JPH05243518A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05243518A
JPH05243518A JP4040910A JP4091092A JPH05243518A JP H05243518 A JPH05243518 A JP H05243518A JP 4040910 A JP4040910 A JP 4040910A JP 4091092 A JP4091092 A JP 4091092A JP H05243518 A JPH05243518 A JP H05243518A
Authority
JP
Japan
Prior art keywords
film
oxidation
counter electrode
insulating film
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4040910A
Other languages
Japanese (ja)
Inventor
Hisashi Ogawa
久 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4040910A priority Critical patent/JPH05243518A/en
Publication of JPH05243518A publication Critical patent/JPH05243518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce a difference in height between a memory cell part of DRAM using a stack-type cell and a peripheral circuit part and thereby to facilitate subsequent formation of a wiring pattern. CONSTITUTION:A switching transistor 5 is formed on a P-type Si substrate 1 and a bit line 7 of W polycide and a charge storage electrode 8 of a polycrystalline Si film are formed in connection on one part of an n-type diffused layer 3 of the transistor and on the other part thereof respectively. On the substrate thus prepared, a capacity insulation film 9 an SiN film and a SiO2 film is formed and then a polycrystalline Si film 10 to be an opposed electrode is deposited by 200nm. After a silicon nitride film 11 is deposited thereon by 50nm, this film is patterned by a technique of photolithography in such a manner as to stipulate the region of the opposed electrode. Next, an exposed part of the polycrystalline Si film 10 is thermally oxidized at 850 deg.C to turn it an SiO2 film 12 the film thickness thereof is made about 440nm. Accordingly, a difference in height between a memory cell part 31 and a peripheral circuit part 32 is reduced from 850nm before the oxidation to 610nm after it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多結晶シリコンを導電材
料として用いる半導体装置、特にスタック型のDRAM
(ダナミック・ランダム・アクセス・メモリー)に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device using polycrystalline silicon as a conductive material, particularly a stack type DRAM.
(Dynamic Random Access Memory).

【0002】[0002]

【従来の技術】高集積化がますます進む半導体装置の中
にあって最も微細な加工が要求されるDRAMは、十分
な蓄積容量を得るために容量部分をシリコン基板中に掘
り下げて形成するトレンチ型セルや、容量部分を三次元
的に積み上げて形成するスタック型セルが採用されてい
る。このうちスタック型セルは微細化が進めば進ほど十
分な蓄積容量を得るためには容量電極部分を高くして行
かざるを得ない。ところが、パターン形成のためのリソ
グラフィー技術においては解像限界が微細になるほど焦
点深度が浅くなる。一般に解像限界は使用する光源の波
長に比例し露光装置のレンズの開口数に逆比例するため
微細なパターンを形成するためには、使用する光源の波
長を短くするかレンズの開口数を大きくして対応する。
しかし一方で焦点深度は光源の波長に比例し、レンズの
開口数の2乗に反比例するため解像限界を小さくすれば
するほど焦点深度が浅くなるわけである。従って微細な
パターン形成を行うためには下地段差をできるだけ小さ
く抑える必要がある。
2. Description of the Related Art In a semiconductor device with higher integration, which requires the finest processing, a DRAM is a trench formed by digging a capacitance portion into a silicon substrate to obtain a sufficient storage capacitance. A type cell or a stack type cell in which a capacitive portion is three-dimensionally stacked and formed is adopted. Among them, in the stack type cell, as miniaturization progresses, the capacity electrode portion must be raised in order to obtain a sufficient storage capacity. However, in the lithography technique for pattern formation, the finer the resolution limit, the shallower the depth of focus. Generally, the resolution limit is proportional to the wavelength of the light source used and inversely proportional to the numerical aperture of the lens of the exposure apparatus, so to form a fine pattern, the wavelength of the light source used should be shortened or the numerical aperture of the lens should be increased. And respond.
On the other hand, on the other hand, the depth of focus is proportional to the wavelength of the light source and inversely proportional to the square of the numerical aperture of the lens. Therefore, the smaller the resolution limit is, the shallower the depth of focus becomes. Therefore, in order to form a fine pattern, it is necessary to suppress the step difference in the base as small as possible.

【0003】以下図面を参照しながら、上記した従来の
スタック型セルを用いたDRAMの製造方法について説
明する。
A method of manufacturing a DRAM using the above-described conventional stack type cell will be described below with reference to the drawings.

【0004】図4は従来のスタック型セルを用いたDR
AMの製造方法を示す工程断面図である。図4におい
て、5はスイッチングトランジスタで、8は電荷蓄積電
極、20は対向電極である。まず図4(a)に示すよう
にp型半導体基板1上にスイッチングトランジスタ5を
形成し、前記トランジスタ5の一方のn型拡散層3にビ
ット線7を、他方のn型拡散層3に多結晶シリコンより
なる電荷蓄積電極8を形成した後に、窒化珪素膜と酸化
珪素膜の多層膜よりなる容量絶縁膜9を形成し、更にそ
の上に対向電極となる多結晶シリコン膜10を形成す
る。次に図4(b)に示すように前記多結晶シリコン膜
10をフォトリソグラフィーとエッチングによりパター
ニングを行い、対向電極20を形成する。その後第2の
層間絶縁膜13としてBPSGを堆積した後、アニール
を施してリフローさせて、メモリセル部31と周辺回路
部32との段差部分30での前記層間絶縁膜13の最大
傾斜角を低減させる。例えば64MDRAMでは十分な
蓄積電荷を得るためには約30fFの蓄積容量が必要と
考えられる。そのためには1.5um2のメモリセル面
積で、SiO2膜換算で6nm相当の容量絶縁膜を用い
た場合、電荷蓄積電極8の高さは約800nm必要であ
る。
FIG. 4 shows a DR using a conventional stack type cell.
It is process sectional drawing which shows the manufacturing method of AM. In FIG. 4, 5 is a switching transistor, 8 is a charge storage electrode, and 20 is a counter electrode. First, as shown in FIG. 4A, a switching transistor 5 is formed on a p-type semiconductor substrate 1, and a bit line 7 is formed in one of the n-type diffusion layers 3 of the transistor 5 and a bit line 7 is formed in the other n-type diffusion layer 3. After forming the charge storage electrode 8 made of crystalline silicon, a capacitive insulating film 9 made of a multilayer film of a silicon nitride film and a silicon oxide film is formed, and a polycrystalline silicon film 10 serving as a counter electrode is further formed thereon. Next, as shown in FIG. 4B, the polycrystalline silicon film 10 is patterned by photolithography and etching to form a counter electrode 20. After that, BPSG is deposited as the second interlayer insulating film 13 and then annealed and reflowed to reduce the maximum inclination angle of the interlayer insulating film 13 in the step portion 30 between the memory cell portion 31 and the peripheral circuit portion 32. Let For example, in a 64M DRAM, it is considered that a storage capacitance of about 30fF is necessary to obtain a sufficient storage charge. For that purpose, the height of the charge storage electrode 8 is required to be approximately 800 nm when the capacity insulating film having a memory cell area of 1.5 um 2 and equivalent to 6 nm in terms of SiO 2 film is used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、対向電極20に200nmの膜厚の多結
晶シリコン膜を使用した場合、メモリセル部31と周辺
回路部32との間に電荷蓄積電極8の高さと対向電極2
0の膜厚相当の段差約1umが発生し、第2の層間絶縁
膜13での前記段差部30の段差緩和が十分に行えな
い。従ってその後に行わなければならない配線パターン
の形成が極めて困難となってしまうという問題点を有し
ていた。すなわち、64MDRAMでは0.35umと
いう微細なパターン形成が要求されているが、フォトリ
ソグラフィー技術においては微細なパターンになるほど
その焦点深度が浅くなるため大きな段差上での微細パタ
ーンの形成が困難になるわけである。
However, in the above-described structure, when a polycrystalline silicon film having a film thickness of 200 nm is used for the counter electrode 20, the charge accumulation is performed between the memory cell section 31 and the peripheral circuit section 32. Height of electrode 8 and counter electrode 2
A step difference of about 1 μm corresponding to a film thickness of 0 occurs, and the step difference of the step portion 30 in the second interlayer insulating film 13 cannot be sufficiently relaxed. Therefore, there has been a problem that it becomes extremely difficult to form a wiring pattern that must be performed thereafter. That is, although a fine pattern of 0.35 μm is required to be formed in 64M DRAM, the finer the pattern becomes, the smaller the depth of focus becomes in the photolithography technique, which makes it difficult to form a fine pattern on a large step. Is.

【0006】本発明は上記問題点に鑑み、電荷蓄積電極
の高さを高く形成してもメモリセル部と周辺回路部の段
差を小さく抑え、後の配線パターンの形成を容易にする
半導体装置の製造方法を提供するものである。
In view of the above problems, the present invention is directed to a semiconductor device in which a step difference between a memory cell portion and a peripheral circuit portion is suppressed to be small even if a height of a charge storage electrode is formed, and a wiring pattern is easily formed later. A manufacturing method is provided.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに本発明の半導体装置の製造方法は、スイッチングト
ランジスタに接続する電荷蓄積電極が形成された半導体
基板上に容量絶縁膜、対向電極となる導電膜を順次形成
する工程と、前記導電膜上に対向電極の領域を規定する
耐酸化性膜を形成する工程と、前記耐酸化性膜で被覆さ
れていない前記導電膜を選択的に酸化する工程とを備
え、前記導電膜をエッチングすることなく酸化により対
向電極のパターン形成を行うことを特徴とする半導体装
置の製造方法である。
In order to solve the above problems, a method of manufacturing a semiconductor device according to the present invention comprises a capacitor insulating film and a counter electrode on a semiconductor substrate on which a charge storage electrode connected to a switching transistor is formed. Sequentially forming a conductive film consisting of the above, a step of forming an oxidation resistant film that defines a region of a counter electrode on the conductive film, and a step of selectively oxidizing the conductive film not covered with the oxidation resistant film. And a step of forming a pattern of the counter electrode by oxidation without etching the conductive film.

【0008】[0008]

【作用】本発明は上記した構成によって、周辺回路上の
対向電極材料の導電膜をエッチング除去せずに酸化によ
って絶縁膜に変えるため、酸化による体積膨張によって
電荷蓄積電極の高さによる段差の一部を吸収して、メモ
リセル部と周辺回路部の段差を低減することとなる。
According to the present invention, since the conductive film of the counter electrode material on the peripheral circuit is converted into an insulating film by oxidation without being removed by etching with the above-described structure, a volume difference due to the oxidation causes a difference in level due to the height of the charge storage electrode. By absorbing the portion, the step difference between the memory cell portion and the peripheral circuit portion can be reduced.

【0009】[0009]

【実施例】(実施例1)以下本発明の実施例の半導体装
置の製造方法について、図面を参照しながら説明する。
図1は本発明の第1の実施例における半導体装置の製造
方法の工程断面図を示すものであり、図1を用いて説明
する。
EXAMPLE 1 A method for manufacturing a semiconductor device according to an example of the present invention will be described below with reference to the drawings.
FIG. 1 is a process sectional view of a method for manufacturing a semiconductor device according to a first embodiment of the present invention, which will be described with reference to FIG.

【0010】まず図1(a)に示すように素子分離用絶
縁膜2を有するp型半導体基板1上にスイッチングトラ
ンジスタ5を形成し、前記スイッチングトランジスタ5
のn型拡散層3の一方にタングステンポリサイドよりな
るビット線7、他方に多結晶シリコン膜800nmより
なる電荷蓄積電極8が接続されて形成された基板上に容
量絶縁膜9として窒化珪素膜と酸化珪素膜よりなる、い
わゆるONO膜を形成した後、対向電極となる多結晶シ
リコン膜10を200nm堆積する。次に図1(b)に
示すように前記多結晶シリコン膜10上に窒化珪素膜1
1を50nm堆積後、対向電極領域を規定するようにフ
ォトリソグラフィーとエッチング技術を用いて前記窒化
珪素膜11をパターニングする。
First, as shown in FIG. 1A, a switching transistor 5 is formed on a p-type semiconductor substrate 1 having an insulating film 2 for element isolation, and the switching transistor 5 is formed.
A silicon nitride film is formed as a capacitive insulating film 9 on a substrate formed by connecting a bit line 7 made of tungsten polycide to one side of the n-type diffusion layer 3 and a charge storage electrode 8 made of a polycrystalline silicon film 800 nm connected to the other side. After forming a so-called ONO film made of a silicon oxide film, a polycrystalline silicon film 10 serving as a counter electrode is deposited to a thickness of 200 nm. Next, as shown in FIG. 1B, the silicon nitride film 1 is formed on the polycrystalline silicon film 10.
After depositing 1 of 50 nm, the silicon nitride film 11 is patterned by photolithography and etching technique so as to define the counter electrode region.

【0011】次に図1(c)に示すようにパイロ雰囲気
(850℃,60分)で前記多結晶シリコン膜10の露
出した部分を酸化してSiO2膜12に変化させる。
尚、酸化時には前記容量絶縁膜9としてのONO膜は基
板上全面に形成されているために、酸化種が下層に侵入
して下層のビット線7などの配線層が酸化されないよう
に酸化防止膜の役割を果たす。このとき多結晶シリコン
膜の膜厚が200nmであったので酸化後のSiO2膜
12の膜厚は440nm程度になる。従ってこの酸化に
よってメモリセル部31と周辺回路部32との段差は酸
化以前の850nm(電荷蓄積電極8の高さ+窒化珪素
膜11の膜厚50nm)に比べて610nmに低減され
たことになる。次に図1(d)に示すように第2の層間
絶縁膜13としてBPSG膜を500nm堆積し900
度の窒素雰囲気で30分のアニールを施してリフローさ
せると、メモリセル部31と周辺回路部32との段差部
分30の前記第2の層間絶縁膜13の最大傾斜角を約3
0度にすることが可能となり、後の配線層の形成が極め
て容易に行えるようになる。
Next, as shown in FIG. 1C, the exposed portion of the polycrystalline silicon film 10 is oxidized in a pyro atmosphere (850 ° C., 60 minutes) to change into a SiO 2 film 12.
Since the ONO film as the capacitance insulating film 9 is formed on the entire surface of the substrate during oxidation, an oxidation preventing film is formed so that the oxidizing species do not penetrate into the lower layer and the wiring layer such as the lower bit line 7 is not oxidized. Play a role of. At this time, since the thickness of the polycrystalline silicon film was 200 nm, the thickness of the SiO 2 film 12 after oxidation was about 440 nm. Therefore, this oxidation reduces the step between the memory cell portion 31 and the peripheral circuit portion 32 to 610 nm as compared with 850 nm (the height of the charge storage electrode 8 + the film thickness of the silicon nitride film 11 of 50 nm) before the oxidation. .. Next, as shown in FIG. 1D, a BPSG film is deposited to a thickness of 500 nm as the second interlayer insulating film 13 and 900
Annealing for 30 minutes in a nitrogen atmosphere for reflow, the maximum inclination angle of the second interlayer insulating film 13 in the step portion 30 between the memory cell portion 31 and the peripheral circuit portion 32 is about 3
It becomes possible to set it to 0 degree, and the subsequent wiring layer can be formed extremely easily.

【0012】以上のように本実施例によれば、従来から
の単純な構造のスタック型セルを高く形成しても、対向
電極をエッチングすることなく酸化によって絶縁膜に変
えることにより、酸化による体積膨張で実効的にメモリ
セル部と周辺回路部の段差を低減できるため、後の微細
な配線パターンの形成を容易に行うことが可能となる。
As described above, according to this embodiment, even if a stack type cell having a conventional simple structure is formed to be high, the counter electrode is converted into an insulating film by oxidation without etching. Since the step difference between the memory cell portion and the peripheral circuit portion can be effectively reduced by the expansion, it becomes possible to easily form a fine wiring pattern later.

【0013】(実施例2)次に、本発明の第2の実施例
について図面を参照しながら説明する。
(Embodiment 2) Next, a second embodiment of the present invention will be described with reference to the drawings.

【0014】図2は本発明の第2の実施例における半導
体装置の製造方法の工程断面図を示すものであり、図2
を用いて説明する。
FIG. 2 is a sectional view showing the steps of a method of manufacturing a semiconductor device according to the second embodiment of the present invention.
Will be explained.

【0015】まず図2(a)に示すように素子分離用絶
縁膜2を有するp型半導体基板1上にスイッチングトラ
ンジスタ5を形成し、前記スイッチングトランジスタ5
のn型拡散層3の一方にタングステンポリサイドよりな
るビット線7、他方に多結晶シリコン膜800nmより
なる電荷蓄積電極8が接続されて形成された基板上に、
容量絶縁膜9として窒化珪素膜と酸化珪素膜よりなる、
いわゆるONO膜を形成した後、対向電極となる多結晶
シリコン膜10を200nm堆積する。次に図2(b)
に示すように前記多結晶シリコン膜10上に窒化珪素膜
11を50nm堆積後、対向電極領域を規定するように
フォトリソグラフィーとエッチング技術を用いて前記窒
化珪素膜11をパターニングする。
First, as shown in FIG. 2A, a switching transistor 5 is formed on a p-type semiconductor substrate 1 having an element isolation insulating film 2, and the switching transistor 5 is formed.
On a substrate formed by connecting the bit line 7 made of tungsten polycide to one of the n-type diffusion layers 3 and the charge storage electrode 8 made of a polycrystalline silicon film 800 nm to the other,
The capacitive insulating film 9 is made of a silicon nitride film and a silicon oxide film,
After forming a so-called ONO film, a polycrystalline silicon film 10 serving as a counter electrode is deposited to a thickness of 200 nm. Next, FIG. 2 (b)
After depositing a silicon nitride film 11 on the polycrystalline silicon film 50 to a thickness of 50 nm, the silicon nitride film 11 is patterned by photolithography and etching techniques so as to define a counter electrode region.

【0016】次に図2(c)に示すようにパイロ雰囲気
(850℃,60分)で前記多結晶シリコン膜10の露
出した部分を酸化してSiO2膜12に変化させる。こ
のとき多結晶シリコン膜の膜厚が200nmであったの
で酸化後のSiO2膜12の膜厚は440nm程度にな
る。次に図2(d)に示すように前記窒化珪素膜11を
熱リン酸溶液で選択的に除去した後、第2の層間絶縁膜
13としてBPSG膜を500nm堆積し、900度の
窒素雰囲気で30分のアニールを施してリフローさせる
と、メモリセル部31と周辺回路部32との段差部分3
0の前記第2の層間絶縁膜13の最大傾斜角を30度以
下にすることが可能となり、後の配線層の形成が極めて
容易に行えるようになる。本実施例の場合、酸化後窒化
珪素膜11を除去することによって、メモリセル部31
と周辺回路部32との段差は酸化以前の850nm(電
荷蓄積電極8の高さ+窒化珪素膜11の膜厚50nm)
に比べて560nmに低減されたことになる。従って第
1の実施例よりもさらに段差を低減することが可能で段
差部分の第2の層間絶縁膜13の最大傾斜角も30度以
下にすることが可能となる。
Next, as shown in FIG. 2C, the exposed portion of the polycrystalline silicon film 10 is oxidized in a pyro atmosphere (850 ° C., 60 minutes) to change into a SiO 2 film 12. At this time, since the thickness of the polycrystalline silicon film was 200 nm, the thickness of the SiO 2 film 12 after oxidation was about 440 nm. Next, as shown in FIG. 2D, the silicon nitride film 11 is selectively removed with a hot phosphoric acid solution, and then a BPSG film is deposited to a thickness of 500 nm as a second interlayer insulating film 13 in a nitrogen atmosphere at 900 degrees. After annealing for 30 minutes and reflowing, the step portion 3 between the memory cell portion 31 and the peripheral circuit portion 32 is formed.
The maximum inclination angle of the second interlayer insulating film 13 of 0 can be set to 30 degrees or less, and the subsequent wiring layer can be formed extremely easily. In the case of this embodiment, the memory cell portion 31 is removed by removing the silicon nitride film 11 after the oxidation.
And the peripheral circuit portion 32 have a step difference of 850 nm before oxidation (height of the charge storage electrode 8 + thickness of the silicon nitride film 11 of 50 nm).
This means that it is reduced to 560 nm compared to Therefore, it is possible to further reduce the step difference as compared with the first embodiment, and the maximum inclination angle of the second interlayer insulating film 13 in the step portion can also be set to 30 degrees or less.

【0017】以上のように本実施例によれば、従来から
の単純な構造のスタック型セルを高く形成しても対向電
極をエッチングすることなく酸化によって絶縁膜に変え
た後、酸化のマスクとして使用した窒化珪素膜を除去す
ることにより、酸化による体積膨張で実効的にメモリセ
ル部と周辺回路部の段差を低減できるため、後の微細な
配線パターンの形成を容易に行うことが可能となる。
As described above, according to the present embodiment, even if a stack type cell having a conventional simple structure is formed to be high, the counter electrode is converted into an insulating film by oxidation without etching, and then used as a mask for oxidation. By removing the used silicon nitride film, the step difference between the memory cell portion and the peripheral circuit portion can be effectively reduced due to the volume expansion due to the oxidation, so that it is possible to easily form a fine wiring pattern later. ..

【0018】(実施例3)以下本発明の第3の実施例に
ついて図面を参照しながら説明する。
(Embodiment 3) A third embodiment of the present invention will be described below with reference to the drawings.

【0019】図3は本発明の第3の実施例における半導
体装置の製造方法の工程断面図を示すものであり、図3
を用いて説明する。
FIG. 3 is a sectional view showing the steps in a method of manufacturing a semiconductor device according to the third embodiment of the present invention.
Will be explained.

【0020】まず図3(a)に示すように素子分離用絶
縁膜2を有するp型半導体基板1上にスイッチングトラ
ンジスタ5を形成し、前記スイッチングトランジスタ5
のn型拡散層3の一方にタングステンポリサイドよりな
るビット線7、他方に多結晶シリコン膜800nmより
なる電荷蓄積電極8が接続されて形成された基板上に、
容量絶縁膜9として窒化珪素膜と酸化珪素膜よりなる、
いわゆるONO膜を形成した後、対向電極となる多結晶
シリコン膜10を200nm堆積する。次に図3(b)
に示すように前記多結晶シリコン膜10上に窒化珪素膜
11を50nm堆積後、対向電極領域を規定するように
フォトリソグラフィーとエッチング技術を用いて前記窒
化珪素膜11をパターニングする。次に図3(c)に示
すように第2の層間絶縁膜13としてBPSG膜を50
0nm堆積する。
First, as shown in FIG. 3A, a switching transistor 5 is formed on a p-type semiconductor substrate 1 having an element isolation insulating film 2, and the switching transistor 5 is formed.
On a substrate formed by connecting the bit line 7 made of tungsten polycide to one of the n-type diffusion layers 3 and the charge storage electrode 8 made of a polycrystalline silicon film 800 nm to the other,
The capacitive insulating film 9 is made of a silicon nitride film and a silicon oxide film,
After forming a so-called ONO film, a polycrystalline silicon film 10 serving as a counter electrode is deposited to a thickness of 200 nm. Next, FIG. 3 (b)
After depositing a silicon nitride film 11 on the polycrystalline silicon film 10 to a thickness of 50 nm, the silicon nitride film 11 is patterned by photolithography and etching techniques so as to define a counter electrode region. Next, as shown in FIG. 3C, a BPSG film is used as the second interlayer insulating film 13.
Deposit 0 nm.

【0021】次に図3(d)に示すようにパイロ雰囲気
(850℃,60分)で前記多結晶シリコン膜10の窒
化珪素膜11で覆われていない部分を酸化してSiO2
膜12に変化させると同時に前記第2の層間絶縁膜13
をリフローさせる。これによりメモリセル部31と周辺
回路部32との段差部分30の前記第2の層間絶縁膜1
3の最大傾斜角を約30度にすることが可能となり、後
の配線層の形成が極めて容易に行えるようになる。本実
施例の場合段差の低減効果は第1の実施例と同等だが、
酸化とリフローを同時に行うことにより工程数を削減で
きる。
Next, as shown in FIG. 3D, a portion of the polycrystalline silicon film 10 which is not covered with the silicon nitride film 11 is oxidized in a pyro atmosphere (850 ° C., 60 minutes) to make SiO 2
At the same time as changing to the film 12, the second interlayer insulating film 13
To reflow. As a result, the second interlayer insulating film 1 in the step portion 30 between the memory cell portion 31 and the peripheral circuit portion 32 is formed.
The maximum inclination angle of 3 can be set to about 30 degrees, and the subsequent wiring layer can be formed extremely easily. In the case of this embodiment, the effect of reducing the step difference is equivalent to that of the first embodiment,
The number of steps can be reduced by simultaneously performing oxidation and reflow.

【0022】以上のように本実施例によれば、従来から
の単純な構造のスタック型セルを高く形成しても対向電
極をエッチングすることなく酸化によって絶縁膜に変え
ると同時に対向電極上の層間絶縁膜のリフローも行える
ために、酸化による体積膨張で実効的にメモリセル部と
周辺回路部の段差を低減できる効果を少ない工程で実現
でき、後の微細な配線パターンの形成を容易に行うこと
が可能となる。
As described above, according to this embodiment, even if a stack type cell having a conventional simple structure is formed high, the counter electrode is converted into an insulating film by oxidation without etching, and at the same time the interlayer on the counter electrode is etched. Since the insulating film can be reflowed, the effect of effectively reducing the step between the memory cell part and the peripheral circuit part due to the volume expansion due to oxidation can be realized in a few steps, and the subsequent formation of a fine wiring pattern can be easily performed. Is possible.

【0023】尚、上記1〜3の実施例において前述した
ようにONO膜は酸化防止膜として働くが、電荷蓄積電
極8の形成前に第1の層間絶縁膜6上に予め窒化珪素膜
を形成しておくと、より十分な酸化防止効果を得ること
ができる。また、容量絶縁膜としてONO以外の高誘電
体膜を使用した場合も予め電荷蓄積電極8の形成前に第
1の層間絶縁膜6上に窒化珪素膜を形成しておくことに
より酸化防止効果を得ることができる。
Although the ONO film functions as an antioxidant film as described above in the first to third embodiments, a silicon nitride film is previously formed on the first interlayer insulating film 6 before the charge storage electrode 8 is formed. If so, a more sufficient antioxidant effect can be obtained. Also, when a high dielectric film other than ONO is used as the capacitive insulating film, a silicon nitride film is formed in advance on the first interlayer insulating film 6 before the charge storage electrode 8 is formed, so that an antioxidation effect can be obtained. Obtainable.

【0024】[0024]

【発明の効果】以上のように本発明は、スイッチングト
ランジスタに接続する電荷蓄積電極が形成された半導体
基板上に容量絶縁膜、対向電極となる導電膜を順次形成
する工程と、前記導電膜上に対向電極の領域を規定する
耐酸化性膜を形成する工程と、前記耐酸化性膜で被覆さ
れていない前記導電膜を選択的に酸化する工程とを備
え、前記導電膜をエッチングすることなく酸化により対
向電極のパターン形成を行うことにより、従来からの単
純な構造のスタック型セルを高く形成しても対向電極を
エッチングすることなく、酸化によって絶縁膜に変える
ことによる体積膨張で実効的にメモリセル部と周辺回路
部の段差を低減できるため、後の配線パターンの形成が
容易になる。また、従来フォトリソグラフィーから制限
されていた高さを越えた電荷蓄積電極の形成が可能とな
る。さらに、従来の単純な構造のスタック型セルを使用
できるために、多くの工程数を必要とする複雑な三次元
構造を採用する必要もなくなるためその実用的効果は極
めて大きい。
As described above, according to the present invention, a step of sequentially forming a capacitive insulating film and a conductive film to be a counter electrode on a semiconductor substrate on which a charge storage electrode connected to a switching transistor is formed; And a step of selectively oxidizing the conductive film that is not covered with the oxidation resistant film, without etching the conductive film. By forming the pattern of the counter electrode by oxidation, even if the stack type cell of the conventional simple structure is formed to be high, the counter electrode is not etched but the volume expansion by changing to the insulating film by oxidation is effective. Since the step difference between the memory cell portion and the peripheral circuit portion can be reduced, the subsequent wiring pattern can be easily formed. Further, it becomes possible to form the charge storage electrode beyond the height which has been limited by the conventional photolithography. Furthermore, since the conventional stack type cell having a simple structure can be used, it is not necessary to adopt a complicated three-dimensional structure that requires a large number of steps, so that the practical effect thereof is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における半導体装置の製
造方法を示す工程断面図
FIG. 1 is a process sectional view showing a method of manufacturing a semiconductor device according to a first embodiment of the invention.

【図2】本発明の第2の実施例における半導体装置の製
造方法を示す工程断面図
FIG. 2 is a process sectional view showing a method for manufacturing a semiconductor device according to a second embodiment of the present invention.

【図3】本発明の第3の実施例における半導体装置の製
造方法を示す工程断面図
FIG. 3 is a process sectional view showing a method for manufacturing a semiconductor device according to a third embodiment of the present invention.

【図4】従来の半導体装置の製造方法を示す工程断面図4A to 4C are process cross-sectional views showing a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

5 スイッチングトランジスタ 7 ビット線 8 電荷蓄積電極 9 容量絶縁膜 20 対向電極 5 Switching transistor 7 Bit line 8 Charge storage electrode 9 Capacitance insulating film 20 Counter electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】多結晶シリコンよりなる導電層をエッチン
グすることなく酸化によりパターン形成を行うことを特
徴とする半導体装置の製造方法。
1. A method of manufacturing a semiconductor device, wherein pattern formation is performed by oxidation without etching a conductive layer made of polycrystalline silicon.
【請求項2】スイッチングトランジスタに接続する電荷
蓄積電極が形成された半導体基板上に容量絶縁膜、対向
電極となる導電膜を順次形成する工程と、前記導電膜上
に対向電極の領域を規定する耐酸化性膜を形成する工程
と、前記耐酸化性膜で被覆されていない前記導電膜を選
択的に酸化する工程とを備え、前記導電膜をエッチング
することなく酸化により対向電極のパターン形成を行う
ことを特徴とする半導体装置の製造方法。
2. A step of sequentially forming a capacitive insulating film and a conductive film to be a counter electrode on a semiconductor substrate having a charge storage electrode connected to a switching transistor, and defining a region of the counter electrode on the conductive film. A step of forming an oxidation resistant film and a step of selectively oxidizing the conductive film not covered with the oxidation resistant film are provided, and the patterning of the counter electrode is performed by oxidation without etching the conductive film. A method for manufacturing a semiconductor device, comprising:
【請求項3】請求項2記載に於て、耐酸化性膜を除去す
る工程とを備えたことを特徴とする半導体装置の製造方
法。
3. A method of manufacturing a semiconductor device according to claim 2, further comprising the step of removing the oxidation resistant film.
【請求項4】スイッチングトランジスタに接続する電荷
蓄積電極が形成された半導体基板上に容量絶縁膜、対向
電極となる導電膜を順次形成する工程と、前記導電膜上
に対向電極の領域を規定する耐酸化性膜を形成する工程
と、その耐酸化性膜上に酸化雰囲気の熱処理で流動性を
有する絶縁膜を堆積する工程と、前記耐酸化性膜で被覆
されていない前記導電膜の選択酸化と前記絶縁膜のリフ
ローを同時に行う工程とを備え、前記導電膜をエッチン
グすることなく酸化により対向電極のパターン形成を行
うことを特徴とする半導体装置の製造方法。
4. A step of sequentially forming a capacitive insulating film and a conductive film to be a counter electrode on a semiconductor substrate on which a charge storage electrode connected to a switching transistor is formed, and a region of the counter electrode is defined on the conductive film. A step of forming an oxidation resistant film, a step of depositing a fluid insulating film on the oxidation resistant film by a heat treatment in an oxidizing atmosphere, and a selective oxidation of the conductive film not covered with the oxidation resistant film. And a step of performing reflow of the insulating film at the same time, and a patterning of the counter electrode is performed by oxidation without etching the conductive film.
JP4040910A 1992-02-27 1992-02-27 Manufacture of semiconductor device Pending JPH05243518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4040910A JPH05243518A (en) 1992-02-27 1992-02-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4040910A JPH05243518A (en) 1992-02-27 1992-02-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05243518A true JPH05243518A (en) 1993-09-21

Family

ID=12593667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4040910A Pending JPH05243518A (en) 1992-02-27 1992-02-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05243518A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100304946B1 (en) * 1994-07-08 2001-11-30 김영환 Method for manufacturing semiconductor device
KR100400322B1 (en) * 2001-06-29 2003-10-01 주식회사 하이닉스반도체 A method for forming of a semiconductor device
KR100543201B1 (en) * 1998-10-13 2007-04-25 주식회사 하이닉스반도체 Capacitor Manufacturing Method of Semiconductor Memory Device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100304946B1 (en) * 1994-07-08 2001-11-30 김영환 Method for manufacturing semiconductor device
KR100543201B1 (en) * 1998-10-13 2007-04-25 주식회사 하이닉스반도체 Capacitor Manufacturing Method of Semiconductor Memory Device
KR100400322B1 (en) * 2001-06-29 2003-10-01 주식회사 하이닉스반도체 A method for forming of a semiconductor device

Similar Documents

Publication Publication Date Title
US5700709A (en) Method for manufacturing a capacitor for a semiconductor device
KR960005245B1 (en) Method for manufacturing a capacitor having a rough electrode surface
EP0601868A1 (en) Semiconductor memory devices
JPH06104258A (en) Semiconductor device and its manufacture
JPH10321814A (en) Planarization technique for dram cell capacitor electrode
JPH0426156A (en) Manufacture of semiconductor device
JPH02312269A (en) Semiconductor memory device and manufacture thereof
US5811331A (en) Formation of a stacked cylindrical capacitor module in the DRAM technology
JPH06188381A (en) Capacitor of dram cell and its preparation
KR0150252B1 (en) Method of fabricating a semiconductor memory device
US5631185A (en) Method for manufacturing capacitor of semiconductor memory device
US5332687A (en) Method of manufacturing a semiconductor memory having a memory cell array and a peripheral circuit portion so as to improve the characteristics of the device
US5406103A (en) Semiconductor memory device with stacked capacitor above bit lines
JPH0697159A (en) Fabrication of semiconductor device
JP2853426B2 (en) Method for manufacturing semiconductor memory device
JPH05243518A (en) Manufacture of semiconductor device
GB2262657A (en) Semiconductor memory device and amanufacturing method therfor
KR19990015384A (en) Capacitor manufacturing method of composite semiconductor device
JP2825759B2 (en) Method for manufacturing semiconductor memory device
KR100357189B1 (en) Semiconductor device and method for fabricating the same
JPH06244383A (en) Semiconductor memory device and manufacture thereof
JPH06283681A (en) Semiconductor storage device and its manufacture
KR100252882B1 (en) Method of manufacturing semiconductor device
KR100268940B1 (en) Capacitor of semiconductor device and manufacturing method thereof
JP2891192B2 (en) Method for manufacturing semiconductor device