JPH05243660A - Short wavelength laser light source and manufacture thereof - Google Patents

Short wavelength laser light source and manufacture thereof

Info

Publication number
JPH05243660A
JPH05243660A JP4531892A JP4531892A JPH05243660A JP H05243660 A JPH05243660 A JP H05243660A JP 4531892 A JP4531892 A JP 4531892A JP 4531892 A JP4531892 A JP 4531892A JP H05243660 A JPH05243660 A JP H05243660A
Authority
JP
Japan
Prior art keywords
wavelength
solid
light source
laser medium
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4531892A
Other languages
Japanese (ja)
Other versions
JP3018717B2 (en
Inventor
Shigeru Omori
繁 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4531892A priority Critical patent/JP3018717B2/en
Publication of JPH05243660A publication Critical patent/JPH05243660A/en
Application granted granted Critical
Publication of JP3018717B2 publication Critical patent/JP3018717B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a constitution for obtaining a maximum oscillating efficiency and stability of an output by a temperature control at one position at the time of operating and a method for manufacturing the same in a short- wavelength laser light source having a semiconductor laser, a solid state laser medium, a wavelength transducer and a pair of reflecting mirrors. CONSTITUTION:A solid state laser medium 3, a wavelength transducer 5 and a reflecting mirror 6 are respectively adhered to holders 12, 13, 14 having protrusions, so assembled that the protrusions are inserted into grooves 11 formed in a module housing 10, regulated to an optimum position at a predetermined temperature and then fixed. With such a structure, states at the times of assembling and operating become equal, and a maximum oscillating efficiency and stability of an output are obtained by temperature-controlling only the housing 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光記録再生、光計測等
に用いられるレ−ザ光源に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser light source used for optical recording / reproduction, optical measurement and the like.

【0002】[0002]

【従来の技術】従来の短波長レ−ザ光源としては、例え
ば、黒田、久保田:光学、19、136、1990に示
されている。
2. Description of the Related Art A conventional short-wavelength laser light source is shown in, for example, Kuroda and Kubota: Optics, 19, 136, 1990.

【0003】図4は、従来の短波長レ−ザ光源の構成を
示したもので、1は波長0.809μmのレ−ザ光を発
生させる半導体レ−ザチップ、2は半導体レ−ザマウン
ト、3は固体レ−ザ媒質として例えばNd:YVO4であ
り、4で示した面には波長0.809μmに対しては透
過率99.5%、波長1.064μmおよび波長0.53
2μmに対しては反射率99.9%のコーティングが施
されている。5は波長変換素子として例えばKTP、6
は反射鏡であり、7で示した凹面部分に波長0.532
μmに対しては透過率99.9%、波長1.064μmに
対しては反射率99.9%の、コーティングが施されて
いる。8は波長0.532μmを選択的に透過させるフ
ィルターである。これら半導体レーザマウント2、固体
レ−ザ媒質3、波長変換素子5および反射鏡6は最適位
置に光軸調整され、ネジもしくは接着剤を用いてモジュ
ール筐体26に固定されている。
FIG. 4 shows the structure of a conventional short wavelength laser light source, where 1 is a semiconductor laser chip for generating laser light having a wavelength of 0.809 μm, 2 is a semiconductor laser mount, and 3 is a semiconductor laser mount. Is a solid-state laser medium such as Nd: YVO 4 , and the surface indicated by 4 has a transmittance of 99.5% for a wavelength of 0.809 μm, a wavelength of 1.064 μm and a wavelength of 0.53.
A coating having a reflectance of 99.9% is applied to 2 μm. Reference numeral 5 denotes a wavelength conversion element such as KTP, 6
Is a reflecting mirror, and a wavelength of 0.532 is formed on the concave portion shown by 7.
The coating has a transmittance of 99.9% for μm and a reflectance of 99.9% for a wavelength of 1.064 μm. Reference numeral 8 is a filter which selectively transmits a wavelength of 0.532 μm. The semiconductor laser mount 2, the solid-state laser medium 3, the wavelength conversion element 5, and the reflecting mirror 6 have their optical axes adjusted to optimum positions, and are fixed to the module housing 26 with screws or an adhesive.

【0004】図5は、図4に示した従来の短波長レ−ザ
光源の製造工程における光軸調整方法を示している。2
は半導体レーザマウント、26はモジュール筐体、27
はモジュール筐体26を支える支柱を示す。22は本短
波長レ−ザ光源の駆動電源、23は波長0.532μm
の出力レーザ光、24は光ディテクタ、25は光パワー
メータを示す。また、28はペルチェ素子を内蔵した温
度コントロールユニット、29は温度制御回路を示す。
FIG. 5 shows an optical axis adjusting method in the manufacturing process of the conventional short wavelength laser light source shown in FIG. Two
Is a semiconductor laser mount, 26 is a module housing, 27
Indicates a column that supports the module housing 26. 22 is a power source for driving the short wavelength laser light source, and 23 is a wavelength of 0.532 μm.
Output laser light, 24 is an optical detector, and 25 is an optical power meter. Further, 28 is a temperature control unit incorporating a Peltier element, and 29 is a temperature control circuit.

【0005】以上のように構成された短波長レ−ザ光源
の光軸調整方法を説明する。図4に示したところの半導
体レーザ1は、同じく図4に示した固体レ−ザ媒質3を
励起するが、励起効率を最大にするため半導体レーザ1
の波長は固体レ−ザ媒質3の吸収ピーク(例えばNd:
YVO4の場合0.809μm)に合致させる必要があ
る。このため、半導体レーザマウント2は温度コントロ
ールユニット28および温度制御回路29により波長が
0.809μmに保たれるように温度を調整しておく。
次いで駆動電源22により前記半導体レーザに所定の電
流を流し、出力23が発生するように、また光パワーメ
ータ25のモニター値が最大となるように、モジュール
筐体26の内部に組み込んだ図4に示したところの固体
レ−ザ媒質3、波長変換素子5および反射鏡6の位置を
調整し、これらを固定する。
A method of adjusting the optical axis of the short wavelength laser light source configured as described above will be described. The semiconductor laser 1 shown in FIG. 4 pumps the solid-state laser medium 3 also shown in FIG. 4, but the semiconductor laser 1 is used to maximize the pumping efficiency.
Is the absorption peak of the solid-state laser medium 3 (for example, Nd:
In the case of YVO 4 , it must be 0.809 μm). Therefore, the temperature of the semiconductor laser mount 2 is adjusted by the temperature control unit 28 and the temperature control circuit 29 so that the wavelength is kept at 0.809 μm.
Next, a predetermined current is made to flow through the semiconductor laser by the drive power source 22, and the output 23 is generated, and the monitor value of the optical power meter 25 is maximized. The positions of the solid-state laser medium 3, the wavelength conversion element 5, and the reflecting mirror 6 shown in the figure are adjusted and fixed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら本発明者
らの検討によれば、上記のような構成による短波長レー
ザ光源では、その駆動中において、上記した理由により
半導体レーザマウント2すなわち半導体レーザ1の温度
は常に所定の値にコントロールされていなければなら
ず、一方、波長変換素子5に用いたKTPはその波長変
換効率に温度依存性が存在し、最大の効率を得るために
は波長変換素子5の温度を最適値にチューニングする必
要があり、したがって、半導体レーザ1の温度とモジュ
ール筐体26の温度は異った値に設定しなければならな
いため、半導体レーザマウント2とモジュール筐体26
の接合が非常に困難になるという課題が判明していた。
また、固体レ−ザ媒質3、波長変換素子5および反射鏡
6の最適光軸調整並びにモジュール筐体26への固定に
おいて、個々の調整裕度に相当したクリアランスを確保
した上で、熱歪による光軸ズレを発生することなく固定
することは機構設計上非常に困難な課題となっていた。
本発明は、最大の発振効率が得られ、信頼性の優れる短
波長レ−ザ光源およびその製造方法を提供することを目
的とする。
However, according to the studies made by the present inventors, in the short wavelength laser light source having the above-described structure, the semiconductor laser mount 2, that is, the semiconductor laser 1 is driven by the above-mentioned reason during its driving. The temperature must always be controlled to a predetermined value, while the KTP used in the wavelength conversion element 5 has temperature dependence in its wavelength conversion efficiency, and in order to obtain maximum efficiency, the wavelength conversion element 5 It is necessary to tune the temperature of the semiconductor laser 1 to the optimum value, and therefore the temperature of the semiconductor laser 1 and the temperature of the module housing 26 must be set to different values.
The problem was that the joining of the two becomes very difficult.
Further, in the optimum optical axis adjustment of the solid-state laser medium 3, the wavelength conversion element 5, and the reflection mirror 6 and the fixation to the module housing 26, a clearance corresponding to each adjustment margin is secured, and then thermal distortion is caused. Fixing without causing optical axis deviation has been a very difficult subject in mechanical design.
It is an object of the present invention to provide a short-wavelength laser light source having maximum oscillation efficiency and excellent reliability, and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】本発明は、短波長レ−ザ
光源の構成において、使用する半導体レーザをそのマウ
ントにてモジュール筐体へ圧入し、前記筐体と一体化し
たことを特徴とする短波長レ−ザ光源並びに、構成部品
である固体レーザ媒質、光波長変換素子および対向した
一対の鏡を、周囲に突起を有するホルダーに収めると共
に、筐体内壁に溝を設けたことを特徴とする短波長レ−
ザ光源並びに、前記した短波長レ−ザ光源において組立
を行う際、前記ホルダーの突起を前記筐体内壁の溝内に
位置させた状態で光軸調整を行い、この調整を終了後、
前記突起を前記溝内において固着させることを特徴とす
る短波長レ−ザ光源の製造方法並びに、前記した短波長
レ−ザ光源において固体レーザ媒質、光波長変換素子お
よび対向した一対の鏡の光軸調整を行う際、筐体をヒー
トシンク上に設置し、前記ヒートシンクの温度を、使用
する半導体レーザの波長が固体レーザ媒質の吸収ピーク
に合致するような前記半導体レーザの温度設定値と同一
の温度に制御することを特徴とする短波長レ−ザ光源の
製造方法。
The present invention is characterized in that in a structure of a short wavelength laser light source, a semiconductor laser to be used is press-fitted into a module housing by its mount and integrated with the housing. A short-wavelength laser light source, a solid-state laser medium which is a component, an optical wavelength conversion element, and a pair of facing mirrors are housed in a holder having a protrusion on the periphery, and a groove is provided on the inner wall of the housing. Short wavelength ray
The light source and the short wavelength laser light source are assembled, the optical axis is adjusted in a state where the protrusion of the holder is positioned in the groove of the inner wall of the housing, and after the adjustment,
A method for manufacturing a short wavelength laser light source, characterized in that the projection is fixed in the groove, and a solid laser medium, a light wavelength conversion element, and light of a pair of mirrors facing each other in the short wavelength laser light source. When the axis is adjusted, the housing is placed on a heat sink, and the temperature of the heat sink is the same as the temperature set value of the semiconductor laser such that the wavelength of the semiconductor laser used matches the absorption peak of the solid-state laser medium. A method for manufacturing a short-wavelength laser light source, which is characterized in that:

【0008】[0008]

【作用】本発明は前記した手段により、半導体レ−ザと
筐体の接合信頼性が向上すると共に両者が一体構造とな
ることにより熱伝導性が向上し、前記半導体レ−ザと筐
体を同一の温度に制御するのに適した構造となる。一
方、本短波長レ−ザ光源を製造する際、筐体を乗せたヒ
ートシンクの温度を駆動時の温度設定値に制御しておく
ことにより、固体レーザ媒質、光波長変換素子および対
向した一対の鏡の温度も前記温度と同一となり、また前
記した固体レーザ媒質、光波長変換素子および対向した
一対の鏡を収納したホルダーの突起をそれぞれの位置調
整後筐体内に設けた溝に固定することにより、前記設定
温度下において最大の発振効率が得られるような組立が
可能となる。なぜなら、光波長変換素子の温度調整によ
る変換効率の最適化は、同光波長変換素子の位置調整
(特に角度調整)により代替できることが知られてい
る。以上のような、構成および製造工程を実施すること
により、駆動時において筐体全体の温度制御を行う際、
半導体レ−ザの波長および光波長変換素子の変換効率に
おいて両者同時に最適な設定条件での短波長レーザ発振
が可能となり、また極めて小型のレーザモジュールが実
現できる。
According to the present invention, by the above-mentioned means, the joint reliability between the semiconductor laser and the case is improved, and the thermal conductivity is improved due to the integrated structure of the semiconductor laser and the case. The structure is suitable for controlling at the same temperature. On the other hand, when manufacturing the present short wavelength laser light source, by controlling the temperature of the heat sink on which the housing is placed to the temperature set value during driving, the solid laser medium, the optical wavelength conversion element and the pair of facing The temperature of the mirror is also the same as the above temperature, and by fixing the protrusions of the holder containing the solid-state laser medium, the light wavelength conversion element and the pair of mirrors facing each other in the grooves provided in the housing after adjusting the respective positions. Therefore, it is possible to perform the assembly so that the maximum oscillation efficiency can be obtained under the set temperature. It is known that optimization of conversion efficiency by adjusting the temperature of the light wavelength conversion element can be replaced by position adjustment (particularly angle adjustment) of the light wavelength conversion element. By performing the configuration and manufacturing process as described above, when performing temperature control of the entire housing during driving,
Short wavelength laser oscillation is possible under optimal setting conditions for the wavelength of the semiconductor laser and the conversion efficiency of the optical wavelength conversion element, and a very small laser module can be realized.

【0009】[0009]

【実施例】図1は、本発明請求項1の一実施例における
短波長レ−ザ光源の構成を示したもので、1は波長0.
809μmのレ−ザ光を発生させる半導体レ−ザチッ
プ、2は直径寸法Bを有する半導体レ−ザマウント、3
は固体レ−ザ媒質として例えばNd:YVO4であり、4
で示した面には波長0.809μmに対しては透過率9
9.5%、波長1.064μmおよび波長0.532μm
に対しては反射率99.9%のコーティングが施されて
いる。5は波長変換素子として例えばKTP、6は反射
鏡であり、7で示した凹面部分に波長0.532μmに
対しては透過率99.9%、波長1.064μmに対して
は反射率99.9%のコーティングが施されている。8
は波長0.532μmのみを選択的に透過させるフィル
ターである。9は、半導体レーザマウント2、固体レ−
ザ媒質3、波長変換素子5、反射鏡6およびフィルター
8を光軸上に固定するモジュール筐体であり、半導体レ
ーザマウント2を取り付ける側において、直径寸法A=
B−0.03mmを有する開口部を有し、また半導体レ
ーザマウント2とほぼ同一の熱膨張係数を有する金属で
形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the construction of a short wavelength laser light source according to one embodiment of the present invention.
A semiconductor laser chip for generating a laser beam of 809 μm, 2 is a semiconductor laser mount having a diameter dimension B, 3
Is a solid-state laser medium such as Nd: YVO 4 , and 4
The surface indicated by indicates that the transmittance is 9 for a wavelength of 0.809 μm.
9.5%, wavelength 1.064 μm and wavelength 0.532 μm
Is coated with a reflectance of 99.9%. Reference numeral 5 is a wavelength converting element, for example, KTP, and 6 is a reflecting mirror. The concave portion shown by 7 has a transmittance of 99.9% for a wavelength of 0.532 μm and a reflectance of 99.4% for a wavelength of 1.064 μm. It has a 9% coating. 8
Is a filter that selectively transmits only the wavelength of 0.532 μm. 9 is a semiconductor laser mount 2 and a solid-state laser.
It is a module housing for fixing the medium 3, the wavelength conversion element 5, the reflecting mirror 6, and the filter 8 on the optical axis, and on the side where the semiconductor laser mount 2 is mounted, the diameter dimension A =
It has an opening having a diameter of B-0.03 mm and is made of a metal having a thermal expansion coefficient substantially the same as that of the semiconductor laser mount 2.

【0010】以上のように構成された短波長レ−ザ光源
の組立方法を説明する。まず、半導体レーザマウント2
をモジュール筐体9の前記開口部にはめ込む。この際、
前記したごとく孔寸法Aが半導体レーザマウント2の外
形寸法Bよりも小さいため、はめ込みには一定の圧力を
必要とする。次いで、固体レ−ザ媒質4、波長変換素子
5および反射鏡6を最適位置に調整した後、接着剤を用
いるかもしくはネジ留め等の方法によりモジュール筐体
9に固定する。このような方法をとることにより、半導
体レーザマウント2とモジュール筐体9の接合におい
て、環境温度の変化並びに振動等の外的負荷に対して信
頼性が高く、しかも熱伝導性の優れる接合が可能とな
り、半導体レーザを含むモジュール全体の一括温度制御
を行う際に有利となる。
A method of assembling the short wavelength laser light source configured as described above will be described. First, the semiconductor laser mount 2
Is fitted into the opening of the module housing 9. On this occasion,
Since the hole size A is smaller than the outer size B of the semiconductor laser mount 2 as described above, a constant pressure is required for fitting. Then, after adjusting the solid laser medium 4, the wavelength conversion element 5 and the reflecting mirror 6 to the optimum positions, they are fixed to the module housing 9 by using an adhesive or a method such as screwing. By adopting such a method, it is possible to bond the semiconductor laser mount 2 and the module housing 9 with high reliability against external loads such as changes in environmental temperature and vibration, and with excellent thermal conductivity. Therefore, it is advantageous when performing collective temperature control of the entire module including the semiconductor laser.

【0011】図2は、本発明請求項2の一実施例におけ
る短波長レ−ザ光源の構成を示したもので、1は波長
0.809μmのレ−ザ光を発生させる半導体レ−ザチ
ップ、2は半導体レ−ザマウント、3は固体レ−ザ媒質
として例えばNd:YVO4であり、4で示した面には波
長0.809μmに対しては透過率99.5%、波長1.
064μmおよび波長0.532μmに対しては反射率
99.9%のコーティングが施されている。5は波長変
換素子として例えばKTP、6は反射鏡であり波長0.
532μmに対しては透過率99.9%、波長1.064
μmに対しては反射率99.9%のコーティングが施さ
れている。8は波長0.532μmのみを選択的に透過
させるフィルターである。10は、半導体レーザマウン
ト2、固体レ−ザ媒質3、波長変換素子5、反射鏡6お
よびフィルター8を光軸上に固定するモジュール筐体で
あり、これら個々の部品の取り付け位置には溝11が設
けられると共に、光軸と平行な面において少なくとも1
つの開口部を有している。また、このモジュール筐体1
0は、半導体レーザマウント2とほぼ同一の熱膨張係数
を有する金属で形成されている。12、13、14はそ
れぞれ固体レ−ザ媒質3、波長変換素子5、反射鏡6を
収めるホルダーであり、熱伝導性の優れる接着剤15で
個々の部品を固定している。16は、ホルダー12、1
3、14に設けられた突起16である。17はホルダー
12、13、14をモジュール筐体10に固定するため
の固着剤であり、例えばハンダ等の溶融金属もしくは熱
伝導性の優れるシリコン系の接着剤を用いる。
FIG. 2 shows the constitution of a short wavelength laser light source in one embodiment of the present invention, wherein 1 is a semiconductor laser chip for generating laser light having a wavelength of 0.809 .mu.m, Reference numeral 2 is a semiconductor laser mount, 3 is a solid-state laser medium, for example, Nd: YVO 4 , and the surface shown by 4 has a transmittance of 99.5% for a wavelength of 0.809 μm and a wavelength of 1.
A coating having a reflectance of 99.9% is applied to 064 μm and a wavelength of 0.532 μm. Reference numeral 5 is a wavelength converting element, for example, KTP, and 6 is a reflecting mirror having a wavelength of 0.
Transmittance 99.9%, wavelength 1.064 for 532 μm
A coating having a reflectance of 99.9% is applied to μm. Reference numeral 8 is a filter that selectively transmits only a wavelength of 0.532 μm. Reference numeral 10 denotes a module housing for fixing the semiconductor laser mount 2, the solid-state laser medium 3, the wavelength conversion element 5, the reflecting mirror 6 and the filter 8 on the optical axis. Is provided and at least 1 is provided in a plane parallel to the optical axis.
It has one opening. In addition, this module housing 1
0 is formed of a metal having a coefficient of thermal expansion substantially the same as that of the semiconductor laser mount 2. Reference numerals 12, 13, and 14 denote holders for accommodating the solid-state laser medium 3, the wavelength conversion element 5, and the reflecting mirror 6, respectively, and each component is fixed by an adhesive 15 having excellent thermal conductivity. 16 is a holder 12, 1
The protrusions 16 are provided on the parts 3 and 14. Reference numeral 17 denotes a fixing agent for fixing the holders 12, 13 and 14 to the module housing 10, and for example, a molten metal such as solder or a silicon-based adhesive having excellent thermal conductivity is used.

【0012】以上のように構成された短波長レ−ザ光源
において、本発明請求項3に基づく組立方法を説明す
る。まず、半導体レーザマウント2をモジュール筐体1
0に固定する。この際の方法は、環境条件の変動等によ
り位置ズレが発生しない方法であればよく、本発明請求
項1のように圧入するか、接着剤もしくはネジ等により
固定してもよい。次いで、固体レ−ザ媒質3、波長変換
素子5、反射鏡6をそれぞれホルダー12、13、14
にはめ込み、接着剤15をそれらの隙間を埋めるように
塗布して固定する。この際、接着剤15の固着性を高め
るため、熱等を加えてもよい。前記したごとくホルダー
に固定された固体レ−ザ媒質3、波長変換素子5、反射
鏡6をモジュール筐体10に固定する方法を説明する。
まず、ホルダー12に固定された固体レ−ザ媒質3を、
モジュール筐体10における光軸と平行な開口面より、
前記光軸と垂直な方向より挿入し、固体レ−ザ媒質3が
光軸付近に位置するよう外部より治具等を用いて保持し
ておく。その際、ホルダー12の突起16部分が、モジ
ュール筐体10に設けた溝11内に収まるようにする。
同様の操作を波長変換素子5、反射鏡6についても行っ
た後、波長0.532μmのレーザ発振条件が最適にな
るようにホルダー12、13、14を一定温度下のもと
で位置調整し、これらを前記保持具で保持したまま溝1
1に固着剤17を流し込んで固定する。なお、固着剤1
7が硬化するのに時間を要する場合には、一時的に瞬間
接着剤等を用いて瞬時の固定を行っておき、次段階とし
て固着剤17を用いてもよい。最後に、フィルター8を
モジュール筐体10に取り付ける。 このような方法を
とることにより、固体レ−ザ媒質3、波長変換素子5お
よび反射鏡6の、モジュール筐体10への固定が、ホル
ダー12、13、14における突起16を介して行われ
たことになり、接合部分における接触面積を従来に比較
し著しく減少させることができる。このため周囲温度の
変動等による熱歪の影響を受け難くなり、信頼性が向上
する。また、位置調整裕度が大きく取れるため、最適調
整が容易に実施できると共に、前記したように調整機構
(治具)をモジュール筐体10の外部に存在させるため
に、モジュールの構造が極めて単純となり、小型化が可
能となる。
An assembling method based on claim 3 of the present invention will be described for the short wavelength laser light source configured as described above. First, the semiconductor laser mount 2 is attached to the module housing 1
Fixed at 0. The method at this time may be any method as long as the positional deviation does not occur due to changes in environmental conditions, etc., and may be press-fitted as in claim 1 of the present invention, or may be fixed with an adhesive or screws. Next, the solid-state laser medium 3, the wavelength conversion element 5, and the reflecting mirror 6 are attached to the holders 12, 13, 14 respectively.
Then, the adhesive 15 is applied and fixed so as to fill those gaps. At this time, heat or the like may be applied to enhance the adhesiveness of the adhesive 15. A method for fixing the solid-state laser medium 3, the wavelength conversion element 5, and the reflecting mirror 6 fixed to the holder as described above to the module housing 10 will be described.
First, the solid-state laser medium 3 fixed to the holder 12 is
From the opening surface parallel to the optical axis in the module housing 10,
The solid laser medium 3 is inserted from the direction perpendicular to the optical axis and held from the outside using a jig or the like so that the solid laser medium 3 is located near the optical axis. At that time, the protrusion 16 of the holder 12 is set to fit in the groove 11 provided in the module housing 10.
After performing the same operation on the wavelength conversion element 5 and the reflecting mirror 6, the holders 12, 13 and 14 are positionally adjusted under a constant temperature so that the laser oscillation condition of the wavelength of 0.532 μm is optimized. The groove 1 while holding these by the holder.
The adhesive 17 is poured into 1 and fixed. The adhesive 1
If it takes time for 7 to cure, it may be possible to temporarily fix it instantly using an instant adhesive or the like, and then use the adhesive 17 as the next step. Finally, the filter 8 is attached to the module housing 10. By using such a method, the solid-state laser medium 3, the wavelength conversion element 5, and the reflecting mirror 6 are fixed to the module housing 10 through the protrusions 16 in the holders 12, 13, and 14. As a result, the contact area at the joint can be significantly reduced compared to the conventional case. For this reason, it is less likely to be affected by thermal strain due to fluctuations in the ambient temperature and the reliability is improved. Further, since the position adjustment margin can be made large, the optimum adjustment can be easily performed, and since the adjustment mechanism (jig) is provided outside the module housing 10 as described above, the structure of the module becomes extremely simple. It is possible to reduce the size.

【0013】図3は、本発明請求項4の一実施例におけ
る短波長レ−ザ光源の製造工程における光軸調整方法を
示している。18はモジュール筐体、19は銅もしくは
真鍮のブロックでできたヒートシンクであり本短波長レ
−ザ光源の組立中においてモジュール筐体18を接触さ
せる。20はペルチェ素子を内蔵した温度コントロール
ユニット、21は温度制御回路を示す。22は本短波長
レ−ザ光源の駆動電源、23は波長0.532μmの出
力レーザ光、24は光ディテクタ、25は光パワーメー
タを示す。
FIG. 3 shows an optical axis adjusting method in a manufacturing process of a short wavelength laser light source according to an embodiment of claim 4 of the present invention. Reference numeral 18 is a module housing, 19 is a heat sink made of a block of copper or brass, and the module housing 18 is brought into contact with the short wavelength laser light source during assembly. Reference numeral 20 denotes a temperature control unit incorporating a Peltier element, and 21 denotes a temperature control circuit. Reference numeral 22 is a drive power source for the short wavelength laser light source, 23 is an output laser beam having a wavelength of 0.532 μm, 24 is an optical detector, and 25 is an optical power meter.

【0014】以上のように構成された短波長レ−ザ光源
の光軸調整方法を説明する。モジュール筐体18にあら
かじめ固定された図3に示したところの半導体レーザ1
の波長は、同じく本短波長レ−ザ光源の構成要素である
固体レ−ザ媒質3の吸収ピーク(例えばNd:YVO4
場合0.809μm)に合致させる必要がある。このた
めモジュール筐体18を乗せたヒートシンク19は温度
コントロールユニット20および温度制御回路21によ
り前記半導体レーザの波長が0.809μmとなるよう
に温度を調整しておく。次いで駆動電源22により前記
半導体レーザに所定の電流を流し、出力23が発生する
ように、また光パワーメータ25のモニター値が最大と
なるようにモジュール筐体18の内部に位置させた図3
に示したところの固体レ−ザ媒質3、波長変換素子5お
よび反射鏡6の位置を調整し、これらを固定する。この
時、モジュール筐体18の温度は前記設定温度に保たれ
ているため、従って固体レ−ザ媒質3、波長変換素子5
および反射鏡6の温度も同一の温度となった状態で、光
軸調整がなされる。
A method of adjusting the optical axis of the short wavelength laser light source configured as described above will be described. The semiconductor laser 1 fixed in advance to the module housing 18 as shown in FIG.
It is necessary to match the absorption wavelength of the above with the absorption peak of the solid-state laser medium 3 (for example, Nd: YVO 4 0.809 μm) which is a constituent element of the short wavelength laser light source. Therefore, the temperature of the heat sink 19 on which the module housing 18 is placed is adjusted by the temperature control unit 20 and the temperature control circuit 21 so that the wavelength of the semiconductor laser becomes 0.809 μm. Next, a predetermined current is made to flow through the semiconductor laser by the drive power source 22 so that the output 23 is generated and the monitor value of the optical power meter 25 is maximized.
The positions of the solid-state laser medium 3, the wavelength conversion element 5, and the reflecting mirror 6 shown in (4) are adjusted and fixed. At this time, the temperature of the module housing 18 is kept at the set temperature, and therefore the solid-state laser medium 3 and the wavelength conversion element 5 are
The optical axis is adjusted while the temperature of the reflecting mirror 6 is also the same.

【0015】このような方法をとることにより、本短波
長レ−ザ光源の駆動時において、前記半導体レーザの波
長を0.809μmに保つ為にモジュール筐体18に対
して行う温度制御と同一の設定温度下で光軸調整が実施
されたことになり、従来発生していた光軸調整時と駆動
時での状態差が無くなり、極めて安定なレーザ発振が実
現できる。特に、前記波長変換素子の変換特性は著しい
温度依存性を有しているため、使用時において温度を一
定に維持することが有効であり、また、前記した組立方
法を採用することで、前記設定温度において最適な位置
調整が実施されているため、その動作中において常に最
適状態が再現されることになる。
By adopting such a method, the same temperature control as that performed on the module casing 18 in order to keep the wavelength of the semiconductor laser at 0.809 μm when the short wavelength laser light source is driven. Since the optical axis adjustment is performed at the set temperature, the state difference between the optical axis adjustment and the driving, which has occurred conventionally, is eliminated, and extremely stable laser oscillation can be realized. In particular, since the conversion characteristics of the wavelength conversion element have a remarkable temperature dependence, it is effective to keep the temperature constant during use, and by adopting the above-mentioned assembly method, the setting Since the optimum position adjustment is performed at the temperature, the optimum state is always reproduced during the operation.

【0016】[0016]

【発明の効果】以上説明したように本発明の構成および
製造方法によれば、短波長レーザ光源はその動作時にお
いて最適状態となるように構成部品の位置調整が成さ
れ、最大の発振効率が得られると共に出力が極めて安定
となり、その実用的効果は大きく向上することになり、
短波長レーザ光源の実用化に大きく寄与するものであ
る。
As described above, according to the structure and the manufacturing method of the present invention, the position of the components of the short wavelength laser light source is adjusted so as to be in the optimum state during its operation, and the maximum oscillation efficiency is obtained. It will be obtained and the output will be extremely stable, and the practical effect will be greatly improved,
This greatly contributes to the practical application of a short wavelength laser light source.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明請求項1の実施例の短波長レーザ光源の
要部断面図である。
FIG. 1 is a sectional view of an essential part of a short wavelength laser light source according to an embodiment of claim 1 of the present invention.

【図2】本発明請求項2の実施例の短波長レ−ザ光源の
要部断面図である。
FIG. 2 is a cross-sectional view of essential parts of a short wavelength laser light source according to an embodiment of claim 2 of the present invention.

【図3】本発明請求項3の実施例の短波長レ−ザ光源製
造方法を示す構成図である。
FIG. 3 is a configuration diagram showing a method of manufacturing a short wavelength laser light source according to an embodiment of claim 3 of the present invention.

【図4】従来の短波長レ−ザ光源の要部断面図である。FIG. 4 is a sectional view of a main part of a conventional short wavelength laser light source.

【図5】従来の短波長レ−ザ光源製造方法を示す構成図
である。
FIG. 5 is a configuration diagram showing a conventional method of manufacturing a short wavelength laser light source.

【符号の説明】[Explanation of symbols]

1 半導体レーザチップ 2 半導体レーザマウント 3 固体レーザ媒質 4 コーティング 5 波長変換素子 6 反射鏡 7 コーティング 8 フィルター 9 モジュール筐体 10 モジュール筐体 11 溝 12 ホルダー 13 ホルダー 14 ホルダー 15 接着剤 16 突起 17 固着剤 19 ヒートシンク 20 温度調整ユニット 21 温度コントローラ 22 駆動電源 24 光ディテクタ 25 光パワーメータ 1 Semiconductor Laser Chip 2 Semiconductor Laser Mount 3 Solid Laser Medium 4 Coating 5 Wavelength Converter 6 Reflector 7 Coating 8 Filter 9 Module Housing 10 Module Housing 11 Groove 12 Holder 13 Holder 14 Holder 15 Adhesive 16 Protrusion 17 Adhesive 19 Heat sink 20 Temperature adjustment unit 21 Temperature controller 22 Drive power supply 24 Optical detector 25 Optical power meter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/085 3/094 8934−4M H01S 3/094 S ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01S 3/085 3/094 8934-4M H01S 3/094 S

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 固体レーザ媒質と、前記固体レーザ媒質
を励起するための半導体レーザと、前記固体レーザ媒質
で励起された光を共振させるための対向した一対の鏡
と、前記励起された光の波長を半分にするための光波長
変換素子とを備えた短波長レ−ザ光源において、これら
前記した固体レーザ媒質、半導体レーザ、光波長変換素
子および対向した一対の鏡を同一光軸上に固定するため
の筐体の端面に、前記半導体レーザの外径より僅かに小
さな孔を開け、半導体レーザを前記した孔に圧力を印加
しながらはめ込んだことを特徴とする短波長レ−ザ光
源。
1. A solid-state laser medium, a semiconductor laser for exciting the solid-state laser medium, a pair of opposed mirrors for resonating the light excited by the solid-state laser medium, and the excited light In a short wavelength laser light source provided with an optical wavelength conversion element for halving the wavelength, these solid laser medium, semiconductor laser, optical wavelength conversion element and a pair of mirrors facing each other are fixed on the same optical axis. A short-wavelength laser light source, characterized in that a hole slightly smaller than the outer diameter of the semiconductor laser is formed in the end face of the housing for this purpose, and the semiconductor laser is fitted into the hole while applying pressure.
【請求項2】 固体レーザ媒質と、前記固体レーザ媒質
を励起するための半導体レーザと、前記固体レーザ媒質
で励起された光を共振させるための対向した一対の鏡
と、前記励起された光の波長を半分にするための光波長
変換素子と、これらを同一光軸上に固定する筐体とを備
えた短波長レ−ザ光源において、前記固体レーザ媒質、
光波長変換素子および対向した一対の鏡をそれぞれ周囲
に突起を有するホルダーに収納し、前記筐体には光軸に
平行した外周のうち1面以上の開口部を設け、また、光
軸に面した内壁面においては前記固体レーザ媒質、光波
長変換素子および対向した一対の鏡の取り付け位置に相
当する箇所に光軸と垂直方向に前記ホルダー突起部の断
面積より大きな溝を設けたことを特徴とする短波長レ−
ザ光源。
2. A solid-state laser medium, a semiconductor laser for exciting the solid-state laser medium, a pair of opposed mirrors for resonating the light excited by the solid-state laser medium, and the excited light In a short wavelength laser light source comprising an optical wavelength conversion element for halving the wavelength and a housing fixing these on the same optical axis, the solid laser medium,
The light wavelength conversion element and a pair of facing mirrors are housed in holders each having a protrusion on the periphery, and one or more openings of the outer periphery parallel to the optical axis are provided in the housing, and the optical axis is a surface. On the inner wall surface, a groove larger than the cross-sectional area of the holder protrusion is provided in the direction perpendicular to the optical axis at a position corresponding to the mounting position of the solid-state laser medium, the light wavelength conversion element, and a pair of opposed mirrors. Short wavelength ray
The light source.
【請求項3】 請求項2記載の短波長レ−ザ光源におい
て、固体レーザ媒質、光波長変換素子および対向した一
対の鏡を収納するホルダーの突起部分を、筐体内壁の溝
に挿入し、前記固体レーザ媒質、光波長変換素子および
対向した一対の鏡を一定温度下において任意の位置に光
軸調整した後、前記溝内に固着剤を注入してホルダーの
突起部分を固定することにより、前記光軸調整位置を保
持することを特徴とする短波長レ−ザ光源の製造方法。
3. The short-wavelength laser light source according to claim 2, wherein the protrusion portion of the holder for housing the solid-state laser medium, the light wavelength conversion element and the pair of opposed mirrors is inserted into the groove of the inner wall of the housing. By adjusting the optical axis of the solid-state laser medium, the optical wavelength conversion element and the pair of opposed mirrors to an arbitrary position under a constant temperature, a fixing agent is injected into the groove to fix the protruding portion of the holder, A method for manufacturing a short wavelength laser light source, characterized in that the optical axis adjusting position is held.
【請求項4】 固体レーザ媒質と、前記固体レーザ媒質
を励起するための半導体レーザと、前記固体レーザ媒質
で励起された光を共振させるための対向した一対の鏡
と、前記励起された光の波長を半分にするための光波長
変換素子と、これらを同一光軸上に固定する筐体とを備
えた短波長レ−ザ光源において、前記筐体を温度制御可
能なヒートシンクに接触させて組立を行うことを特徴と
する短波長レ−ザ光源の製造方法。
4. A solid-state laser medium, a semiconductor laser for exciting the solid-state laser medium, a pair of opposed mirrors for resonating the light excited by the solid-state laser medium, and the excited light In a short wavelength laser light source including an optical wavelength conversion element for halving the wavelength and a housing for fixing these on the same optical axis, the housing is assembled by contacting a heat sink capable of controlling temperature. A method for manufacturing a short wavelength laser light source, which comprises:
JP4531892A 1992-03-03 1992-03-03 Short wavelength laser light source and method of manufacturing short wavelength laser light source Expired - Fee Related JP3018717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4531892A JP3018717B2 (en) 1992-03-03 1992-03-03 Short wavelength laser light source and method of manufacturing short wavelength laser light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4531892A JP3018717B2 (en) 1992-03-03 1992-03-03 Short wavelength laser light source and method of manufacturing short wavelength laser light source

Publications (2)

Publication Number Publication Date
JPH05243660A true JPH05243660A (en) 1993-09-21
JP3018717B2 JP3018717B2 (en) 2000-03-13

Family

ID=12715960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4531892A Expired - Fee Related JP3018717B2 (en) 1992-03-03 1992-03-03 Short wavelength laser light source and method of manufacturing short wavelength laser light source

Country Status (1)

Country Link
JP (1) JP3018717B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209680A (en) * 1994-01-20 1995-08-11 Sharp Corp Optical wavelength conversion element and its production as well as laser unit
JP2003124553A (en) * 2001-10-12 2003-04-25 Topcon Corp Laser oscillating device
JP2003158321A (en) * 2001-11-22 2003-05-30 Shimadzu Corp Solid state laser
JP2004088129A (en) * 2003-12-08 2004-03-18 Sony Corp Laser beam generator
JP2007519234A (en) * 2003-12-24 2007-07-12 コミツサリア タ レネルジー アトミーク Assembly of elements on the transfer surface
JP2011114128A (en) * 2009-11-26 2011-06-09 Mitsubishi Electric Corp Method and apparatus for manufacturing light source
JP2018518836A (en) * 2015-05-20 2018-07-12 クアンタム−エスアイ インコーポレイテッドQuantum−Si Incorporated Pulsed laser and biological analysis system
JP2019106512A (en) * 2017-12-14 2019-06-27 株式会社キーエンス Laser processing device and laser oscillator
US10741990B2 (en) 2016-12-16 2020-08-11 Quantum-Si Incorporated Compact mode-locked laser module
US11249318B2 (en) 2016-12-16 2022-02-15 Quantum-Si Incorporated Compact beam shaping and steering assembly
US11466316B2 (en) 2015-05-20 2022-10-11 Quantum-Si Incorporated Pulsed laser and bioanalytic system
US11567006B2 (en) 2015-05-20 2023-01-31 Quantum-Si Incorporated Optical sources for fluorescent lifetime analysis
US11747561B2 (en) 2019-06-14 2023-09-05 Quantum-Si Incorporated Sliced grating coupler with increased beam alignment sensitivity
US11808700B2 (en) 2018-06-15 2023-11-07 Quantum-Si Incorporated Data acquisition control for advanced analytic instruments having pulsed optical sources

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209680A (en) * 1994-01-20 1995-08-11 Sharp Corp Optical wavelength conversion element and its production as well as laser unit
JP2003124553A (en) * 2001-10-12 2003-04-25 Topcon Corp Laser oscillating device
JP2003158321A (en) * 2001-11-22 2003-05-30 Shimadzu Corp Solid state laser
JP2004088129A (en) * 2003-12-08 2004-03-18 Sony Corp Laser beam generator
JP2007519234A (en) * 2003-12-24 2007-07-12 コミツサリア タ レネルジー アトミーク Assembly of elements on the transfer surface
JP2011114128A (en) * 2009-11-26 2011-06-09 Mitsubishi Electric Corp Method and apparatus for manufacturing light source
US8292686B2 (en) 2009-11-26 2012-10-23 Mitsubishi Electric Corporation Method and apparatus for manufacturing light source
US8419493B2 (en) 2009-11-26 2013-04-16 Mitsubishi Electric Corporation Method and apparatus for manufacturing light source
JP2018518836A (en) * 2015-05-20 2018-07-12 クアンタム−エスアイ インコーポレイテッドQuantum−Si Incorporated Pulsed laser and biological analysis system
US11466316B2 (en) 2015-05-20 2022-10-11 Quantum-Si Incorporated Pulsed laser and bioanalytic system
US11567006B2 (en) 2015-05-20 2023-01-31 Quantum-Si Incorporated Optical sources for fluorescent lifetime analysis
US10741990B2 (en) 2016-12-16 2020-08-11 Quantum-Si Incorporated Compact mode-locked laser module
US11249318B2 (en) 2016-12-16 2022-02-15 Quantum-Si Incorporated Compact beam shaping and steering assembly
US11322906B2 (en) 2016-12-16 2022-05-03 Quantum-Si Incorporated Compact mode-locked laser module
US11848531B2 (en) 2016-12-16 2023-12-19 Quantum-Si Incorporated Compact mode-locked laser module
JP2019106512A (en) * 2017-12-14 2019-06-27 株式会社キーエンス Laser processing device and laser oscillator
US11808700B2 (en) 2018-06-15 2023-11-07 Quantum-Si Incorporated Data acquisition control for advanced analytic instruments having pulsed optical sources
US11747561B2 (en) 2019-06-14 2023-09-05 Quantum-Si Incorporated Sliced grating coupler with increased beam alignment sensitivity

Also Published As

Publication number Publication date
JP3018717B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
KR100272193B1 (en) Solid-state laser pumped with a semiconductor laser
JP3378103B2 (en) Laser diode pumped solid state laser
JPH05243660A (en) Short wavelength laser light source and manufacture thereof
US5440574A (en) Solid-state laser
US7648290B2 (en) Modular solid-state laser platform based on coaxial package and corresponding assembly process
US5706302A (en) Temperature control type semiconductor laser device
JPS61253878A (en) Nd-yag laser
EP0512816B1 (en) Laser resonator assembly
JP4831587B1 (en) Laser light source device
JP2001284699A (en) Method for fixing optical communication equipment and optical module
US6178188B1 (en) Laser assembly platform with silicon base
JP2000031575A (en) Ld module
JP2000277843A (en) Semiconductor laser module and manufacture thereof
JP3221586B2 (en) Optical wavelength converter
CN114361916B (en) Heat sink structural part for laser and laser with heat sink structural part
JP3323313B2 (en) Semiconductor laser module
JPH01243488A (en) Photosemiconductor module
JPH07131106A (en) Semiconductor laser module
JPH09293919A (en) Holding structure of optical components and semiconductor laser exciting solid state laser device
JPH0856042A (en) Assembly method of laser resonator
JP2000269574A (en) Semiconductor laser pumped solid-state laser and method for adjusting the same
JPH05211360A (en) Diode-pumping solid laser
JP3024349B2 (en) Semiconductor pumped solid-state laser
JPH109867A (en) Laser apparatus
JP2001210899A (en) Semiconductor laser exciting solid-state laser device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees