JPH05243064A - Gas insulated transformer - Google Patents

Gas insulated transformer

Info

Publication number
JPH05243064A
JPH05243064A JP4044538A JP4453892A JPH05243064A JP H05243064 A JPH05243064 A JP H05243064A JP 4044538 A JP4044538 A JP 4044538A JP 4453892 A JP4453892 A JP 4453892A JP H05243064 A JPH05243064 A JP H05243064A
Authority
JP
Japan
Prior art keywords
electric field
shields
shield
pressure vessel
mitigating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4044538A
Other languages
Japanese (ja)
Inventor
Takaharu Kano
敬治 狩野
Keiji Kobayashi
佳二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP4044538A priority Critical patent/JPH05243064A/en
Publication of JPH05243064A publication Critical patent/JPH05243064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

PURPOSE:To facilitate an insulation design of a gas insulated transformer and hence facilitate the miniaturization of the same by providing a plurality of cylindrical electric field moderation shields surrounding concentrically a second lead containing pipe. CONSTITUTION:There are provided a plurality of cylindrical electric field moderation shields 20A, 20B, and 20C surrounding concentrically a secondary lead containing pipe 5 by supporting a secondary coil unit 12 on the upper end of the secondary lead containing pipe 5. The upper end of the electric field moderation shields are arranged in a pressure container 3 while the lower ends of the same are arranged in a gas pipe 2. The electric field moderation shields 20A-20C are located more upward than the upper end of the shields located inwardly while the lower ends of the shields located inwardly are located more downward than the lower end of the shields located outwardly. Hereby, an electric field distribution on the side of the external surface of the glass pipe is made uniform to avoid the concentration of an electric field. Thus, the radial dimension of the glass pipe is more reduced than the prior art is, and hence predetermined insulation performance is ensured even if the height of the glass pipe is lowered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、SF6 ガス等の絶縁ガ
スを絶縁媒体として用いたガス絶縁変流器に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas insulated current transformer using an insulating gas such as SF 6 gas as an insulating medium.

【0002】[0002]

【従来の技術】ガス絶縁変流器は、1次導体と、該1次
導体を取り囲むリング状の鉄心に巻回された2次コイル
とを備えた変流器本体をSF6 ガス等が封入された容器
内に収納した構造を有する。
2. Description of the Related Art A gas-insulated current transformer has a main body of a current transformer equipped with a primary conductor and a secondary coil wound around a ring-shaped iron core surrounding the primary conductor, and is filled with SF 6 gas or the like. It has a structure of being housed in a container.

【0003】図6は超高圧用の回路に用いられている従
来のこの種の変流器を示したもので、同図において1は
ベース、2はベース1の上に下端が気密に接続された碍
管、3はベルジャー形の容器本体3Aと該容器本体の下
端開口部を閉じる底板3Bとからなる圧力容器であり、
圧力容器3はその底板3Bが碍管2の上端に接続されて
支持されている。
FIG. 6 shows a conventional current transformer of this type used in a circuit for ultrahigh voltage. In FIG. 6, 1 is a base, 2 is a base 1, and the lower end is connected airtightly. Insulator pipe 3 is a pressure vessel composed of a bell jar type container body 3A and a bottom plate 3B for closing the lower end opening of the vessel body.
The bottom plate 3B of the pressure vessel 3 is connected to and supported by the upper end of the porcelain insulator 2.

【0004】圧力容器の底板3Bの中央部には碍管2内
と圧力容器3内とを貫通させる孔3b1が形成され、該孔
3b1の周辺部に絶縁スペーサ4が取付けられている。碍
管2内の中心部には該碍管の軸線方向に伸びる2次リー
ド収納パイプ5が配置され、このパイプの下端はベース
1に、上端は絶縁スペーサ4に設けられた中空の貫通導
体6の下端にそれぞれ接続されている。
A hole 3b1 is formed in the central portion of the bottom plate 3B of the pressure container so as to penetrate the inside of the porcelain insulator 2 and the inside of the pressure container 3, and an insulating spacer 4 is attached to the periphery of the hole 3b1. A secondary lead storage pipe 5 extending in the axial direction of the porcelain bushing is arranged at the center of the porcelain bushing 2, the lower end of the pipe being the base 1 and the upper end being the lower end of a hollow through conductor 6 provided in an insulating spacer 4. Respectively connected to.

【0005】7は碍管2の軸線と直交する方向に向けた
状態で配置された1次導体で、この1次導体7の一端は
圧力容器3の側壁部に絶縁スペーサ8を介して支持され
て該絶縁スペーサを通して外部に導出され、該1次導体
の他端は導電性を有する気密保持部9を通して外部に導
出されている。1次導体7の両端には主回路に接続され
る1次端子10及び11が取付けられている。
Reference numeral 7 denotes a primary conductor arranged in a state of being oriented in a direction orthogonal to the axis of the porcelain bushing 2. One end of this primary conductor 7 is supported on the side wall of the pressure vessel 3 via an insulating spacer 8. It is led to the outside through the insulating spacer, and the other end of the primary conductor is led to the outside through the airtight holding portion 9 having conductivity. Primary terminals 10 and 11 connected to the main circuit are attached to both ends of the primary conductor 7.

【0006】12は圧力容器3内に配置された2次コイ
ルユニットで、この2次コイルユニットは、1次導体7
を取り囲むリング状の鉄心13に2次コイル14をトロ
イダル状に巻回したものを複数個並べて、該複数個の2
次コイルを鉄心とともに中空環状のシールドケース15
内に収納した構造を有している。この2次コイルユニッ
ト12はそのシールドケース15が絶縁スペーサ4の貫
通導体6の上端に接続されて支持されている。
Reference numeral 12 is a secondary coil unit arranged in the pressure vessel 3, and this secondary coil unit is a primary conductor 7
A plurality of secondary coils 14 wound in a toroidal shape are arranged around a ring-shaped iron core 13 surrounding the
Hollow annular shield case 15 with the following coil
It has a structure housed inside. The shield case 15 of the secondary coil unit 12 is connected to and supported by the upper end of the through conductor 6 of the insulating spacer 4.

【0007】2次コイルから導出された2次リードは2
次リード収納パイプ5内を通して、ベース1内に設けら
れた2次端子箱16内に導かれている。碍管の外部の電
界分布の均一化を図るため、碍管2の上端に筒状の電界
緩和用シールド17が取付けられている。
The secondary lead derived from the secondary coil is 2
It is guided into the secondary terminal box 16 provided in the base 1 through the next lead storage pipe 5. In order to make the electric field distribution outside the insulator tube uniform, a cylindrical electric field mitigating shield 17 is attached to the upper end of the insulator tube 2.

【0008】圧力容器3内及び碍管2内にはSF6 ガス
が所定の圧力で封入されている。特に図示してないが、
絶縁スペーサ4の取付け部には圧力容器3内と碍管2内
とを連通させるガス流通孔が設けられており、これによ
り圧力容器内と碍管内とが同一の圧力に保たれている。
また圧力容器3の頂部には、該圧力容器内の圧力が設定
値を超えたときに破壊して内部のガスを放出させる放圧
装置18が設けられている。
The pressure vessel 3 and the porcelain tube 2 are filled with SF 6 gas at a predetermined pressure. Although not specifically shown,
A gas flow hole that connects the inside of the pressure vessel 3 and the inside of the porcelain bushing 2 is provided in the mounting portion of the insulating spacer 4, so that the inside of the pressure vessel and the inside of the porcelain bushing are kept at the same pressure.
Further, on the top of the pressure vessel 3, there is provided a pressure release device 18 which breaks and releases the gas inside when the pressure inside the pressure vessel exceeds a set value.

【0009】[0009]

【発明が解決しようとする課題】従来のガス絶縁変流器
では、電界緩和用シールド17が1つしか設けられてい
なかったため、この変流器を超高圧回路に用いた場合、
碍管の外面(外気に接する面)での電界の緩和を十分に
図ることが難しかった。そのため、所定の絶縁性能を得
るためには碍管の高さを高くするとともに、碍管の外径
を大きくする必要があり、変流器全体が大形になるのを
避けられなかった。
In the conventional gas-insulated current transformer, since only one electric field mitigating shield 17 is provided, when this current transformer is used in an ultrahigh voltage circuit,
It was difficult to sufficiently relax the electric field on the outer surface of the porcelain insulator (the surface in contact with the outside air). Therefore, in order to obtain a predetermined insulation performance, it is necessary to increase the height of the porcelain bushing and increase the outer diameter of the porcelain bushing, which inevitably results in a large-sized current transformer.

【0010】本発明の目的は、碍管の外面側での電界の
緩和を図って絶縁性能を向上させ、碍管の高さ及び径寸
法を縮小することができるようにしたガス絶縁変流器を
提供することにある。
An object of the present invention is to provide a gas-insulated current transformer in which the electric field on the outer surface side of the porcelain insulator is relaxed to improve the insulation performance and the height and diameter of the porcelain insulator can be reduced. To do.

【0011】[0011]

【課題を解決するための手段】本発明は、下端をベース
に固定した碍管と、該碍管の上端に支持された圧力容器
と、碍管内の中心部に軸線方向に沿って配置された2次
リード収納パイプと、碍管の中心軸線と直交する方向に
向けた状態で圧力容器内に設けられて圧力容器に対して
支持された1次導体と、1次導体を取り囲むリング状の
鉄心に巻回された2次コイルを該鉄心と共にシールドケ
ース内に収納した構造を有して圧力容器内に配置された
2次コイルユニットと、2次コイルから引出されて2次
リード収納パイプ内を通して2次端子箱内に導かれた2
次リードとを備えたガス絶縁変流器に係わるものであ
る。
According to the present invention, a porcelain insulator having a lower end fixed to a base, a pressure vessel supported on an upper end of the porcelain insulator, and a secondary arranged axially in a central portion of the porcelain insulator. The lead storage pipe, the primary conductor provided in the pressure vessel in a direction orthogonal to the central axis of the porcelain insulator and supported on the pressure vessel, and wound around a ring-shaped iron core surrounding the primary conductor. And a secondary coil unit having a structure in which the secondary coil is housed in a shield case together with the iron core and disposed in the pressure vessel, and a secondary terminal is drawn from the secondary coil and passed through a secondary lead housing pipe. 2 guided in the box
The present invention relates to a gas-insulated current transformer having a secondary lead.

【0012】本発明においては、2次コイルユニットを
2次リード収納パイプの上端に支持する。そして2次リ
ード収納パイプを同心的に囲む複数の筒状の電界緩和用
シールドを設けて該複数の電界緩和用シールドの上端を
圧力容器内に、下端を碍管内にそれぞれ配置する。複数
の電界緩和用シールドは内側に位置するシールドの上端
を外側に位置するシールドの上端よりも上方に位置さ
せ、かつ内側に位置するシールドの下端を外側に位置す
るシールドの下端よりも下方に位置させた状態で配置す
る。
In the present invention, the secondary coil unit is supported on the upper end of the secondary lead storage pipe. Then, a plurality of cylindrical electric field mitigating shields concentrically surrounding the secondary lead storage pipe are provided, and the upper ends of the plural electric field mitigating shields are arranged in the pressure vessel and the lower ends are arranged in the porcelain tube. The multiple electric field mitigation shields have the upper end of the inner shield located above the upper end of the outer shield and the lower end of the inner shield below the lower end of the outer shield. Place it in the opened condition.

【0013】上記複数の電界緩和用シールドのそれぞれ
の上端は、2次コイルユニット側に向って末広がり状に
広がるラッパ状の形状を呈するように形成し、外側に位
置する電界緩和用シールドの上端の開き角を内側に位置
する電界緩和用シールドの上端の開き角よりも大きくす
るように形成するのが好ましい。
The respective upper ends of the plurality of electric field mitigating shields are formed so as to have a trumpet shape which spreads toward the secondary coil unit side toward the secondary coil unit side. It is preferable to form the opening angle so as to be larger than the opening angle of the upper end of the electric field relaxation shield located inside.

【0014】上記複数の電界緩和用シールドの支持は次
のようにするのが好ましい。即ち、最も内側に位置する
電界緩和用シールドは内側絶縁支持物を介して2次リー
ド収納パイプに支持する。複数の電界緩和用シールド相
互間にはシールド間絶縁支持物を挿入して該シールド間
絶縁支持物を介して複数の電界緩和用シールドを相互に
連結支持する。この場合、電界緩和用シールド相互間の
間隙内におけるシールド間絶縁支持物の占績率により電
界緩和用シールド相互間の静電容量を調整する。
It is preferable to support the plurality of electric field relaxation shields as follows. That is, the innermost electric field mitigating shield is supported by the secondary lead storage pipe through the inner insulating support. An inter-shield insulating support is inserted between the plurality of electric field mitigating shields, and the plurality of electric field mitigating shields are connected and supported through the inter-shield insulating support. In this case, the capacitance between the electric field mitigating shields is adjusted by the occupation ratio of the inter-shield insulating support in the gap between the electric field mitigating shields.

【0015】[0015]

【作用】上記のように、2次リード収納パイプを同心的
に囲む複数の筒状の電界緩和用シールドを設けると、碍
管の外面側での電界分布を均一にして電界の集中を避け
ることができるため、従来よりも碍管の径方向寸法を縮
小し、碍管の高さを低くしても、所定の絶縁性能を得る
ことができる。
As described above, when a plurality of cylindrical electric field mitigating shields concentrically surrounding the secondary lead housing pipe are provided, the electric field distribution on the outer surface side of the porcelain insulator is made uniform and the concentration of the electric field is avoided. Therefore, even if the radial dimension of the porcelain insulator is reduced and the height of the porcelain insulator is reduced as compared with the conventional case, a predetermined insulation performance can be obtained.

【0016】また各電界緩和用シールドの上端部の形状
をラッパ状に形成した場合には、複数の電界緩和用シー
ルドの圧力容器内への突出長を短くすることができるた
め、変流器の高さを低くすることができる。
When the upper end of each electric field mitigating shield is formed in a trumpet shape, the projecting length of the plurality of electric field mitigating shields into the pressure vessel can be shortened, so that the current transformer The height can be reduced.

【0017】碍管の外部での電界の集中を防止して絶縁
性能を向上させるためには、電界緩和用シールド相互間
の静電容量及び最も内側のシールドと2次リード収納パ
イプとの間の静電容量をそれぞれ適値に調整する必要が
あるが、電界緩和用シールドを実質的に絶縁ガスのみを
介して対向させた場合には、それぞれの間の静電容量の
調整をシールドの長さと対向間隙のみにより行わなけれ
ばならないため、静電容量の微妙な調整は困難である。
特に碍管の外表面の電界分布を均一にするためには、シ
ールドの軸線方向長さを長くすることが望ましいが、電
界緩和用シールドの長さを長くすると、電界緩和用シー
ルド相互間の静電容量の調整を行うことが困難になり、
碍管の外側の電界分布を均一にするための設計が難しく
なる。これに対し、上記のように、複数の電界緩和用シ
ールド相互間にシールド間絶縁支持物を挿入して該シー
ルド間絶縁支持物を介して複数の電界緩和用シールドを
相互に連結支持する構造にすると、電界緩和用シールド
相互間の間隙内におけるシールド間絶縁支持物の占積率
を調整することにより、電界緩和用シールド相互間の静
電容量を調整できるため、各電界緩和用シールドの長さ
及びシールド相互間の静電容量を適値に設定して碍管の
外表面の電界分布を均一にするための最適設計を容易に
行うことができる。
In order to prevent the concentration of the electric field outside the porcelain tube and to improve the insulation performance, the electrostatic capacitance between the electric field relaxation shields and the static electricity between the innermost shield and the secondary lead storage pipe are used. It is necessary to adjust the capacitance to an appropriate value, but if the electric field mitigating shields are made to face each other substantially only through the insulating gas, adjust the capacitance between them to the length of the shield. Since it has to be performed only by the gap, it is difficult to finely adjust the capacitance.
In particular, in order to make the electric field distribution on the outer surface of the porcelain insulator uniform, it is desirable to lengthen the axial length of the shield, but if the length of the electric field relaxation shield is increased, the electrostatic discharge between the electric field relaxation shields is increased. It becomes difficult to adjust the capacity,
Design for uniform electric field distribution outside the porcelain tube becomes difficult. On the other hand, as described above, a structure in which an inter-shield insulating support is inserted between a plurality of electric field mitigating shields and a plurality of electric field mitigating shields are interconnected and supported through the inter-shield insulating support is provided. Then, the capacitance between the electric field mitigating shields can be adjusted by adjusting the space factor of the insulating support material between the shields in the gap between the electric field mitigating shields. Also, the capacitance between the shields can be set to an appropriate value, and the optimum design for making the electric field distribution on the outer surface of the porcelain insulator uniform can be easily performed.

【0018】[0018]

【実施例】図1及び図2は本発明の実施例を示したもの
で、この実施例では、図6の例で設けられていた絶縁ス
ペーサ4が取り除かれ、2次リード収納パイプ5の上端
に2次コイルユニット12が支持されている。本実施例
では、2次リード収納パイプ5を同心的に囲む複数の円
筒状の電界緩和用シールド20A,20B及び20Cが
設けられて該複数の電界緩和用シールドの上端が圧力容
器3内に、下端が前記碍管2内にそれぞれ配置されてい
る。複数の電界緩和用シールド20A〜20Cは内側に
位置するシールドの上端を外側に位置するシールドの上
端よりも上方に位置させ、かつ内側に位置するシールド
の下端を外側に位置するシールドの下端よりも下方に位
置させた状態で配置されている。シールド20A〜20
Cの上端の終端部20a1〜20c1は、曲率が十分大きい
リング状の断面形状を有するように成形されている。ま
たシールド20A〜20Cの下端の終端部20a2〜20
c2は曲率が十分に大きい円弧状の断面形状を有するよう
に成形されている。
1 and 2 show an embodiment of the present invention. In this embodiment, the insulating spacers 4 provided in the example of FIG. 6 are removed, and the upper end of the secondary lead storage pipe 5 is removed. The secondary coil unit 12 is supported by the. In the present embodiment, a plurality of cylindrical electric field mitigating shields 20A, 20B and 20C concentrically surrounding the secondary lead storage pipe 5 are provided, and the upper ends of the plurality of electric field mitigating shields are inside the pressure vessel 3. The lower ends are arranged in the porcelain bushing 2. The plurality of electric field mitigating shields 20A to 20C are arranged such that the upper end of the inner shield is located above the upper end of the outer shield, and the lower end of the inner shield is located below the lower end of the outer shield. It is arranged in a state of being positioned below. Shield 20A-20
The end portions 20a1 to 20c1 at the upper end of C are formed to have a ring-shaped cross-section with a sufficiently large curvature. In addition, the terminal ends 20a2 to 20 at the lower ends of the shields 20A to 20C
c2 is formed to have an arcuate cross-sectional shape with a sufficiently large curvature.

【0019】図2において電界緩和シールド20A〜2
0C相互間から圧力容器3内の下部にかけて示した複数
の曲線は電位分布を示しており、これらの曲線に付され
た90%,70%等の数値及び2次リード収納パイプに
付された0%の数値は1次導体7に電位が固定されてい
る圧力容器3の電位を100%とした場合の各部の電位
を示している。
In FIG. 2, electric field relaxation shields 20A-2
A plurality of curves shown from between 0C to the lower part in the pressure vessel 3 show potential distributions, and the numerical values such as 90% and 70% attached to these curves and 0 attached to the secondary lead storage pipe. The numerical value of% indicates the potential of each part when the potential of the pressure vessel 3 whose potential is fixed to the primary conductor 7 is 100%.

【0020】電界緩和用シールド20A〜20Cは、例
えばアルミニウム等の軽い金属や、FRPのようなプラ
スチック材料の表面に導電性処理を施したもの、あるい
は導電性プラスチックにより構成し、シールド相互間に
絶縁支持物を挿入する等の適宜の手段により碍管2また
は2次リード収納パイプに対して支持する。
The electric field mitigating shields 20A to 20C are made of a light metal such as aluminum or a plastic material such as FRP whose surface is subjected to a conductive treatment, or a conductive plastic, and are insulated from each other. It is supported on the porcelain bushing 2 or the secondary lead storage pipe by an appropriate means such as inserting a support.

【0021】上記実施例のように、2次リード収納パイ
プと碍管との間に複数の電界緩和用シールドを同心的に
設けると、電界緩和用シールドを1つだけ設けた場合に
比べて、碍管の周囲の電界分布を更に均一にすることが
できるため、碍管の径寸法及び高さ寸法を縮小しても所
定の絶縁強度を得ることができる。
When a plurality of electric field mitigating shields are concentrically provided between the secondary lead storage pipe and the porcelain insulator as in the above-mentioned embodiment, compared with the case where only one electric field mitigating shield is provided, Since the electric field distribution around the can be made more uniform, a predetermined insulation strength can be obtained even if the diameter and height of the porcelain insulator are reduced.

【0022】図1及び図2に示した実施例のように、電
界緩和用シールド20A〜20Cの上端の形状を円筒状
として、各シールドの上端の終端部の断面形状をリング
状とした場合には、シールド20A〜20Cの終端部相
互間の絶縁距離を確保するために、シールド20A〜2
0Cの終端部20a1〜20c1相互間の距離を大きくとる
必要がある。そのためシールド20A〜20Cの圧力容
器3内への突出長が長くなり、圧力容器の高さが高くな
る。これを避けるためには、図3及び図4に示したよう
に、シールド20A〜20Cの上端を、2次コイルユニ
ット12側に向って末広がり状に広がるラッパ状の形状
を呈するように形成し、外側に位置する電界緩和用シー
ルドの上端の開き角が内側に位置する電界緩和用シール
ドの上端の開き角よりも大きくなるように形成すればよ
い。またこの場合、電位分布を妨げないようにするた
め、最も外側のシールド20Cの上端の終端部20c1の
断面形状は図示のように十分に大きな曲率をもって滑ら
かに湾曲して径方向の外側にのびる形状(例えば円弧
状)とするのがよく、内側のシールド20A及び20B
の上端の終端部20a1〜20c1の断面形状は円を押し潰
した形(例えば楕円状)にするのがよい。
As in the embodiment shown in FIGS. 1 and 2, when the upper ends of the electric field mitigating shields 20A to 20C are cylindrical, and the cross-sectional shape of the terminal end of the upper end of each shield is ring-shaped. In order to secure an insulation distance between the end portions of the shields 20A to 20C,
It is necessary to increase the distance between the 0C end portions 20a1 to 20c1. Therefore, the protrusion length of the shields 20A to 20C into the pressure vessel 3 becomes long, and the height of the pressure vessel becomes high. In order to avoid this, as shown in FIGS. 3 and 4, the upper ends of the shields 20A to 20C are formed to have a trumpet-like shape that widens toward the secondary coil unit 12 side, It may be formed so that the opening angle of the upper end of the electric field mitigating shield located outside is larger than the opening angle of the upper end of the electric field mitigating shield located inside. Further, in this case, in order to prevent the potential distribution from being disturbed, the cross-sectional shape of the end portion 20c1 at the upper end of the outermost shield 20C has a sufficiently large curvature to smoothly curve and extend outward in the radial direction. (For example, arcuate), and the inner shields 20A and 20B
The cross-sectional shape of the end portions 20a1 to 20c1 at the upper end of is preferably a crushed circle (for example, an elliptical shape).

【0023】図4において、シールド相互間から圧力容
器内の下部にかけて示した複数の曲線は電位分布を示し
ており、各曲線に付した数値(%)は圧力容器の電位を
100%とした場合の各部の電位を示している。図4か
ら明らかなように、シールド20A〜20Cの上端の形
状を末広がり状とすると、シールドの上端が電位分布に
そった形状となるため、電位傾度を小さくすることがで
きる。またシールド20A〜20Cの上端の圧力容器3
内への突出長を短くしても、終端部20a1〜20c1相互
間の絶縁距離を大きくとることができるため、圧力容器
3の高さを低くすることができ、変流器の小形化を図る
ことができる。
In FIG. 4, a plurality of curves shown from between the shields to the lower part in the pressure vessel show the potential distribution, and the numerical value (%) attached to each curve is when the potential of the pressure vessel is 100%. The electric potential of each part is shown. As is clear from FIG. 4, when the upper ends of the shields 20A to 20C are in a divergent shape, the upper end of the shield has a shape that follows the potential distribution, so that the potential gradient can be reduced. In addition, the pressure vessel 3 at the upper end of the shields 20A to 20C
Even if the protrusion length inward is shortened, the insulation distance between the end portions 20a1 to 20c1 can be increased, so that the height of the pressure vessel 3 can be reduced and the size of the current transformer can be reduced. be able to.

【0024】碍管2の外部での電界の集中を防止して絶
縁性能を向上させるためには、電界緩和用シールド20
A〜20C相互間の静電容量及びシールド20Cと2次
リード収納パイプ5との間の静電容量をそれぞれ適値に
調整する必要があるが、図1または図2に示したように
シールド20A〜20Cを実質的にSF6 ガスのみを介
して対向させた場合には、それぞれの間の静電容量の調
整をシールドの長さと対向間隙のみにより行わなければ
ならないため、静電容量の微妙な調整は困難である。特
に碍管2の外表面の電界分布を均一にするためには、シ
ールドの軸線方向長さを長くすることが望ましいが、電
界緩和用シールドの長さを長くすると、電界緩和用シー
ルド相互間の静電容量の調整を行うことが困難になる。
In order to prevent the concentration of the electric field outside the porcelain insulator 2 and improve the insulation performance, the electric field mitigating shield 20 is used.
It is necessary to adjust the electrostatic capacitance between A to 20C and the electrostatic capacitance between the shield 20C and the secondary lead storage pipe 5 to appropriate values, respectively. However, as shown in FIG. 1 or FIG. When 20 C are made to face each other substantially only through SF 6 gas, the capacitance between them must be adjusted only by the length of the shield and the facing gap. Adjustment is difficult. In particular, in order to make the electric field distribution on the outer surface of the porcelain insulator 2 uniform, it is desirable to increase the length of the shield in the axial direction. However, if the length of the electric field relaxation shield is increased, the static electricity between the electric field relaxation shields is reduced. It becomes difficult to adjust the capacitance.

【0025】図5に示した実施例はこの点を解決したも
ので、この実施例では、最も内側に位置する電界緩和用
シールド20Aの上端付近及び下端付近と2次リード収
納パイプ5との間に環状の内側絶縁支持物21,21が
配置され、これらの内側絶縁支持物21によりシールド
20Aが2次リード収納パイプ5に連結支持されてい
る。電界緩和用シールド20Aと20Bとの間には、そ
れぞれの上端部付近及び下端部付近に位置させて環状の
シールド間絶縁支持物22,22が配置され、これらの
絶縁支持物によりシールド20Bが20Aに連結支持さ
れている。また電界緩和用シールド20Bと20Cとの
間には、それぞれの上端部付近及び下端部付近に位置さ
せて環状のシールド間絶縁支持物23,23が配置さ
れ、これらの絶縁支持物によりシールド20Cが20B
に連結支持されている。
The embodiment shown in FIG. 5 solves this problem. In this embodiment, the space between the upper and lower ends of the innermost electric field mitigating shield 20A and the secondary lead storage pipe 5 is provided. The ring-shaped inner insulating supports 21 and 21 are arranged in the inner side of the secondary lead storage pipe 5. Between the electric field mitigating shields 20A and 20B, annular inter-shield insulating supports 22 and 22 are arranged near the upper end and the lower end of the shields 20A and 20B, respectively, and the shield 20B serves as the shield support 20A. It is connected and supported by. Between the electric field mitigating shields 20B and 20C, annular inter-shield insulating supports 23, 23 are arranged near the upper end and the lower end of the shields 20C and 20C, respectively, and the shield 20C is provided by these insulating supports. 20B
It is connected and supported by.

【0026】内側絶縁支持物21及びシールド間絶縁支
持物22,23は、四弗化エチレン樹脂(商品名テフロ
ン)、ポリアセタールコポリマー樹脂(商品名ジュラコ
ン)、エポキシ樹脂等の誘電率が高い絶縁材料(誘電材
料)により形成する。またシールド20A〜20Cはア
ルミニウム等の軽量の導電性金属により形成するのが好
ましい。
The inner insulating support 21 and the inter-shield insulating supports 22 and 23 are made of an insulating material having a high dielectric constant (such as tetrafluoroethylene resin (trade name: Teflon), polyacetal copolymer resin (trade name: Duracon), epoxy resin). Dielectric material). Further, the shields 20A to 20C are preferably made of a light conductive metal such as aluminum.

【0027】上記のように、電界緩和用シールド20
A,20B間及び20B,20C間にシールド間絶縁支
持物を挿入すると、電界緩和用シールド相互間の間隙内
におけるシールド間絶縁支持物の占積率(軸線方向長
さ)を調整することにより、電界緩和用シールド20
A,20B間及び20B,20C間の静電容量を容易に
調整することができ、シールド20Aと2次リード収納
パイプ5との間の静電容量も容易に調整することができ
る。これらの静電容量の調整はシールド20A〜20C
の軸線方向長さの如何にかかわりなく、絶縁支持物の占
績率を調整することにより行うことができるため、各電
界緩和用シールドの長さ及びシールド相互間の静電容量
を適値に設定して碍管の外表面の電界分布を均一にする
ための最適設計を容易に行うことができる。
As described above, the electric field mitigating shield 20
When the inter-shield insulating support is inserted between A and 20B and between 20B and 20C, by adjusting the space factor (axial length) of the inter-shield insulating support in the gap between the electric field mitigating shields, Electric field mitigation shield 20
The capacitance between A and 20B and between 20B and 20C can be easily adjusted, and the capacitance between the shield 20A and the secondary lead storage pipe 5 can also be easily adjusted. Adjustment of these capacitances is performed by the shields 20A to 20C.
This can be done by adjusting the occupancy rate of the insulating support regardless of the length in the axial direction of, so set the length of each electric field relaxation shield and the capacitance between the shields to appropriate values. The optimum design for making the electric field distribution on the outer surface of the insulator tube uniform can be easily performed.

【0028】上記の実施例では、電界緩和用シールドを
3個設けたが、この電界緩和用シールドは複数個あれば
よく、2個または4個以上の電界緩和用シールドを設け
てもよい。
In the above embodiment, three electric field mitigating shields are provided, but a plurality of electric field mitigating shields may be provided, and two or four or more electric field mitigating shields may be provided.

【0029】[0029]

【発明の効果】以上のように、本発明によれば、2次リ
ード収納パイプを同心的に囲む複数の筒状の電界緩和用
シールドを設けたので、碍管の外面側での電界分布を均
一にして電界の集中を避けることができる。従って従来
よりも碍管の径方向寸法を縮小し、碍管の高さを低くし
ても、所定の絶縁性能を得ることができ、ガス絶縁変流
器の小形化を図ることができる。
As described above, according to the present invention, since a plurality of cylindrical electric field mitigating shields concentrically surrounding the secondary lead storage pipe are provided, the electric field distribution on the outer surface side of the porcelain insulator is uniform. Thus, the concentration of electric field can be avoided. Therefore, even if the diametrical dimension of the porcelain insulator is reduced and the height of the porcelain insulator is reduced compared to the conventional case, a predetermined insulation performance can be obtained and the gas-insulated current transformer can be downsized.

【0030】また請求項2に記載した発明によれば、各
電界緩和用シールドの上端部の形状をラッパ状に形成し
たことにより、複数の電界緩和用シールドの圧力容器内
への突出長を短くすることができるため、圧力容器の高
さを低くして変流器を更に小形に構成できる利点があ
る。
Further, according to the invention described in claim 2, since the shape of the upper end of each electric field mitigating shield is formed into a trumpet shape, the projection length of the plurality of electric field mitigating shields into the pressure vessel is shortened. Therefore, there is an advantage that the height of the pressure vessel can be reduced and the current transformer can be further downsized.

【0031】更に請求項3に記載した発明によれば、複
数の電界緩和用シールド相互間にシールド間絶縁支持物
を挿入して該シールド間絶縁支持物を介して複数の電界
緩和用シールドを相互に連結支持する構造にし、電界緩
和用シールド相互間の間隙内におけるシールド間絶縁支
持物の占積率を調整することにより、電界緩和用シール
ド相互間の静電容量を調整するようにしたので、各電界
緩和用シールドの長さ及びシールド相互間の静電容量を
適値に設定して碍管の外表面の電界分布を均一にするた
めの最適設計を容易に行うことができる利点がある。
According to the third aspect of the present invention, an inter-shield insulating support is inserted between the plurality of electric field mitigating shields, and the plurality of electric field mitigating shields are mutually connected via the inter-shield insulating support. In order to adjust the electrostatic capacitance between the electric field mitigating shields by adjusting the space factor of the inter-shield insulating support in the gap between the electric field mitigating shields, This has the advantage that the length of each electric field relaxation shield and the capacitance between the shields can be set to appropriate values to facilitate an optimum design for making the electric field distribution on the outer surface of the porcelain insulator uniform.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す縦断面図である。FIG. 1 is a vertical sectional view showing an embodiment of the present invention.

【図2】図1の実施例の上部を拡大して示した要部拡大
断面図である。
FIG. 2 is an enlarged cross-sectional view of an essential part showing an enlarged upper portion of the embodiment of FIG.

【図3】本発明の他の実施例を示す縦断面図である。FIG. 3 is a vertical sectional view showing another embodiment of the present invention.

【図4】図3の実施例の上部を拡大して示した要部拡大
断面図である。
FIG. 4 is an enlarged sectional view of an essential part showing an enlarged upper portion of the embodiment of FIG.

【図5】本発明の更に他の実施例を示した縦断面図であ
る。
FIG. 5 is a vertical sectional view showing still another embodiment of the present invention.

【図6】従来のガス遮断器を示した縦断面図である。FIG. 6 is a vertical sectional view showing a conventional gas circuit breaker.

【符号の説明】[Explanation of symbols]

1…ベース、2…碍管、3…圧力容器、5…2次リード
収納パイプ、7…1次導体、8…絶縁スペーサ、12…
2次コイルユニット、13…リング状の鉄心、14…2
次コイル、20A〜20C…電界緩和用シールド、21
…内側絶縁支持物、22,23…シールド間絶縁支持
物。
DESCRIPTION OF SYMBOLS 1 ... Base, 2 ... Insulator tube, 3 ... Pressure vessel, 5 ... Secondary lead storage pipe, 7 ... Primary conductor, 8 ... Insulating spacer, 12 ...
Secondary coil unit, 13 ... Ring-shaped iron core, 14 ... 2
Next coil, 20A to 20C ... Shield for electric field relaxation, 21
... Inside insulating support, 22, 23 ... Inter-shield insulating support.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】下端をベースに固定した碍管と、該碍管の
上端に支持された圧力容器と、前記碍管内の中心部に軸
線方向に沿って配置された2次リード収納パイプと、前
記碍管の中心軸線と直交する方向に向けた状態で前記圧
力容器内に設けられて前記圧力容器に対して支持された
1次導体と、前記1次導体を取り囲むリング状の鉄心に
巻回された2次コイルを該鉄心と共にシールドケース内
に収納した構造を有して前記圧力容器内に配置された2
次コイルユニットと、前記2次コイルから引出されて前
記2次リード収納パイプ内を通して2次端子箱内に導か
れた2次リードとを備え、前記碍管内及び圧力容器内に
絶縁ガスが封入されているガス絶縁変流器において、 前記2次コイルユニットは前記2次リード収納パイプの
上端に支持され、 前記2次リード収納パイプを同心的に囲む複数の筒状の
電界緩和用シールドが設けられて該複数の電界緩和用シ
ールドの上端が前記圧力容器内に、下端が前記碍管内に
それぞれ配置され、 前記複数の電界緩和用シールドは内側に位置するシール
ドの上端を外側に位置するシールドの上端よりも上方に
位置させ、かつ内側に位置するシールドの下端を外側に
位置するシールドの下端よりも下方に位置させた状態で
配置されていることを特徴とするガス絶縁変流器。
1. A porcelain insulator having a lower end fixed to a base, a pressure vessel supported on an upper end of the porcelain insulator, a secondary lead storage pipe arranged in a central portion of the porcelain insulator along an axial direction, and the porcelain insulator. A primary conductor that is provided in the pressure vessel and is supported by the pressure vessel in a direction orthogonal to the central axis of the coil, and is wound around a ring-shaped iron core that surrounds the primary conductor. A secondary coil having a structure in which a secondary coil is housed in a shield case together with the iron core is arranged in the pressure vessel.
A secondary coil unit and a secondary lead drawn from the secondary coil and guided into the secondary terminal box through the secondary lead storage pipe are provided, and insulating gas is filled in the insulator tube and the pressure vessel. In the gas-insulated current transformer, the secondary coil unit is supported on the upper end of the secondary lead storage pipe, and a plurality of cylindrical electric field mitigation shields concentrically surrounding the secondary lead storage pipe are provided. The upper ends of the plurality of electric field mitigating shields are arranged in the pressure vessel and the lower ends thereof are arranged in the porcelain insulator, and the plurality of electric field mitigating shields are arranged such that the upper end of the inner shield is the upper end of the outer shield. The shield is positioned above the lower end of the shield, and the lower end of the inner shield is positioned below the lower end of the outer shield. Insulation current transformer.
【請求項2】前記複数の電界緩和用シールドのそれぞれ
の上端は、2次コイルユニット側に向って末広がり状に
広がるラッパ状の形状を呈するように形成され、外側に
位置する電界緩和用シールドの上端の開き角が内側に位
置する電界緩和用シールドの上端の開き角よりも大きく
なるように形成されていることを特徴とする請求項1に
記載のガス絶縁変流器。
2. An upper end of each of the plurality of electric field mitigating shields is formed so as to have a trumpet shape that spreads toward the secondary coil unit side toward the secondary coil unit side. The gas insulated current transformer according to claim 1, wherein the opening angle of the upper end is formed to be larger than the opening angle of the upper end of the electric field mitigating shield located inside.
【請求項3】前記複数の電界緩和用シールドの内、最も
内側に位置する電界緩和用シールドは内側絶縁支持物を
介して前記2次リード収納パイプに支持され、複数の電
界緩和用シールド相互間にはシールド間絶縁支持物が挿
入されて該シールド間絶縁支持物を介して複数の電界緩
和用シールドが相互に連結支持され、前記電界緩和用シ
ールド相互間の間隙内における前記シールド間絶縁支持
物の占績率により前記電界緩和用シールド相互間の静電
容量が調整されていることを特徴とする請求項1または
2に記載のガス絶縁変流器。
3. The innermost electric field mitigating shield among the plurality of electric field mitigating shields is supported by the secondary lead storage pipe via an inner insulating support, and is provided between the plurality of electric field mitigating shields. An inter-shield insulation support is inserted in the inter-shield insulation support, and a plurality of electric field mitigation shields are mutually connected and supported through the inter-shield insulation support, and the inter-shield insulation support in the gap between the electric field mitigation shields. 3. The gas-insulated current transformer according to claim 1, wherein the capacitance between the electric field mitigation shields is adjusted by the occupation ratio of the gas insulation current transformer.
JP4044538A 1992-03-02 1992-03-02 Gas insulated transformer Pending JPH05243064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4044538A JPH05243064A (en) 1992-03-02 1992-03-02 Gas insulated transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4044538A JPH05243064A (en) 1992-03-02 1992-03-02 Gas insulated transformer

Publications (1)

Publication Number Publication Date
JPH05243064A true JPH05243064A (en) 1993-09-21

Family

ID=12694289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4044538A Pending JPH05243064A (en) 1992-03-02 1992-03-02 Gas insulated transformer

Country Status (1)

Country Link
JP (1) JPH05243064A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111199825A (en) * 2019-12-25 2020-05-26 河南平高电气股份有限公司 Current transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111199825A (en) * 2019-12-25 2020-05-26 河南平高电气股份有限公司 Current transformer

Similar Documents

Publication Publication Date Title
US3835353A (en) Capacitive voltage-dividing arrangement for high voltage measuring apparatus
US20140306786A1 (en) Current transformer
JPS61114448A (en) Plasma x-ray generator
US3953815A (en) Cast-resin insulated instrument transformer, in particular potential transformer
JPH05243064A (en) Gas insulated transformer
US4540967A (en) Molded transformer with grounded electrically conductive layer
JP3161027B2 (en) Gas insulated current transformer
EP0080192B1 (en) Bushing for gas-insulated electrical equipment
US1889552A (en) High-tension current transformer
JPS61135107A (en) Gas insulated transformer for instrument
US1703409A (en) High-voltage terminal
US4018978A (en) Orbital disc insulator for SF6 gas-insulated bus
JP3203267B2 (en) Ion accelerator
US3829744A (en) Gas filled measuring condenser
US5539607A (en) Tank-shape arrester
JPH04337613A (en) Gas insulated current transformer
WO2023042256A1 (en) Stationary inductor
CN101356704A (en) Module for a switchgear
JPS6041619Y2 (en) butsing
JPS5832255Y2 (en) Three-phase gas-insulated instrument transformer
RU2118008C1 (en) Outdoor high-voltage current transformer
JPS5910659Y2 (en) Bushing for power
JPH07282755A (en) Electron beam irradiating device
RU2124246C1 (en) Outdoor high-voltage potential transformer
RU1838840C (en) High-voltage gas-filled lead-in of instrument voltage transformer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001121