受光素子と同じ感応スペクトル特
性を持つ第4の受光素子とから成り、第1の水平列は前
記第1の受光素子と第2の受光素子が交互に繰り返し配
列され、第2の水平列は前記第3の受光素子と第4の受
光素子が交互に繰り返し配列され、さらに、第3の水平
列は前記第1の水平列に対し同じ受光素子組が位相を1
80°移して配列され、第4の水平列は前記第2の水平
列に対し同じ受光素子組が位相を180°移して配列さ
れ、前記4水平列が順次繰り返し配列されて成る固体撮
像素子と、垂直方向に隣接する二つの受光素子信号を加
算し、加算の組み合わせをフィールド毎に垂直方向に1
素子交互にずらせて、各加算信号を順次読み出し、固体
撮像素子出力信号を形成する読み出し手段と、該読み出
し手段より出力される前記固体撮像素子出力信号から、
水平方向に隣接する信号の和を取り、実時間輝度信号を
形成する実時間輝度信号形成回路と、前記固体撮像素子
出力信号から、水平方向に隣接する信号の差を取り、実
時間色信号を形成する実時間色信号形成回路と、前記固
体撮像素子出力信号を1フィールド遅延させたフィール
ド遅延出力信号から、水平方向に隣接する信号の和を取
り、フィールド遅延輝度信号を形成するフィールド遅延
輝度信号形成回路と、前記固体撮像素子出力信号を1フ
ィールド遅延させたフィールド遅延出力信号から、水平
方向に隣接する信号の差を取り、フィールド遅延色信号
を形成するフィールド遅延色信号形成回路と、前記実時
間輝度信号から前記フィールド遅延輝度信号を減算して
色補正信号を形成し、該色補正信号を前記フィールド遅
延色信号に加算することにより、補正フィールド遅延色
信号を形成する補正フィールド遅延色信号形成回路とを
設けて成ることを特徴とするものである。
According to the solid-state color image pickup device of the present invention, a first light receiving element, a second light receiving element and a third light receiving element having different sensitive spectral characteristics, and the same sensitive spectral characteristic as the second light receiving element. And a fourth light receiving element having
In the first horizontal row, the first light receiving elements and the second light receiving elements are alternately arranged, and in the second horizontal row, the third light receiving elements and the fourth light receiving elements are alternately arranged. Further, in the third horizontal row, the same light receiving element set is arranged with a phase shift of 180 ° with respect to the first horizontal row, and in the fourth horizontal row, the same light receiving element set is phased with respect to the second horizontal row. 18
The solid-state image sensor, which is arranged by shifting 0 ° and the four horizontal columns are sequentially repeated, and two light-receiving element signals that are vertically adjacent to each other are added, and the combination of addition is alternated one element in the vertical direction for each field. The addition signals are sequentially read out by shifting the addition signals to form a solid-state imaging device output signal, and the solid-state imaging device output signal output from the reading device is summed to obtain a sum of horizontally adjacent signals,
A real-time luminance signal forming circuit that forms a real-time luminance signal;
A real-time color signal forming circuit that forms a real-time color signal by taking a difference between horizontally adjacent signals from the solid-state image sensor output signal, and a field delay output signal obtained by delaying the solid-state image sensor output signal by one field. Therefore, a field delay color signal forming circuit for forming a field delay color signal by taking a difference between horizontally adjacent signals is provided. In addition, it comprises a first light receiving element, a second light receiving element and a third light receiving element having different sensitive spectrum characteristics, and a fourth light receiving element having the same sensitive spectrum characteristic as the second light receiving element, In the first horizontal row, the first light receiving elements and the second light receiving elements are alternately arranged, and in the second horizontal row, the third light receiving elements and the fourth light receiving elements are alternately arranged. Further, in the third horizontal row, the same light receiving element group has the same phase as that of the first horizontal row.
A solid-state imaging device in which the fourth horizontal row is arranged by shifting by 80 °, the same light receiving element set is arranged by shifting the phase by 180 ° with respect to the second horizontal row, and the four horizontal rows are sequentially repeated. , Add two adjacent photodetector signals in the vertical direction, and set the combination of addition to 1 in the vertical direction for each field.
The elements are alternately shifted, and the addition signals are sequentially read to form a solid-state image sensor output signal, and from the solid-state image sensor output signal output from the read unit,
A real-time luminance signal forming circuit that forms a real-time luminance signal by taking the sum of horizontally adjacent signals and the difference between horizontally adjacent signals from the output signal of the solid-state imaging device is calculated to obtain a real-time color signal. A field-delayed luminance signal for forming a field-delayed luminance signal by taking a sum of horizontally adjacent signals from a real-time color signal forming circuit to be formed and a field-delayed output signal obtained by delaying the output signal of the solid-state imaging device by one field. A forming circuit and a field delay color signal forming circuit for forming a field delay color signal by subtracting a signal adjacent in the horizontal direction from a field delay output signal obtained by delaying the output signal of the solid-state image sensor by one field. The field delayed luminance signal is subtracted from the time luminance signal to form a color correction signal, and the color correction signal is added to the field delayed color signal. By and is characterized by comprising providing a correction field delay chrominance signal forming circuit for forming a corrected field delay chrominance signal.

【0007】[0007]

【実施例】図1(a)の場合R信号、B信号とも水平解
像度は高い利点を持つ。従って垂直解像度の劣化を防ぐ
手法があれば水平・垂直の両方向とも高い解像度が得ら
れる。いま図2に示すようにフィルタ配列の垂直方向繰
返し単位を1画素とし、R信号、B信号を1フィールド
前の信号によって補間したとすると、R信号、B信号と
も垂直解像度は2倍高められる。しかしながらこの場合
は、各画素の信号を読み出す周期は図3(a)に示すよ
うに1フレーム(2フィールド)であり、1フレーム期
間積分した信号である。従って実時間信号と1フィール
ド期間(1F)遅延した信号との間には最大3フィール
ドに及ぶ時間差が生じ、動きのある光像を撮像した場合
には補間した色信号が実信号と大きくずれることにより
色割れ現象が顕著となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the case of FIG. 1A, the horizontal resolution of both the R signal and the B signal has a great advantage. Therefore, if there is a method to prevent deterioration of vertical resolution, high resolution can be obtained in both horizontal and vertical directions. As shown in FIG. 2, assuming that the vertical repeating unit of the filter array is one pixel and the R signal and the B signal are interpolated by the signal one field before, the vertical resolution of the R signal and the B signal is doubled. However, in this case, the period for reading out the signal of each pixel is one frame (two fields) as shown in FIG. 3A, which is a signal integrated for one frame period. Therefore, a time difference of up to 3 fields occurs between the real-time signal and the signal delayed by one field period (1F), and when capturing a moving optical image, the interpolated color signal is significantly deviated from the real signal. As a result, the color breakup phenomenon becomes remarkable.

【0008】以上の問題を解決するには、光像の積分期
間を半分の1フィールドとするフィールド読み出しと
し、実時間信号と1F遅延信号の時間差を小さくすれば
良い。これにより図3(b)に示すように実時間信号と
1F遅延信号との時間差は最大でも2フィールドになる
とともに、積分期間が1/2となったことによって時間
分機能が向上する。さらに、フィールド読出しにおいて
もなお存在するフィールド補間に伴なう偽信号には後述
するように、補正信号が容易に得られるから色割れ現象
は実質的になしとすることが可能である。
In order to solve the above problem, it is sufficient to perform field reading in which the integration period of the optical image is half of one field and reduce the time difference between the real-time signal and the 1F delay signal. As a result, as shown in FIG. 3B, the time difference between the real-time signal and the 1F delay signal is at most 2 fields, and the integration period is halved, so that the time function is improved. Further, even in the field reading, the false signal associated with the field interpolation which still exists can obtain the correction signal easily, as described later, so that the color splitting phenomenon can be substantially eliminated.

【0009】図4(a)及び(b)は、フィールド読出
しを行い、かつフィールド補間を可能とする本発明に関
連する色フィルタ配列の例を示したものである。これら
はともに4種の絵素を用い、そのうちの1種は他の3種
の分光特性を加算した、ないしその定数倍の分光特性を
備えており、4水平列毎の繰り返し単位で配列されたも
のである。なおMaはR+Bより構成されるマゼンタ色
のフィルタである。また図4(a)ではYe,Cyの間
で、(b)ではB,Rの間で配列を入れ替えても信号処
理及び画質は同様である。図4(a)及び(b)とも
に、奇数フィールドでは偶数番目水平列とその上の奇数
番目水平列間で上下2画素信号を加算し、偶数フィール
ドでは偶数番目水平列とその下の奇数番目水平列間で上
下2画素信号を加算する。これにより各画素信号はフィ
ールド周期で取り出されフィールド読出しとなる。さら
にこのとき以下のようにしてフィールド補間が有用とな
る。図4(a)では奇数フィールドではR−(G+B)
信号がナイキスト限界周波数(fN)で変調され、3
(R+G+B)信号が基底バンド信号となる。基底バン
ド信号の帯域はfNまで存在するが、fN近傍に存在する
変調成分を除去するためfNより若干狭い帯域とする。
この場合でも十分広い帯域であり高解像度信号となる。
偶数フィールドではB−(G+R)信号がfNで変調さ
れ、3(R+G+B)信号が基底バンド信号となる。以
上より基底バンド信号の1/3より広帯域のR+G+B
よりなる輝度信号が常時得られるとともに、変調信号に
輝度信号を加算し1/2倍することにより水平解像度の
高いR信号とB信号がフィールド周期で交互に得られ
る。よって1F遅延回路によってフィールド補間するこ
とにより、垂直解像度を劣化させることなく高い水平解
像度のR信号とB信号が常に得られる。
FIGS. 4A and 4B show an example of a color filter array related to the present invention which enables field reading and field interpolation. These both use four types of picture elements, one of which has the spectral characteristic of the other three types added or has a spectral characteristic which is a constant multiple thereof, and arranged in a repeating unit of every four horizontal rows. It is a thing. Ma is a magenta filter composed of R + B. Further, the signal processing and the image quality are the same even if the arrangement is switched between Ye and Cy in FIG. 4A and between B and R in FIG. 4B. 4A and 4B, in the odd field, the upper and lower two pixel signals are added between the even-numbered horizontal column and the odd-numbered horizontal column above it, and in the even-numbered field, the even-numbered horizontal column and the odd-numbered horizontal column below it. The upper and lower two pixel signals are added between the columns. As a result, each pixel signal is taken out in the field cycle and the field is read out. Further, at this time, field interpolation becomes useful as follows. In FIG. 4A, R- (G + B) in the odd field
The signal is modulated at the Nyquist limit frequency (f N ) and 3
The (R + G + B) signal becomes the base band signal. Band of the base band signal is present to f N, but slightly narrower bandwidth than f N for removing a modulation component present in the vicinity f N.
Even in this case, the band is sufficiently wide and a high resolution signal is obtained.
In the even field, the B- (G + R) signal is modulated with f N , and the 3 (R + G + B) signal becomes the base band signal. From the above, R + G + B having a wider band than 1/3 of the baseband signal
The luminance signal is always obtained, and by adding the luminance signal to the modulation signal and halving the luminance signal, the R signal and the B signal with high horizontal resolution are alternately obtained in the field cycle. Therefore, by performing the field interpolation by the 1F delay circuit, the R signal and the B signal of high horizontal resolution can always be obtained without deteriorating the vertical resolution.

【0010】図4(b)では、奇数フィールドでは2R
信号がfNで変調され、2(R+G+B)信号が基底バ
ンド信号となる。同様に偶数フィールドでは2B信号が
Nで変調され2(R+G+B)信号が基底バンド信号
となる。従って基底バンド信号の1/2よりR+G+B
よりなる輝度信号が常時得られる。一方R信号とB信号
は変調信号の1/2からフィールド周期で交互に得られ
るから、1F遅延回路によってフィールド補間すること
により水平・垂直方向とも高い解像度のR信号とB信号
が常に得られることになる。
In FIG. 4B, 2R is used in the odd field.
The signal is modulated with f N and the 2 (R + G + B) signal becomes the base band signal. Similarly, in the even field, the 2B signal is modulated by f N and the 2 (R + G + B) signal becomes the base band signal. Therefore, R + G + B from 1/2 of the base band signal
The luminance signal is always obtained. On the other hand, since the R signal and the B signal are alternately obtained from 1/2 of the modulation signal in the field cycle, the R signal and the B signal with high resolution can be always obtained in the horizontal and vertical directions by performing the field interpolation by the 1F delay circuit. become.

【0011】以上述べたフィールド読出しにおいても、
フレーム読出し程ではないがフィールド補間を行なうと
動きのある光像に対し偽信号が生じる。即ち例えば図5
に示すように白色光像が時間的に変動した場合、フィー
ルド番号2ではR信号が欠落するため白色像がシアン色
になり、フィールド番号5ではB信号が余分となるため
黒色像が青色となる。この現象は以下のようにして解消
される。輝度信号は各フィールドにおいて実時間で得ら
れるから輝度実時間信号Y(0F)から輝度1F遅延信
号Y(1F)を減算し、フィールド補正信号Y(0F)
−Y(1F)を形成する。このフィールド補正信号をフ
ィールド遅延した色信号に加算すると、丁度前記偽信号
が消去され、正常な色信号が得られる。
Even in the field reading described above,
When field interpolation is performed, which is less than that of frame reading, a false signal is generated for a moving optical image. That is, for example, in FIG.
When the white light image temporally fluctuates as shown in FIG. 5, the R signal is lost in the field number 2 and the white image becomes cyan, and in the field number 5, the B signal becomes redundant and the black image becomes blue. .. This phenomenon is resolved as follows. Since the luminance signal is obtained in real time in each field, the luminance 1F delay signal Y (1F) is subtracted from the luminance real-time signal Y (0F) to obtain the field correction signal Y (0F).
-Y (1F) is formed. When this field correction signal is added to the field-delayed color signal, the false signal is just deleted and a normal color signal is obtained.

【0012】図6は以上に示した例を実現するための回
路ブロック図を示したもので、図4(a)の色フィルタ
配列に適合するものである。まず、図4(a)の色フィ
ルタを備えた固体撮像素子1からの信号は分岐され、一
方は直接他方は1F遅延回路2を介して、サンプルホー
ルド回路3、4ないし5、6へ導かれる。奇数フィール
ドでは、上記回路3でYe+Ma,回路4でCy+w、
回路5でCy+Ma、回路6でYe+W信号が夫々サン
プルホールドされ、偶数フィールドでは、回路3でCy
+Ma,回路4でYe+W,回路5でYe+Ma,回路
6でCy+W信号が夫々サンプルホールドされる。回路
3及び4からの信号は一方は両者が加算され1/3倍さ
れてR+G+B信号7が得られ、他方は回路3の出力か
ら回路4の出力が減算され、奇数フィールドでR−C
y,偶数フィールドでB−Yeとなる信号8が得られ
る。同様にして回路5及び6の出力信号から加算と1/
3倍によりR+G+B信号が、減算により奇数フィール
ドでB−Ye、偶数フィールドでR−Cyとなる信号1
0が得られる。
FIG. 6 shows a circuit block diagram for realizing the above-mentioned example, which is suitable for the color filter array of FIG. 4 (a). First, a signal from the solid-state image sensor 1 having the color filter shown in FIG. 4A is branched, and one of the signals is directly guided to the sample hold circuits 3, 4 to 5 and 6 through the 1F delay circuit 2. .. In the odd field, the circuit 3 has Ye + Ma, the circuit 4 has Cy + w,
Cy + Ma is sampled and held by the circuit 5 and Ye + W signal is sampled and held by the circuit 6, respectively.
+ Ma, the circuit 4 samples and holds the Ye + W signal, the circuit 5 samples and holds the Ye + Ma signal, and the circuit 6 samples and holds the Cy + W signal. One of the signals from the circuits 3 and 4 is added and multiplied by ⅓ to obtain an R + G + B signal 7, and the other is obtained by subtracting the output of the circuit 4 from the output of the circuit 3 to obtain R−C in the odd field.
A signal 8 of B-Ye is obtained in the y and even fields. Similarly, from the output signals of the circuits 5 and 6, addition and 1 /
Signal 1 which becomes R + G + B signal by 3 times and becomes B-Ye in odd field and R-Cy in even field by subtraction
0 is obtained.

【0013】ここでサンプルホールド信号間の加算は丁
度水平方向に隣接し合う画素信号間の和を順次取ったこ
とと同じとなり、基底バンド信号からfN近傍の成分を
除去した信号である。またサンプルホールド信号間の減
算は水平方向に隣接し合う画素信号間の差を順次取った
ことと同じとなり、fN近傍の変調成分を取り出し低域
変換したことと同じである。さて、信号7は低域変換フ
ィルタ11により帯域をfN/2に制限された後信号8
に加算されさらに1/2倍されて、奇数フィールドで
R,偶数フィールドでBとなる信号13が得られる。同
様に信号9に低域通過フィルタ12により帯域をfN
2に制限された後信号10に加算されさらに1/2倍さ
れて、奇数フィールドでB,偶数フィールドでRとなる
信号14が得られる。一方、低域通過フィルタ11及び
12の分岐された各々別の出力は前者から後者が減算さ
れ、適当な大きさに調整されてフィールド補正信号15
が得られる。この信号15を信号14に加算することに
よりフィールド補間による偽信号を消去した信号16を
得る。信号13と16はフィールド毎に交互する切換ス
イッチ17によりR信号のみ及びB信号のみに振り分け
られ、ゲイン調整されてR信号出力、B信号出力が各々
得られる。輝度信号Yは信号7をゲイン調整して得られ
る。
Here, the addition between the sample and hold signals is the same as taking the sum of the pixel signals which are adjacent to each other in the horizontal direction, and is a signal obtained by removing the component near f N from the base band signal. Further, the subtraction between the sample and hold signals is the same as the difference between the pixel signals that are adjacent to each other in the horizontal direction being sequentially obtained, and is the same as the case where the modulation component in the vicinity of f N is extracted and the low frequency conversion is performed. Now, the signal 7 has its band limited to f N / 2 by the low-pass conversion filter 11, and then the signal 8
, And further multiplied by 1/2 to obtain a signal 13 which becomes R in the odd field and B in the even field. Similarly, the band of the signal 9 is set to f N / by the low-pass filter 12.
After being limited to 2, it is added to the signal 10 and further multiplied by 1/2 to obtain a signal 14 which becomes B in the odd field and R in the even field. On the other hand, the outputs of the branched low-pass filters 11 and 12 are subtracted from the former by the latter, adjusted to an appropriate size, and the field correction signal 15 is obtained.
Is obtained. By adding this signal 15 to the signal 14, a signal 16 in which a false signal due to field interpolation is eliminated is obtained. The signals 13 and 16 are distributed to the R signal only and the B signal only by the changeover switch 17 which alternates for each field, and the gain is adjusted to obtain the R signal output and the B signal output, respectively. The luminance signal Y is obtained by adjusting the gain of the signal 7.

【0014】図7は本発明に関連する回路ブロック図の
例を示したもので、図4(b)の色フィルタ配列に適合
するものである。まず図4(b)の色フィルタを備えた
固体撮像素子1からの信号は分岐され、一方は直接他方
は1F遅延回路2を介してサンプルホールド回路18,
19ないし20,21へ導かれる。奇数フィールドでは
回路18でB+G,回路19でR+W,回路20でR+
G,回路21でB+W信号がサンプルホールドされ、偶
数フィールドでは回路18でR+G,回路19でB+
W,回路20でB+G,回路21でR+W信号がサンプ
ルホールドされる。上記回路18及び19からの信号は
一方は両者が加算されて2(R+G+B)信号22が得
られ、他方は回路19の出力から回路18の出力が減算
され、奇数フィールドでは2R,偶数フィールドでは2
Bとなる信号23が得られる。同様にして回路20及び
21の出力信号から加算により2(R+G+B)信号2
4が、減算により奇数フィールドで2B,偶数フィール
ドで2Rとなる信号25が得られる。次に信号22及び
信号24の帯域は、低域通過フィルタ26,27により
ともにfN/2に制限された後、前者から後者が減算さ
れ適当な大きさに調整されてフィールド補正信号28が
得られる。この信号を信号25に加算することによりフ
ィールド補間による偽信号を消去した信号29が得られ
る。信号23と29はフィールド毎に交互する切換スイ
ッチ30によりR信号のみ及びB信号のみに振り分けら
れ、ゲイン調整されてR出力信号,B出力信号が各々得
られる。輝度信号Yは信号22をゲイン調整して得られ
る。
FIG. 7 shows an example of a circuit block diagram related to the present invention, which is compatible with the color filter array of FIG. 4 (b). First, the signal from the solid-state imaging device 1 including the color filter shown in FIG. 4B is branched, and one of them is directly connected to the sample hold circuit 18 via the 1F delay circuit 2.
You will be led to 19 to 20, 21. In the odd field, the circuit 18 has B + G, the circuit 19 has R + W, and the circuit 20 has R + G.
G, the B + W signal is sampled and held in the circuit 21, and R + G in the circuit 18 and B + in the circuit 19 in the even field.
W, the circuit 20 samples and holds the B + G signal, and the circuit 21 samples and holds the R + W signal. One of the signals from the circuits 18 and 19 is added together to obtain a 2 (R + G + B) signal 22, and the other one is obtained by subtracting the output of the circuit 18 from the output of the circuit 19, 2R in the odd field and 2 in the even field.
A signal 23 that becomes B is obtained. Similarly, 2 (R + G + B) signal 2 is obtained by addition from the output signals of the circuits 20 and 21.
4 is subtracted to obtain a signal 25 having 2B in the odd field and 2R in the even field. Next, the bands of the signal 22 and the signal 24 are both limited to f N / 2 by the low-pass filters 26 and 27, and then the latter is subtracted from the former and adjusted to an appropriate size to obtain the field correction signal 28. Be done. By adding this signal to the signal 25, a signal 29 in which a false signal due to field interpolation is eliminated can be obtained. The signals 23 and 29 are distributed to only the R signal and only the B signal by the changeover switch 30 which alternates for each field, and the gain is adjusted to obtain the R output signal and the B output signal, respectively. The luminance signal Y is obtained by adjusting the gain of the signal 22.

【0015】図8(a)及び(b)はフィールド読出し
を行ない、かつフィールド補間を可能とする本発明によ
る一実施例の色フィルタ配列の例を示したものである。
これらはともに3種の絵素を用い、すべての絵素がG色
に感応するとともに、R色ないしB色にそれぞれ感応す
る絵素2種と、R色及びB色ともに感応するないしはど
ちらにも感応しない絵素から構成されている。なお図8
(a),(b)ともにYeとCyの間で配列を入れ替え
ても信号処理及び画質は同様である。さらに図8(b)
は(a)に対し画質は同様で、信号処理も(a)の場合
から容易に考察されるから、以下の説明では(a)の場
合についてのみ行なう。
FIGS. 8 (a) and 8 (b) show an example of a color filter array of one embodiment according to the present invention which enables field reading and field interpolation.
Both of them use 3 kinds of picture elements, all picture elements are sensitive to G color, and 2 picture elements sensitive to R color or B color respectively, and R color and B color are sensitive or both It is composed of insensitive pixels. Note that FIG.
In both (a) and (b), the signal processing and the image quality are the same even if the arrangement is switched between Ye and Cy. Further, FIG. 8 (b)
The image quality is the same as that of (a), and the signal processing can be easily considered from the case of (a). Therefore, only the case of (a) will be described below.

【0016】図8(a)の場合、輝度信号は隣接画素間
の加算Cy+Ye+2W=3R+4G+3Bから容易に
得られる。色信号は隣接画素間の差を取ることにより、
奇数フィールドでR+B,偶数フィールドでR−B信号
が得られるから、フィールド補間を用い、R=1/2
{(R+B)+(R−B)},B=1/2{(R+B)
−(R−B)}により得られる。
In the case of FIG. 8A, the luminance signal is easily obtained from the addition Cy + Ye + 2W = 3R + 4G + 3B between adjacent pixels. The color signal takes the difference between adjacent pixels,
Since R + B signals are obtained in the odd fields and RB signals in the even fields, field interpolation is used, and R = 1/2
{(R + B) + (R−B)}, B = 1/2 {(R + B)
-(R-B)}.

【0017】図9は図8(a)の場合のフィールド補間
による偽信号を解消する手法を示したものである。まず
輝度実時間信号Y(0F)から輝度1F遅延信号Y(1
F)を減算しフィールド補正信号Y(0F)ーY(1
F)を形成する。次にこの補正信号を、1F色信号がR
+Bのフィールドの時のみ1F色信号に加算する。これ
によりフィールド補間による偽信号は消去され、常に正
常な色信号が得られる。図10は図8(a)の色フィル
タ配列において上記実施例を実現するための回路ブロッ
ク図の例を示したものである。図8(a)の色フィルタ
を備えた固体撮像素子1からの信号は分岐され、一方は
直接他方は1F遅延回路2を介して、サンプルホールド
回路31,32ないし33,34へ導かれる。奇数フィ
ールドでは回路31でYe+Cy,回路32でW+W,
回路33でCy+W,回路34でYe+W信号がサンプ
ルホールドされ、偶数フィールドでは回路31でCy+
W,回路32でYe+W,回路33でYe+Cy,回路
34でW+W信号がサンプルホールドされる。回路31
及び32からの信号は一方は両者が加算されて3R+4
G+3B信号35が得られ、他方は回路32の出力から
回路33の出力が減算され、奇数フィールドでR+B,
偶数フィールドでRーBとなる信号36が得られる。同
様にして回路33及び34の出力信号から加算により3
R+4G+3B信号37が、減算により奇数フィールド
でRーB、偶数フィールドでR+Bとなる信号38が得
られる。次に信号35及び信号37の帯域は低域通過フ
ィルタ39,40によりともにfN/2に制限された
後、前者から後者が減算され適当な大きさに調整されて
スイッチ回路41へ導かれる。スイッチ回路41では信
号38がR+Bとなるフィールドでオンとなり、フィー
ルド補正信号が信号38へ加算されて、信号42が得ら
れる。信号36と信号42は一方は両者が加算されて2
R信号43が得られ、他方は信号36から信号42が減
算されてフィールド毎に符号が反転する2B信号が得ら
れる。この減算信号は同期検波回路44により常に正符
号とされる。以上より信号35,信号43及び同期検波
回路44からの信号がそれぞれゲイン調整されて、Y,
R,B各信号が得られる。
FIG. 9 shows a method for eliminating the false signal by the field interpolation in the case of FIG. 8 (a). First, from the luminance real-time signal Y (0F) to the luminance 1F delay signal Y (1
Field correction signal Y (0F) -Y (1
F) is formed. Next, this correction signal is converted to R for the 1F color signal.
It is added to the 1F color signal only in the + B field. As a result, the false signal due to the field interpolation is erased, and a normal color signal is always obtained. FIG. 10 shows an example of a circuit block diagram for realizing the above-mentioned embodiment in the color filter array of FIG. A signal from the solid-state image sensor 1 including the color filter shown in FIG. 8A is branched, and one of the signals is directly guided to the sample hold circuits 31, 32 to 33, 34 through the 1F delay circuit 2. In the odd field, the circuit 31 has Ye + Cy, the circuit 32 has W + W,
The circuit 33 samples and holds the Cy + W signal, and the circuit 34 samples and holds the Ye + W signal.
W, the circuit 32 samples and holds the signal Ye + W, the circuit 33 samples Ye + Cy, and the circuit 34 samples and holds the W + W signal. Circuit 31
One of the signals from 32 and 32 is 3R + 4
A G + 3B signal 35 is obtained, and the other one subtracts the output of the circuit 33 from the output of the circuit 32 to obtain R + B,
A signal 36 that is RB in the even field is obtained. Similarly, by adding from the output signals of the circuits 33 and 34,
The R + 4G + 3B signal 37 is subtracted to obtain a signal 38 that is R−B in the odd field and R + B in the even field. Next, the bands of the signal 35 and the signal 37 are both limited to f N / 2 by the low-pass filters 39 and 40, the latter is subtracted from the former, adjusted to an appropriate size, and guided to the switch circuit 41. The switch circuit 41 is turned on in the field where the signal 38 becomes R + B, the field correction signal is added to the signal 38, and the signal 42 is obtained. One of the signals 36 and 42 is the sum of the two
The R signal 43 is obtained, and on the other hand, the signal 42 is subtracted from the signal 36 to obtain a 2B signal whose sign is inverted for each field. The subtraction signal is always a positive sign by the synchronous detection circuit 44. From the above, the gains of the signal 35, the signal 43, and the signal from the synchronous detection circuit 44 are respectively adjusted, and Y,
R and B signals are obtained.

【0018】[0018]

【発明の効果】以上述べたように、本発明によれば輝度
信号は水平・垂直方向ともに高い解像度を保った上で、
2つの色信号は水平解像度を高く取り、垂直解像度もフ
ィールド補間によって高く保つことが可能となる。また
フィールド補間による時間変動画像に対する偽信号も消
去することが可能であり、動的にも高画質の撮像信号を
得ることが可能である。
As described above, according to the present invention, the luminance signal maintains high resolution in both the horizontal and vertical directions, and
The two color signals have a high horizontal resolution, and the vertical resolution can be kept high by field interpolation. Further, it is possible to eliminate a false signal for a time-varying image by field interpolation, and it is possible to dynamically obtain a high quality image pickup signal.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は従来の固体カラー撮像装置に
おける色フィルタ配列の構成図である。
1A and 1B are configuration diagrams of a color filter array in a conventional solid-state color imaging device.

【図2】従来の固体カラー撮像装置における色フィルタ
配列の構成図である。
FIG. 2 is a configuration diagram of a color filter array in a conventional solid-state color imaging device.

【図3】固体カラー撮像装置における信号読み出しのタ
イミングを従来の場合と本発明における場合とで比較し
た図である。
FIG. 3 is a diagram comparing timings of signal reading in a solid-state color imaging device between a conventional case and a case of the present invention.

【図4】(a),(b)は本発明に関連する色フィルタ
配列の構成図である。
4A and 4B are configuration diagrams of a color filter array related to the present invention.

【図5】偽信号の消去法を説明するための図である。FIG. 5 is a diagram for explaining a method of eliminating a false signal.

【図6】図4(a)に対応する回路ブロック図である。FIG. 6 is a circuit block diagram corresponding to FIG.

【図7】図4(b)に対応する回路ブロック図である。FIG. 7 is a circuit block diagram corresponding to FIG.

【図8】(a),(b)は本発明による色フィルタ配列
の構成図である。
8A and 8B are configuration diagrams of a color filter array according to the present invention.

【図9】偽信号の消去法を説明するための図である。FIG. 9 is a diagram for explaining a method of eliminating a false signal.

【図10】図8(a)に対応し、本発明の一実施例を示
す回路ブロック図である。
FIG. 10 is a circuit block diagram corresponding to FIG. 8A and showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 固体カラー撮像素子 2 1F遅延回路 31,32,33,34 サンプルホールド回路 39,40 低域通過フィルタ 41 スイッチ回路 44 同期検波回路 1 Solid Color Imaging Device 2 1F Delay Circuit 31, 32, 33, 34 Sample Hold Circuit 39, 40 Low Pass Filter 41 Switch Circuit 44 Synchronous Detection Circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 各々感応スペクトル特性の相異なる第1
の受光素子、第2の受光素子及び第3の受光素子と、前
記第2の受光素子と同じ感応スペクトル特性を持つ第4
の受光素子とから成り、第1の水平列は前記第1の受光
素子と第2の受光素子が交互に繰り返し配列され、第2
の水平列は前記第3の受光素子と第4の受光素子が交互
に繰り返し配列され、さらに、第3の水平列は前記第1
の水平列に対し同じ受光素子組が位相を180゜移して
配列され、第4の水平列は前記第2の水平列に対し同じ
受光素子組が位相を180゜移して配列され、前記4水
平列が順次繰り返し配列されて成る固体撮像素子と、 垂直方向に隣接する二つの受光素子信号を加算し、加算
の組み合わせをフィールド毎に垂直方向に1素子交互に
ずらせて、各加算信号を順次読み出し、固体撮像素子出
力信号を形成する読み出し手段と、 該読み出し手段より出力される前記固体撮像素子出力信
号から、水平方向に隣接する信号の和を取り、実時間輝
度信号を形成する実時間輝度信号形成回路と、前記固体
撮像素子出力信号から、水平方向に隣接する信号の差を
取り、実時間色信号を形成する実時間色信号形成回路
と、 前記固体撮像素子出力信号を1フィールド遅延させたフ
ィールド遅延出力信号から、水平方向に隣接する信号の
差を取り、フィールド遅延色信号を形成するフィールド
遅延色信号形成回路と、 を設けて成ることを特徴とする固体カラー撮像装置。
1. A first device having different sensitive spectrum characteristics.
A second light receiving element, a third light receiving element, and a fourth light receiving element having the same sensitivity spectrum characteristic as the second light receiving element.
The second horizontal light receiving elements are alternately and repeatedly arranged in the first horizontal row.
In the horizontal row, the third light receiving elements and the fourth light receiving elements are alternately and repeatedly arranged, and the third horizontal row is arranged in the first horizontal row.
The same light receiving element set is arranged 180 degrees out of phase with respect to the horizontal row, and the fourth horizontal row is arranged with the same light receiving element set 180 degrees out of phase in the second horizontal row. A solid-state image sensor consisting of a series of columns arranged in sequence is added to two vertically adjoining light-receiving element signals, and the combination of addition is staggered one element in the vertical direction alternately in each field, and each addition signal is read out sequentially. A read-out means for forming a solid-state image sensor output signal, and a real-time brightness signal for forming a real-time brightness signal by taking the sum of signals adjacent in the horizontal direction from the solid-state image sensor output signal output from the read-out means A forming circuit, a real-time color signal forming circuit that forms a real-time color signal by taking a difference between horizontally adjacent signals from the solid-state image sensor output signal, and the solid-state image sensor output signal as one filter. From the field delayed output signal obtained by field delays, taking the difference of the signals adjacent in the horizontal direction, the solid-state color imaging apparatus comprising: the field delay chrominance signal forming circuit for forming a field delay chrominance signal, characterized by comprising providing a.
【請求項2】 各々感応スペクトル特性の相異なる第1
の受光素子、第2の受光素子及び第3の受光素子と、前
記第2の受光素子と同じ感応スペクトル特性を持つ第4
の受光素子とから成り、第1の水平列は前記第1の受光
素子と第2の受光素子が交互に繰り返し配列され、第2
の水平列は前記第3の受光素子と第4の受光素子が交互
に繰り返し配列され、さらに、第3の水平列は前記第1
の水平列に対し同じ受光素子組が位相を180゜移して
配列され、第4の水平列は前記第2の水平列に対し同じ
受光素子組が位相を180゜移して配列され、前記4水
平列が順次繰り返し配列されて成る固体撮像素子と、 垂直方向に隣接する二つの受光素子信号を加算し、加算
の組み合わせをフィールド毎に垂直方向に1素子交互に
ずらせて、各加算信号を順次読み出し、固体撮像素子出
力信号を形成する読み出し手段と、 該読み出し手段より出力される前記固体撮像素子出力信
号から、水平方向に隣接する信号の和を取り、実時間輝
度信号を形成する実時間輝度信号形成回路と、前記固体
撮像素子出力信号から、水平方向に隣接する信号の差を
取り、実時間色信号を形成する実時間色信号形成回路
と、 前記固体撮像素子出力信号を1フィールド遅延させたフ
ィールド遅延出力信号から、水平方向に隣接する信号の
和を取り、フィールド遅延輝度信号を形成するフィール
ド遅延輝度信号形成回路と、 前記固体撮像素子出力信号を1フィールド遅延させたフ
ィールド遅延出力信号から、水平方向に隣接する信号の
差を取り、フィールド遅延色信号を形成するフィールド
遅延色信号形成回路と、 前記実時間輝度信号から前記フィールド遅延輝度信号を
減算して色補正信号を形成し、該色補正信号を前記フィ
ールド遅延色信号に加算することにより、補正フィール
ド遅延色信号を形成する補正フィールド遅延色信号形成
回路と、 を設けて成ることを特徴とする固体カラー撮像装置。
2. A first device having different sensitive spectral characteristics.
A second light receiving element, a third light receiving element, and a fourth light receiving element having the same sensitivity spectrum characteristic as the second light receiving element.
The second horizontal light receiving elements are alternately and repeatedly arranged in the first horizontal row.
In the horizontal row, the third light receiving elements and the fourth light receiving elements are alternately and repeatedly arranged, and the third horizontal row is arranged in the first horizontal row.
The same light receiving element set is arranged 180 degrees out of phase with respect to the horizontal row, and the fourth horizontal row is arranged with the same light receiving element set 180 degrees out of phase in the second horizontal row. A solid-state image sensor consisting of a series of columns arranged in sequence is added to two vertically adjoining light-receiving element signals, and the combination of addition is staggered one element in the vertical direction alternately in each field, and each addition signal is read out sequentially. A read-out means for forming a solid-state image sensor output signal, and a real-time brightness signal for forming a real-time brightness signal by taking the sum of signals adjacent in the horizontal direction from the solid-state image sensor output signal output from the read-out means A forming circuit, a real-time color signal forming circuit that forms a real-time color signal by taking a difference between horizontally adjacent signals from the solid-state image sensor output signal, and the solid-state image sensor output signal as one filter. Field delay luminance signal forming circuit for forming a field delay luminance signal by summing horizontally adjacent signals from the field delayed output signal delayed by the field delay, and a field delay obtained by delaying the output signal of the solid-state imaging device by one field. A field delay chrominance signal forming circuit that forms a field delay chrominance signal by taking the difference between horizontally adjacent signals from the output signal, and a color correction signal by subtracting the field delay luminosity signal from the real-time luminance signal Then, a correction field delay color signal forming circuit for forming a correction field delay color signal by adding the color correction signal to the field delay color signal is provided.
JP4277040A 1992-10-15 1992-10-15 Solid color imaging device Expired - Lifetime JPH0834590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4277040A JPH0834590B2 (en) 1992-10-15 1992-10-15 Solid color imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4277040A JPH0834590B2 (en) 1992-10-15 1992-10-15 Solid color imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58177477A Division JPS6068788A (en) 1983-09-24 1983-09-24 Solid-state color image pickup device

Publications (2)

Publication Number Publication Date
JPH05244611A true JPH05244611A (en) 1993-09-21
JPH0834590B2 JPH0834590B2 (en) 1996-03-29

Family

ID=17577948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4277040A Expired - Lifetime JPH0834590B2 (en) 1992-10-15 1992-10-15 Solid color imaging device

Country Status (1)

Country Link
JP (1) JPH0834590B2 (en)

Also Published As

Publication number Publication date
JPH0834590B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US4246601A (en) Solid-state color imaging device
US4245241A (en) Solid-state color imaging device
JPH0628450B2 (en) Solid-state imaging device
US4907074A (en) Image pickup apparatus having color separation filters and forming line-sequential luminance and color-difference signals
JPS6351437B2 (en)
JPS62190993A (en) Solid-state image pickup device
JPH06339145A (en) Color image pickup device
JPH0523114B2 (en)
JPH05244611A (en) Solid-state color image pickup device
JP3483732B2 (en) Color imaging device
JPS5875393A (en) Single plate type color image pickup device
JP2655436B2 (en) Color solid-state imaging device
JPH05304679A (en) Level balancing circuit for signal processing circuit for color camera
JP2922911B2 (en) Solid color camera
JP2797752B2 (en) Color solid-state imaging device
JP2585461B2 (en) Solid color camera
JPH07107496A (en) Solid state image pickup device
JP3422027B2 (en) Luminance balance circuit in color camera and signal processing circuit thereof
JPS59154891A (en) Single board color image pickup device
JP2725265B2 (en) Solid-state imaging device
JPS6276884A (en) Solid-state image pickup device
JPH10336685A (en) Color image pickup device
JPS59153391A (en) Solid-state color image pickup device
JPS62104290A (en) Image pickup device
JPH0139273B2 (en)