JPH05243593A - Manufacturing method of ohmic contact between metallic foil and semiconductor material - Google Patents

Manufacturing method of ohmic contact between metallic foil and semiconductor material

Info

Publication number
JPH05243593A
JPH05243593A JP4251524A JP25152492A JPH05243593A JP H05243593 A JPH05243593 A JP H05243593A JP 4251524 A JP4251524 A JP 4251524A JP 25152492 A JP25152492 A JP 25152492A JP H05243593 A JPH05243593 A JP H05243593A
Authority
JP
Japan
Prior art keywords
foil
sphere
type
semiconductor material
ohmic contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4251524A
Other languages
Japanese (ja)
Inventor
Jules D Levine
デイー.レバイン ジユレス
Millard Jensen
ジエンセン ミラード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/299,695 external-priority patent/US4407320A/en
Priority claimed from US06/299,694 external-priority patent/US4451968A/en
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of JPH05243593A publication Critical patent/JPH05243593A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

PURPOSE: To realize a large-scaled area opto-electric transducer element array, by compressing a metallic material and a semiconductor material in a limited period, with limited pressure, and temperature higher than 400 deg.C between a first projecting face and a second face. CONSTITUTION: A back side connection foil 407 and an additional polyester material 405 are formed in a P-type area 401, and electrical insulation is formed against an N-type surface area 406. Then, the connection foil 407 is supported so as not to be moved up and down, electrical connection 408 is formed between the P-type area 401 and the foil 407 by applying almost 5 pound pressure to each sphere about at 260 deg.C, and a polyester sheet is connected in a method for constituting a layer 413 as substantially continued matrix supporting materials. Therefore, a solar energy transforming element with a large area for electrically changing incident energy into potential can be realized by using this method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は、低温で製造される為低価格であ
って多少の回路上のミス動作も許容できる大規模な光電
気変換装置及びその製造方法に関する。
The present invention relates to a large-scale photoelectric conversion device which can be manufactured at a low temperature, is low in price, and can tolerate some circuit malfunctions, and a manufacturing method thereof.

【0002】我々に残される生物燃料資源が限りあるこ
とを知る機会が増えるにつれ、また再生可能で有効なエ
ネルギー資源を開発する必要性が増大することによっ
て、かなりの量の研究が太陽エネルギーの開発に対し行
われている。
[0002] With the increasing chances of knowing that we have limited biofuel resources remaining, and also due to the growing need to develop renewable and effective energy resources, a considerable amount of research has taken place in the development of solar energy. Is being done against.

【0003】光電気変換装置の開発に関する重大な問題
点は、半導体の変換装置用材料のコストの問題であっ
た。通常シリコンであるこの半導体材料は、光にさらし
た時P−N接合を用いてポテンシャルを作り出す。しか
しながら、正確に操作を行う為に、典型的なシステムは
比較的小さな領域を得る為に大量の半導体材料を必要と
する。さらにぶつかった問題点としては、半導体材料の
厚さを湾曲による張力に耐えられるようにしなくてはな
らず、また、通常の操作又は使用に必要な最小限度のや
わらかさを持つよう作られた小型ユニットのセルである
必要があることである。第3は大面積のセル配列におけ
る欠陥に対する寛容度の問題である。即ち、たった1個
のショートが発生すると、発生した電気はそのショート
したセルを通じて逃げてしまうことによって全てのユニ
ットに影響する場合があることである。
A significant problem with the development of opto-electrical converters has been the cost of materials for semiconductor converters. This semiconductor material, typically silicon, uses a PN junction to create a potential when exposed to light. However, in order to operate correctly, typical systems require large amounts of semiconductor material to obtain a relatively small area. A further problem encountered is that the thickness of the semiconductor material must be able to withstand the tensile forces of the bend, and that it is designed to have the minimum softness necessary for normal operation or use. It must be a unit cell. Third is the issue of tolerance to defects in large area cell arrays. In other words, when only one short circuit occurs, the generated electricity may escape through the shorted cell and affect all the units.

【0004】このような諸問題の解決策の1つは、19
60年第14回年次動力源学会の26頁掲載のM.B.
プリンスによる「大規模シリコン太陽電池セル」と表題
のついた論文に示唆されている。彼は、プラスチックマ
トリクス中に半導体の球体を設けたものを利用すること
を示唆している。しかしながら電気的接続を形成する事
に関し問題が生じた。例としてはハロルド・ホベルによ
るテキスト「半導体及び半金属」の第9章、209頁の
セクションGを参照してほしい。
One of the solutions to these problems is 19
60th M.M. B.
Suggested in a paper by Prince titled "Large-Scale Silicon Solar Cells." He suggests using a semiconductor matrix with plastic spheres. However, problems have arisen with making electrical connections. See Section G, page 9, 209, chapter 9, semiconductors and semimetals, by Harold Hobel for an example.

【0005】従って本発明の目的は、最小限度の半導体
材料を用いて大規模面積光電気変換素子配列を提供する
ことである。
Accordingly, it is an object of the present invention to provide a large area opto-electrical conversion element array with a minimum of semiconductor material.

【0006】本発明の第2の目的は、たとえ薄膜状に製
造しても損傷することなく曲げたり変形したりできる光
電気変換素子の柔軟性を持つ配列を提供することであ
る。
A second object of the present invention is to provide a flexible array of photoelectric conversion elements which can be bent or deformed without being damaged even when manufactured in a thin film form.

【0007】本発明の第3の目的は、電気的な性能を劣
化させることなく、いくつかの短絡の起こったセルを処
理することができる短絡による動作ミスに対し寛容性を
持つ大規模領域光電気素子配列を開発することである。
A third object of the present invention is to provide a large area light which is tolerant to a malfunction due to a short circuit, which can handle some short-circuited cells without degrading electrical performance. To develop an array of electrical elements.

【0008】さらに本発明の第4の目的は、必要とされ
る最高温度が400℃より低いものである大規模領域光
電気素子配列を作る低価格な製造工程も提供することで
ある。
A fourth object of the invention is also to provide a low cost manufacturing process for making large area optoelectronic device arrays in which the required maximum temperature is below 400 ° C.

【0009】本発明のもう1つの目的は、組立てを完成
させる為に非常にわずかな追加の費用を加えるだけで、
半導体の球体を配置する製造工程中に接続され、配列と
同一平面上にある連続する内部接続システムを提供する
ことである。
Another object of the invention is to add very little additional cost to complete the assembly,
It is to provide a continuous interconnect system that is connected during the manufacturing process of placing semiconductor spheres and is coplanar with the array.

【0010】本発明に従うと金属ホイルを有するマトリ
クス支持部材を含む放射エネルギー変換システムを提供
できる。金属ホイルは、その両側に配された重合体材料
の第1及び第2層を有し支持部材の中に互に空間を隔て
た位置に少くともホイルを貫通する穴を有している。各
々の穴の中には実質的には球体である半導体セルが形成
され、各々のセルは、P型領域及びN型領域を有してい
る。N型領域は、それぞれの穴の中で金属ホイルに接触
し、導電手段が支持部材の一方の側にそって形成され
て、各々のセルのP型領域を接続する。P型領域に対す
る各々の接続は所定の抵抗値を持つ電極から成る。
In accordance with the present invention, a radiant energy conversion system can be provided that includes a matrix support member having a metal foil. The metal foil has first and second layers of polymeric material disposed on opposite sides thereof and has holes through the foil at spaced locations in the support member. A substantially spherical semiconductor cell is formed in each hole, and each cell has a P-type region and an N-type region. The N-type regions contact the metal foil in their respective holes and conductive means are formed along one side of the support member to connect the P-type regions of each cell. Each connection to the P-type region consists of an electrode with a predetermined resistance value.

【0011】さらに、上記複数のマトリクス状に支持さ
れた球状組立体は、相互に直列に接続していてこの接続
が組立体と同一平面であって、この組立体の厚みより実
質的に大きくない厚みを持つよう設けられる。
Furthermore, the plurality of matrix-supported spherical assemblies are connected in series with each other, the connections being coplanar with the assembly and not substantially greater than the thickness of the assembly. It is provided to have thickness.

【0012】放射エネルギー変換素子を作る方法は、N
型のドープ材をP型材料の複数の半導体球体の表面にド
ープする工程と2層の重合体材料の間に金属製ホイルを
提供する工程とこれらの球体をのせるためにホイルに穴
をあける工程とこの穴に球体を入れて金属的ホイルを、
各々の球体のN型表面領域と電気的に接続するようにす
る工程と、球体のまわりを囲んでシールする工程と、球
のホイルの第1の側をとり除いて第2の表面のP型領域
を露出する工程と、所定の抵抗で各々のP型領域にオー
ミックコンタクトを作る工程とを含んでいる。
A method of making a radiant energy conversion element is described in N
Doping the surface of a plurality of semiconductor spheres of P-type material with a mold-type doping material, providing a metal foil between two layers of polymeric material, and piercing the foil to mount these spheres Put a sphere in the process and this hole and make a metallic foil,
Making electrical connection to the N-type surface region of each sphere, surrounding and sealing the sphere, and removing the first side of the foil of the sphere to form a P-type second surface The process includes exposing the regions and making ohmic contacts in each P-type region with a predetermined resistance.

【0013】また、上記の方法は更に、プラスチック材
料の層をもう一層球体のホイル組立体に加えてマトリク
スを支持する層の厚みを球体の直径のほぼ平均まで増加
する工程を加えることもできる。
The method may also further include the step of adding another layer of plastic material to the foil assembly of the sphere to increase the thickness of the matrix-supporting layer to approximately the average diameter of the sphere.

【0014】上記方法の中の各々の工程は、400℃以
下の温度で実行される。
Each step in the above method is carried out at a temperature below 400 ° C.

【0015】更に球体ホイル組立体は、連続する内部接
続の厚みが球体の直径の平均より厚くならないように連
続して電気的に相互接続が行われる。
Furthermore, the sphere foil assembly is electrically interconnected continuously such that the thickness of successive interconnects does not exceed the average diameter of the sphere.

【0016】以下図を参照しながら、本発明を詳細に説
明する。
The present invention will be described in detail below with reference to the drawings.

【0017】まず図1を参照すると、完成した変換素子
配列の一部の透視図が示されていて、ここには、完成し
た組立体の上に数個のシリコンの球体110が設けられ
ている。金属ホイル103は、104で示すN型表面領
域上の球体に対し電気的な接続を形成している。金属ホ
イル105は、109で示すP型領域に電気接続してい
る。球体106の一番上の部分は、マトリクス組立体の
中に埋まっていて球の一番上のわずかな部分が空気中に
でている。プラスチック層102は、ポリエステル材料
から成り、入射光に対し透明でこれを通過させる。プラ
スチック層101も、ポリエステル材料から成ってい
て、マトリクスの支持体であるとともに電気的な絶縁体
でもある金属ホイル105と金属ホイル103に切れた
部分があることが107で示される。これにより、完全
に導電性のある球111を設けると、マトリクスの組立
体部分間に同一平面の電気相互接続が与えられるので、
直列の相互接続が可能となる。なお、P型領域にオーミ
ックコンタクトを作った後にプラスチック層102を取
り除くことができる。
Referring first to FIG. 1, there is shown a perspective view of a portion of a completed transducer array in which several silicon spheres 110 are provided on top of the completed assembly. .. The metal foil 103 forms an electrical connection to the sphere on the N-type surface area shown at 104. The metal foil 105 is electrically connected to the P-type region indicated by 109. The top portion of the sphere 106 is embedded in the matrix assembly, leaving a small portion of the top of the sphere in the air. The plastic layer 102 is made of a polyester material and is transparent to incident light and allows it to pass through. The plastic layer 101 is also made of polyester material and is shown at 107 to have a cut in the metal foil 105 and the metal foil 103, both a matrix support and an electrical insulator. This provides a perfectly conductive sphere 111 to provide coplanar electrical interconnection between the assembly parts of the matrix,
Serial interconnections are possible. Note that the plastic layer 102 can be removed after making the ohmic contact in the P-type region.

【0018】他の実施例においては、球体111のかわ
りに金属ワイヤをこれらの球のある位置に置いて、上の
ホイル103と下のホイル105の間に電気的な内部接
続を与えている。
In another embodiment, metal wires are placed in place of the spheres 111 instead of the spheres 111 to provide electrical interconnection between the upper foil 103 and the lower foil 105.

【0019】次に、図2を参照すると、図2aは重合体
ホイル薄膜の断面図を示す。203は、各々がほぼ2ミ
ル(0.127ミリ)の厚みを持つ2層のポリエステル
シート202及び201の間に薄膜として設けられた2
ミル(0.127ミリ)の厚みのアルミニウムホイルで
ある。図2bは穴をあける工程を行った後の薄膜を示
し、図2cは、穴の中に半導体球体204をおいた後の
薄膜を示している。挿入する以前、球204は本質的に
P型領域から構成されていて表面205をおおって拡散
されたN型ドープ材領域を有している。穴に挿入するこ
とでN型表面領域204とアルミニウムホイル203の
間には、電気的な接続が形成される。比較的やわらかな
表面の間で球体とホイルとプラスチックの組立体へ圧力
を加えて薄膜に作った穴のほぼ中央に球を位置させる加
圧工程を用いて球は中心にあわすことができる。
Referring now to FIG. 2, FIG. 2a shows a cross sectional view of a polymer foil thin film. 203 is a thin film provided between two layers of polyester sheets 202 and 201, each having a thickness of approximately 2 mils (0.127 mm).
It is a mil (0.127 mm) thick aluminum foil. FIG. 2b shows the thin film after the step of making holes, and FIG. 2c shows the thin film after placing the semiconductor sphere 204 in the hole. Prior to insertion, the sphere 204 has N-type dopant regions diffused over the surface 205, consisting essentially of P-type regions. By inserting into the hole, an electrical connection is formed between the N-type surface region 204 and the aluminum foil 203. The spheres can be centered using a pressure process that applies pressure to the sphere / foil / plastic assembly between the relatively soft surfaces to position the spheres approximately in the center of the holes made in the membrane.

【0020】次に図3を参照すると、図3aは、プラス
チック材料層が球のまわり301を囲ってシールを作り
だす為の第2の加圧工程を行った結果を示す。これは、
各球ごとにほぼ0.1ポンドの圧力をほぼ250℃の温
度下で与えることによって行われる。故に、ポリエステ
ル材料は、301の位置でシールを形成し、球にしっか
りと被着する。
Referring now to FIG. 3, FIG. 3a shows the result of performing a second pressurizing step in which a layer of plastic material surrounds the sphere 301 to create a seal. this is,
This is done by applying a pressure of approximately 0.1 pounds for each sphere at a temperature of approximately 250 ° C. Thus, the polyester material forms a seal at 301 and adheres tightly to the sphere.

【0021】図3bは、しっかりと定着させられた球の
マトリクスの一方の側に対しN型の選択的なエッチが行
われるエッチ工程の後の球を示す断面図である。これに
よって表面の材料が球からとり除かれ、金属ホイルと接
続するN型表面材料302が残り、P型領域303には
次の処理工程が行われる。
FIG. 3b is a cross-sectional view of the sphere after an etching step in which an N-type selective etch is performed on one side of the matrix of firmly anchored spheres. This removes the surface material from the sphere, leaving the N-type surface material 302 connected to the metal foil, and the P-type region 303 undergoes the next processing step.

【0022】図4を参照すると、図4aの組立体は、上
下が逆になっていて表面の露出するP型領域には裏側の
接続ホイル407が形成される。追加のポリエステル材
料405が形成されN型表面領域406に対し電気的な
絶縁を形成している。P型領域401に対する電気的な
接続がマトリクス全体に圧力を与えて408の位置に形
成される。追加のポリエステルシートがセル411の上
に形成され、テフロンコーティング409を施したステ
ンレススチールホイルのような表面に圧力を加えたシー
ト410が圧縮工程の期間、対称性を保つ為に設けられ
る。テフロンコーティング409は、球体のN型表面領
域と結合しない為に設けられ、最終の圧縮結合工程の後
でとり除くのが容易となるよう設けられる。当該圧縮結
合工程において、接続ホイル407は少なくとも上下方
向へ移動しないように所望の面に支持される。
Referring to FIG. 4, the assembly of FIG. 4a is upside down and a backside connection foil 407 is formed in the exposed P-type region of the surface. Additional polyester material 405 is formed to provide electrical isolation to N-type surface region 406. An electrical connection to the P-type region 401 applies pressure to the entire matrix and is formed at position 408. An additional polyester sheet is formed over cell 411 and a surface-pressed sheet 410, such as a Teflon coated 409 stainless steel foil, is provided to maintain symmetry during the compression process. The Teflon coating 409 is provided so that it does not bond to the N-type surface region of the sphere and is easy to remove after the final compression bonding step. In the compression bonding step, the connection foil 407 is supported on a desired surface so as not to move at least in the vertical direction.

【0023】図4bでは、ほぼ260℃の温度下で各球
ごとにほぼ5ポンドの圧力を与えてP型領域とホイルの
間に電気的な接続を形成し、層413が本質的に連続す
るマトリクス支持材料となるような方法でポリエステル
のシートを結合する。直径14ミル(0.3556ミ
リ)の球が0.5ミル(0.127ミリ)のアルミニウ
ムホイルに結合する時、本実施例では各球ごとに0.5
ポンドから、10ポンドまでの圧力の使用が有効である
がしかしながら、金属をかなり変形させる為に充分な圧
力が反復可能な接続を作り出す為に必要とされる。過剰
の圧力が与えられる場合、シリコンの球体には亀裂が入
ることもある。
In FIG. 4b, at a temperature of approximately 260 ° C., approximately 5 pounds of pressure is applied to each sphere to form an electrical connection between the P-type region and the foil, with layer 413 essentially continuous. The polyester sheets are bonded together in such a way as to be a matrix support material. When a 14 mil (0.3556 mm) diameter sphere is bonded to a 0.5 mil (0.127 mm) aluminum foil, in this example 0.5 for each sphere.
The use of pressures from pounds to 10 pounds has been effective, however, sufficient pressure to deform the metal significantly is required to create a repeatable connection. The silicon spheres can also crack if excessive pressure is applied.

【0024】表面に当たる光が接合414に到達し、電
気的なポテンシャルをホイル412と407の間に生み
だす。ポリエステルのシート413は本質的には、光に
対し透明で、更にN型領域をP型接続領域から絶縁して
いる。また一番上のホイル412が乱反射を起こす光学
的な反射板として働き球414がより光を受けとりやす
いようにしている。これは、光源の方にホイルの光沢の
ない面を向けることによって可能である。
The light striking the surface reaches the junction 414 and creates an electrical potential between the foils 412 and 407. The polyester sheet 413 is essentially transparent to light and also insulates the N-type regions from the P-type connection regions. Further, the uppermost foil 412 acts as an optical reflection plate that causes irregular reflection, so that the sphere 414 can receive light more easily. This is possible by directing the matte side of the foil towards the light source.

【0025】半導体セルの上部半球全体を露出し、球を
近接させる配列によって、光にさらされる有効P−N接
合領域は、配列の平面的表面面積より広くなる。
With the array exposing the entire upper hemisphere of the semiconductor cell and bringing the spheres in close proximity, the effective P-N junction area exposed to light is larger than the planar surface area of the array.

【0026】隣接するマトリクス組立体の相互接続は、
図1の107で示されるホイルを中断する方法を用いて
及び接続ホイルの間の短絡回路として働く全体的に拡散
されたN型のセルであるか、全体的に導電性である球体
111を用いて容易に形成される。更に、ホイル間に短
絡接続を形成する為、アルミニウム又はニッケルのボー
ルといった短絡をおこす球又は、球の直径とほぼ同じ径
をもつ所定長さのワイヤを用いることができる。
The interconnection of adjacent matrix assemblies is
Using the method of interrupting the foil shown at 107 in FIG. 1 and using a globally diffused N-type cell or a globally conductive sphere 111 which acts as a short circuit between the connecting foils. And easily formed. Furthermore, in order to form a short-circuit connection between the foils, it is possible to use short-circuiting spheres, such as aluminum or nickel balls, or wires of a certain length having a diameter approximately equal to the diameter of the sphere.

【0027】図5を参照すると、隣接する組立体を内部
的に接続する方法が示され直列な電気的接続が形成され
ている。ホイル51は球53のN型領域に接続し、球5
4のP型領域に接続して示されている。直列接続が52
で示されている。ポリエステルの絶縁及び支持材料層5
5は、連続する内部接続のまわりを実質上途切れなく囲
っている。
Referring to FIG. 5, a method of internally connecting adjacent assemblies is shown to form a series electrical connection. The foil 51 connects to the N-type region of the sphere 53, and the sphere 5
4 is shown connected to the P-type region. 52 in series
Indicated by. Polyester insulation and support material layer 5
5 surrounds the continuous internal connection substantially seamlessly.

【0028】この明細書の例で使用したホイルは、6ミ
ル(0.1524ミリ)以下の厚みを持ち、特殊な打ち
伸ばしのできる特性を持つ金属シートを意図する。本実
施例で使用したホイルは通常手に入るロールに巻かれ
た、料理に使用したり物を包むために用いる通常0.5
から2ミル(0.0127から0.0508ミリ)の厚
みを持つ種々の一般的な3ミルホイルである。アルミニ
ウム合金も有効である。
The foil used in the examples of this specification is intended to be a metal sheet having a thickness of 6 mils (0.1524 mm) or less and having special stretchable properties. The foil used in this example is usually wound on a roll, which is usually used for cooking or wrapping things.
Various common 3 mil foils with a thickness of from 1 to 2 mils (0.0127 to 0.0508 mm). Aluminum alloys are also effective.

【0029】以上のような方法を用いて製造すれば入射
エネルギーを電気的なポテンシャルに変える大面積の太
陽エネルギー変換素子を製造することができる。本発明
の工程では比較的低い温度下で広い領域を持つ素子配列
を作りだすことができる為、コストが安価にあがり、短
絡に対し非常な寛容性を持つという大きな利点を有して
いる。故に、より経済的なエネルギー変換装置を提供で
きたものと確信する。
By using the above method, it is possible to manufacture a large-area solar energy conversion device that converts incident energy into an electric potential. In the process of the present invention, an element array having a wide area can be formed at a relatively low temperature, so that it has a great advantage that the cost is low and the circuit is extremely tolerant to short circuits. Therefore, I am convinced that a more economical energy conversion device could be provided.

【0030】本発明は、特定な実施例に関し説明し図示
しているが、変形及び改変もここに示す本発明の主旨及
び方針から離れるものではないと確信する。
While this invention has been described and illustrated with respect to particular embodiments, it is believed that variations and modifications do not depart from the spirit and principles of the invention presented herein.

【0031】以上の説明に加えて、更に以下の事項を開
示する。 (1) a.第1の凸型表面と第2の表面を形成し、上記表面
のうち一方に半導体特性を持たせる工程と b.上記第1の凸型表面と第2の表面の間において、制御
された期間と圧力をもって、かつ400℃より低い温度
下で金属ホイルを圧縮する工程と を有する、所定の抵抗値を持ち半導体材料に対し、オー
ミックコンタクトを形成する方法。
In addition to the above description, the following items will be further disclosed. (1) a. A step of forming a first convex surface and a second surface and giving one of the above surfaces semiconductor characteristics, and b. Between the first convex surface and the second surface Compressing the metal foil at a temperature lower than 400 ° C. for a controlled period and pressure, and forming an ohmic contact with a semiconductor material having a predetermined resistance value.

【0032】(2) 上記方法がさらに上記第1の凸型表
面、上記第2の表面及び上記金属ホイルの温度を下げる
期間、上記の制御される圧力を保つ工程を含む第1項の
オーミックコンタクトを形成する方法。
(2) The ohmic contact of paragraph 1, wherein the method further comprises the step of maintaining the controlled pressure for a period of time during which the temperature of the first convex surface, the second surface and the metal foil is lowered. How to form.

【0033】(3) 上記半導体材料がP型の導電性を持
つ第1項のオーミックコンタクトを形成する方法。
(3) A method of forming an ohmic contact according to the first item, wherein the semiconductor material has P-type conductivity.

【0034】(4) 上記金属ホイルがアルミニウムを含
む第1項のオーミックコンタクトを形成する方法。
(4) A method of forming the ohmic contact according to the first aspect, wherein the metal foil contains aluminum.

【0035】(5) a.半導体材料と; b.上記半導体材料と接続する金属ホイルであって、所定
の電気抵抗率と、上記半導体材料に対しホイルの物理的
結合特性を有する上記半導体材料と接続する金属ホイル
と を有する半導体装置。
(5) a. A semiconductor material; b. A metal foil connected to the semiconductor material, which has a predetermined electrical resistivity and physical bonding characteristics of the foil to the semiconductor material. A semiconductor device having a connecting metal foil.

【0036】(6) 上記半導体装置がさらに、上記接続
の位置及びそのまわりに位置する重合体材料であって上
記半導体材料に対し、改良されたホイルの物理的結合特
性を持つ第5項の半導体装置。
(6) The semiconductor of paragraph 5 wherein the semiconductor device is further a polymeric material located at and around the location of the connection and having improved foil physical bond characteristics to the semiconductor material. apparatus.

【0037】(7) 上記半導体材料がP型シリコンを有
する第5項の半導体装置。
(7) The semiconductor device according to the fifth item, wherein the semiconductor material contains P-type silicon.

【0038】(8) 上記金属ホイルがアルミニウムを有
する第5項の半導体装置。
(8) The semiconductor device according to item 5, wherein the metal foil contains aluminum.

【0039】(9) 電気的な性能を劣化させることな
く、十分な機械的強度を保証し得る半導体材料と金属ホ
イルとの間にオーミックコンタクトを製造することを目
的とする。そのために、第1の凸面と第2の面との間に
おいて、金属材料と半導体材料とを制御された期間と圧
力及び400℃以下の温度により圧着し、両者の間にオ
ーミックコンタクトを形成する。
(9) It is an object to manufacture an ohmic contact between a semiconductor material and a metal foil capable of guaranteeing sufficient mechanical strength without deteriorating electrical performance. Therefore, between the first convex surface and the second surface, the metal material and the semiconductor material are pressure-bonded under a controlled period and pressure and a temperature of 400 ° C. or less to form an ohmic contact therebetween.

【図面の簡単な説明】[Brief description of drawings]

【図1】放射エネルギー変換装置の一部を示す透視図。FIG. 1 is a perspective view showing a part of a radiant energy converter.

【図2】連続する処理工程図であり、このうちの(a)
は、ホイル−プラスチックの薄膜の断面図。(b) は、穴
が明けられた後を示すプラスチック−ホイル薄膜の断面
図。(c) は、ドープが行われた後のホイル−プラスチッ
ク薄膜の断面図。
FIG. 2 is a diagram of consecutive processing steps, of which (a)
Figure 3 is a cross-sectional view of a foil-plastic thin film. (b) is a cross-sectional view of the plastic-foil thin film after the holes are punched. (c) is a cross-sectional view of the foil-plastic thin film after being doped.

【図3】処理工程に追加される工程を示す図であって、
(a) は、球のまわりをプラスチックでシールした後のホ
イル−プラスチック薄膜及び球を示す断面図。(b) は、
ホイル−プラスチックの薄膜及びシールされN型の表面
材料部分がとり除かれた球を示す断面図。
FIG. 3 is a diagram showing steps added to a processing step,
(a) is a cross-sectional view showing the foil-plastic thin film and the sphere after sealing the sphere with plastic. (b) is
FIG. 4 is a cross-sectional view showing a foil-plastic thin film and a sphere with the sealed N-type surface material portion removed.

【図4】実施例のエネルギー変換装置の断面を示し、
(a) は、第2の金属ホイルを設け最後の高熱圧着工程の
行われる前の完成した組立体の断面図。(b) は、完成し
た放射エネルギー変換装置において形成される2つのホ
イルを接続した完成したセルの断面図。
FIG. 4 shows a cross section of an energy conversion device of an embodiment,
(a) is a cross-sectional view of the completed assembly before the final high thermocompression bonding process is performed by providing the second metal foil. (b) is a sectional view of a completed cell in which two foils formed in the completed radiant energy converter are connected.

【図5】隣接するマトリクス組立体を内部接続する選択
可能な方法を示す本発明の選択しうる実施例を示す図。
FIG. 5 illustrates a selectable embodiment of the present invention showing a selectable method of interconnecting adjacent matrix assemblies.

【符号の説明】[Explanation of symbols]

401 P型領域 404,412 金属ホイル 406 N型領域 407 接続ホイル 401 P-type region 404, 412 Metal foil 406 N-type region 407 Connection foil

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 a.第1の凸型表面と第2の表面を形成
し、上記表面のうち一方に半導体特性を持たせる工程と b.上記第1の凸型表面と第2の表面の間において、制御
された期間と圧力をもって、かつ400℃より低い温度
下で金属ホイルを圧縮する工程と を有する、所定の抵抗値を持ち半導体材料に対し、オー
ミックコンタクトを形成する方法。
1. A step of forming a first convex surface and a second surface, wherein one of the surfaces has semiconductor characteristics, and b. A step of forming the first convex surface and the second surface. And compressing the metal foil at a temperature lower than 400 ° C. for a controlled period of time and at a temperature lower than 400 ° C. to form an ohmic contact with a semiconductor material having a predetermined resistance value.
【請求項2】 上記方法がさらに上記第1の凸型表面、
上記第2の表面及び上記金属ホイルの温度を下げる期
間、上記の制御される圧力を保つ工程を含む請求項1の
オーミックコンタクトを形成する方法。
2. The method further comprises the first convex surface,
The method of forming an ohmic contact of claim 1 including the step of maintaining the controlled pressure during the period of lowering the temperature of the second surface and the metal foil.
【請求項3】 上記半導体材料がP型の導電性を持つ請
求項1のオーミックコンタクトを形成する方法。
3. The method for forming an ohmic contact according to claim 1, wherein the semiconductor material has P-type conductivity.
【請求項4】 上記金属ホイルがアルミニウムを含む請
求項1のオーミックコンタクトを形成する方法。
4. The method of forming an ohmic contact of claim 1, wherein the metal foil comprises aluminum.
JP4251524A 1981-09-08 1992-09-21 Manufacturing method of ohmic contact between metallic foil and semiconductor material Pending JPH05243593A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US299694 1981-09-08
US06/299,695 US4407320A (en) 1981-09-08 1981-09-08 Large area, fault tolerant solar energy converter
US299695 1981-09-08
US06/299,694 US4451968A (en) 1981-09-08 1981-09-08 Method and device for providing an ohmic contact of high resistance on a semiconductor at low temperatures

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57154731A Division JPS5854684A (en) 1981-09-08 1982-09-07 Solar energy converter

Publications (1)

Publication Number Publication Date
JPH05243593A true JPH05243593A (en) 1993-09-21

Family

ID=26971353

Family Applications (2)

Application Number Title Priority Date Filing Date
JP57154731A Granted JPS5854684A (en) 1981-09-08 1982-09-07 Solar energy converter
JP4251524A Pending JPH05243593A (en) 1981-09-08 1992-09-21 Manufacturing method of ohmic contact between metallic foil and semiconductor material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP57154731A Granted JPS5854684A (en) 1981-09-08 1982-09-07 Solar energy converter

Country Status (1)

Country Link
JP (2) JPS5854684A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006345A1 (en) * 1985-04-19 1986-11-06 Ladislav Stephan Karpisek Method and apparatus for wrapping
US7705385B2 (en) 2005-09-12 2010-04-27 International Business Machines Corporation Selective deposition of germanium spacers on nitride
JP2015050413A (en) * 2013-09-04 2015-03-16 アン,ヒョン・ウー Solar cell utilizing pcb
JP2015164219A (en) * 2015-05-13 2015-09-10 アン,ヒョン・ウー Solar cell utilizing pcb

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854684A (en) * 1981-09-08 1983-03-31 テキサス・インスツルメンツ・インコ−ポレイテツド Solar energy converter
JPH0754855B2 (en) * 1984-09-04 1995-06-07 テキサス インスツルメンツ インコーポレイテッド How to make a solar array
JPS61112384A (en) * 1984-11-07 1986-05-30 Teijin Ltd Solar battery and manufacture thereof
JPS61193488A (en) * 1985-02-22 1986-08-27 Teijin Ltd Manufacture of amorphous solar cell
US6706959B2 (en) 2000-11-24 2004-03-16 Clean Venture 21 Corporation Photovoltaic apparatus and mass-producing apparatus for mass-producing spherical semiconductor particles
EP1521309A1 (en) * 2003-10-02 2005-04-06 Scheuten Glasgroep Series connection of solar cells with integrated semiconductor bodies, method of production and photovoltaic module with series connection
TWI466304B (en) * 2006-07-07 2014-12-21 Energy Related Devices Inc Micro concentrators elastically coupled with spherical photovoltaic cells
DE102014211656A1 (en) * 2014-06-18 2016-01-07 Bayerische Motoren Werke Aktiengesellschaft Method for pressing a ball with a first component and component connection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854684A (en) * 1981-09-08 1983-03-31 テキサス・インスツルメンツ・インコ−ポレイテツド Solar energy converter
JPS61124179A (en) * 1984-09-04 1986-06-11 テキサス インスツルメンツ インコ−ポレイテツド Solar array and making thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854684A (en) * 1981-09-08 1983-03-31 テキサス・インスツルメンツ・インコ−ポレイテツド Solar energy converter
JPS61124179A (en) * 1984-09-04 1986-06-11 テキサス インスツルメンツ インコ−ポレイテツド Solar array and making thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006345A1 (en) * 1985-04-19 1986-11-06 Ladislav Stephan Karpisek Method and apparatus for wrapping
US7705385B2 (en) 2005-09-12 2010-04-27 International Business Machines Corporation Selective deposition of germanium spacers on nitride
US7888241B2 (en) 2005-09-12 2011-02-15 International Business Machines Corporation Selective deposition of germanium spacers on nitride
US8900961B2 (en) 2005-09-12 2014-12-02 International Business Machines Corporation Selective deposition of germanium spacers on nitride
JP2015050413A (en) * 2013-09-04 2015-03-16 アン,ヒョン・ウー Solar cell utilizing pcb
JP2015164219A (en) * 2015-05-13 2015-09-10 アン,ヒョン・ウー Solar cell utilizing pcb

Also Published As

Publication number Publication date
JPH0574235B2 (en) 1993-10-18
JPS5854684A (en) 1983-03-31

Similar Documents

Publication Publication Date Title
US4407320A (en) Large area, fault tolerant solar energy converter
US4521640A (en) Large area, low temperature process, fault tolerant solar energy converter
EP1943683B1 (en) Photovoltaic modules and interconnect methodology for fabricating the same
US5110370A (en) Photovoltaic device with decreased gridline shading and method for its manufacture
JP5323250B2 (en) Solar cell module and manufacturing method thereof
US20110083716A1 (en) Monolithic module assembly using back contact solar cells and metal ribbon
WO2010116973A1 (en) Interconnect sheet, solar cell with interconnect sheet, solar module, and method of producing solar cell with interconnect sheet
JP5899400B2 (en) Manufacturing method of solar cell module
US20050022857A1 (en) Solar cell interconnect structure
JP4958187B2 (en) Solar cell, wiring sheet, solar cell with wiring sheet and solar cell module
US5232519A (en) Wireless monolithic photovoltaic module
CN108323213B (en) Photovoltaic module interconnection joint
JPH05243593A (en) Manufacturing method of ohmic contact between metallic foil and semiconductor material
WO1993008605A1 (en) Photovoltaic device with increased light absorption and method for its manufacture
CN112789735B (en) Method for producing solar panels curved in two directions
JP5203176B2 (en) Wiring sheet, solar cell with wiring sheet and solar cell module
JPWO2009104627A1 (en) Solar cell module
JP5424235B2 (en) Solar cell module and method for manufacturing solar cell module
JP5545569B2 (en) Method for manufacturing solar cell backsheet
WO2022041479A1 (en) Interconnection piece and solar cell assembly
JP5652911B2 (en) Manufacturing method of solar cell module
JP5456128B2 (en) Solar cell module
JP5288409B2 (en) Solar cell with wiring sheet, solar cell module, method for manufacturing solar cell with wiring sheet, and method for manufacturing solar cell module
JP2010245399A (en) Wiring sheet, solar cell with wiring sheet, solar cell module, method of manufacturing solar cell with wiring sheet, and method of manufacturing solar cell module
JP2002134766A (en) Solar cell and method for producing the same