JPH07282755A - Electron beam irradiating device - Google Patents

Electron beam irradiating device

Info

Publication number
JPH07282755A
JPH07282755A JP10889494A JP10889494A JPH07282755A JP H07282755 A JPH07282755 A JP H07282755A JP 10889494 A JP10889494 A JP 10889494A JP 10889494 A JP10889494 A JP 10889494A JP H07282755 A JPH07282755 A JP H07282755A
Authority
JP
Japan
Prior art keywords
insulating
electron beam
vacuum chamber
ring
beam source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10889494A
Other languages
Japanese (ja)
Other versions
JP3324275B2 (en
Inventor
Toshiro Nishikimi
敏朗 錦見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin High Voltage Co Ltd
Original Assignee
Nissin High Voltage Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin High Voltage Co Ltd filed Critical Nissin High Voltage Co Ltd
Priority to JP10889494A priority Critical patent/JP3324275B2/en
Publication of JPH07282755A publication Critical patent/JPH07282755A/en
Application granted granted Critical
Publication of JP3324275B2 publication Critical patent/JP3324275B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To reduce influence of an electric field fluctuation by insulating a vacuum chamber and a central conductor to supply high voltage to a filament part of an electron beam source part by an insulating mechanism in which insulating rings and ring-shaped electrodes are superposed on each other. CONSTITUTION:A shield electrode 3 to shield a filament part 2 of an electron beam source part 4 is mechanically supported with a wall 1A of a vacuum chamber 1 housing the electron beam source part 4 by an insulating insulator 11 composed of a heat resistant insulating material. The other end of a central conductor 7 whose one end is connected to the filament part 2 is connected to an introducing terminal part 13 in a pressure vessel 5. A part between the introducing terminal part 13 and the vacuum chamber 1 is insulated by an insulating mechanism 14 in which insulating rings 15 and ring-shaped electrodes 16 are superposed on each other in a multistage shape. The final electrode 17 among the electrodes 16 of the insulating mechanism 14 is connected to a flange 18 of the vacuum chamber 1, and voltage divider resistors 19 to equalize sharing voltage of the rings 15 are connected between the respective electrodes 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子線照射装置特に非
走査型の電子線照射装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam irradiation apparatus, and more particularly to a non-scanning type electron beam irradiation apparatus.

【0002】[0002]

【従来の技術】例えばエリア型の電子線照射装置は、筒
状の真空チャンバの内部に電子線を放射するフィラメン
ト部を配置して構成されるが、このフィラメント部に加
速用の高電圧を導入するため、従来では内部に絶縁ガス
が充填されてある圧力タンクを絶縁性のスペースコーン
を介して真空チャンバに連結し、このスペースコーンに
中心導体を貫通し、この中心導体を介してフィラメント
部に高電圧を導入するようにしている。
2. Description of the Related Art For example, an area type electron beam irradiation apparatus is constructed by arranging a filament portion for radiating an electron beam inside a cylindrical vacuum chamber. A high voltage for acceleration is introduced into this filament portion. Therefore, in the past, a pressure tank filled with insulating gas was connected to the vacuum chamber via an insulating space cone, the center conductor was pierced through this space cone, and the filament portion was connected via this center conductor. High voltage is introduced.

【0003】図6はその構成を示し、1は真空チャンバ
で、内部に、フィラメント部2と、このフィラメント部
2をシールドするシールド電極3とよりなる電子線源部
4が配置されている。5は圧力タンクで、内部に絶縁ガ
スが充填されている。6はスペースコーンで樹脂等から
なり、その裾部は真空チャンバ1と圧力タンク5との間
の連結部においてはさまれるようにして取り付けられて
いる。
FIG. 6 shows the structure, and 1 is a vacuum chamber in which an electron beam source section 4 composed of a filament section 2 and a shield electrode 3 for shielding the filament section 2 is arranged. Reference numeral 5 is a pressure tank, the inside of which is filled with insulating gas. A space cone 6 is made of resin or the like, and its bottom portion is attached so as to be sandwiched at a connection portion between the vacuum chamber 1 and the pressure tank 5.

【0004】7は中心導体で、スペースコーン6を貫通
しており、真空チャンバ1側の先端にフィラメント部2
が接続されている。そしてスペースコーン6により、電
子線源部4が機械的に片持ち支持されるとともに、真空
チャンバ1、圧力タンク5に対して電気的に絶縁されて
いる。8は中心導体7に接続される加速用電源、9は真
空チャンバ1の周壁に形成されてある照射窓、10はこ
の照射窓9に設けられてある窓箔である。
Reference numeral 7 denotes a central conductor which penetrates the space cone 6 and has a filament portion 2 at the tip on the vacuum chamber 1 side.
Are connected. The space cone 6 mechanically supports the electron beam source unit 4 in a cantilever manner, and electrically insulates the vacuum chamber 1 and the pressure tank 5. Reference numeral 8 is an accelerating power source connected to the central conductor 7, 9 is an irradiation window formed on the peripheral wall of the vacuum chamber 1, and 10 is a window foil provided on the irradiation window 9.

【0005】この構成から理解されるように、スペーサ
コーン6の裾部は、アース電位である真空チャンバ1あ
るいは圧力タンク5に連結されてあり、中心部は高圧の
中心導体7に連結されてあるため、その裾部と中心部と
の間に高電圧が印加されるようになる。このような構成
は加速電圧が低い場合は特に問題とはならないが、加速
電圧が300kVを超えるようなことになると、スペー
サコーン6の表面に沿う絶縁距離を長くする必要があ
る。
As can be understood from this structure, the skirt of the spacer cone 6 is connected to the vacuum chamber 1 or the pressure tank 5 which is at ground potential, and the center is connected to the high-voltage center conductor 7. Therefore, a high voltage is applied between the skirt and the center. Such a structure does not cause any particular problem when the accelerating voltage is low, but when the accelerating voltage exceeds 300 kV, it is necessary to lengthen the insulating distance along the surface of the spacer cone 6.

【0006】しかしこのように絶縁距離を長くすれば、
スペーサコーン6が大型化し、その取り扱いが面倒にな
るとともに、製作費が高くつくようになる。またこのよ
うに絶縁距離を長くすると、その表面積が大きくなるた
め、面積効果の影響を受けて放電が発生しやすくなり、
損傷確率が高くなる。
However, if the insulation distance is increased in this way,
The spacer cone 6 becomes large in size, the handling thereof becomes troublesome, and the manufacturing cost becomes high. In addition, when the insulation distance is increased in this way, the surface area becomes large, so that the area effect affects the discharge easily.
Damage probability is high.

【0007】更にフィラメント部2が発した熱がスペー
サコーン6に伝熱するので、スペーサコーン6自身の絶
縁耐力が、その表面の距離効果からバルクの特性に影響
を受けるため、耐熱特性の良い材料が必要となるが、耐
熱特性が良いとされているセラミックなどは、大型のス
ペースコーンの製作に難がある。のみならず、電子線源
部4が長尺状となると、樹脂製のスペースコーンではそ
の機械的耐力から、片持ち支持が困難となる。
Further, since the heat generated by the filament portion 2 is transferred to the spacer cone 6, the dielectric strength of the spacer cone 6 itself is affected by the bulk property due to the distance effect of the surface thereof, so that the material having good heat resistance property. However, ceramics, which are said to have good heat resistance, have difficulty in manufacturing large space cones. In addition, if the electron beam source unit 4 has a long shape, it becomes difficult to support the space cone made of resin in a cantilever manner due to its mechanical strength.

【0008】[0008]

【発明が解決しようとする課題】本発明は、電子線源部
の機械的支持のための機構と、絶縁のための機構とを分
離し、絶縁のための機構を、表面積が少なく、かつ電界
の変動の影響が少ないようにすることを目的とする。
SUMMARY OF THE INVENTION According to the present invention, a mechanism for mechanically supporting an electron beam source section and a mechanism for insulation are separated, and the mechanism for insulation has a small surface area and an electric field. The purpose is to reduce the influence of fluctuations in.

【0009】[0009]

【課題を解決するための手段】本発明は、電子線源部の
シールド電極を、真空チャンバの壁に、耐熱性材料から
なる碍子によって機械的に支持するとともに、フィラメ
ント部に接続される中心導体を導入端子部に連結し、こ
の導入端子部と真空チャンバとの間を、絶縁リングと、
リング状電極とを交互にかつ多段に重ね合わした絶縁機
構によって絶縁して、各リング状電極間の分担電圧を均
等とするための分圧抵抗を接続したことを特徴とする。
According to the present invention, a shield electrode of an electron beam source section is mechanically supported on a wall of a vacuum chamber by an insulator made of a heat resistant material, and a central conductor connected to a filament section. Is connected to the introduction terminal portion, and an insulating ring is provided between the introduction terminal portion and the vacuum chamber,
It is characterized in that the ring-shaped electrodes are insulated by an insulating mechanism in which they are alternately superposed in multiple stages, and a voltage dividing resistor for equalizing the shared voltage between the ring-shaped electrodes is connected.

【0010】[0010]

【作用】絶縁機構のリング状電極に分圧抵抗が接続され
ていることにより、各絶縁リングには、均等な電界が与
えられることになり、従来のスペースコーンのように一
段で受ける電界に比べて安定で、放電時の電界変動の影
響が少なくなる。絶縁リングの表面積が少ないので、面
積効果が減少する。電子線源部は碍子によって中心導体
に対する絶縁に関係なく支持される。
[Function] Since a voltage dividing resistor is connected to the ring-shaped electrode of the insulation mechanism, a uniform electric field is applied to each insulation ring, which is much higher than the electric field received in a single stage like the conventional space cone. And stable, and the influence of electric field fluctuation during discharge is reduced. Since the surface area of the insulating ring is small, the area effect is reduced. The electron beam source section is supported by the insulator regardless of insulation with respect to the center conductor.

【0011】[0011]

【実施例】本発明の実施例を図1によって説明する。な
お図6と同じ符号を付した部分は同一または対応する部
分を示す。本発明にしたがい電子線源部4は、セラミッ
クのような耐熱性の絶縁材料からなる絶縁性の碍子11
により、真空チャンバ1の壁1Aに対して支持される。
12は碍子11と壁1Aとの間の電界を緩和するための
フープである。碍子11と電子線源部4との連結のため
の具体的な構成は後述する。
Embodiment An embodiment of the present invention will be described with reference to FIG. In addition, the portions denoted by the same reference numerals as those in FIG. 6 indicate the same or corresponding portions. According to the present invention, the electron beam source unit 4 comprises an insulating insulator 11 made of a heat resistant insulating material such as ceramics.
Is supported by the wall 1A of the vacuum chamber 1.
Reference numeral 12 is a hoop for relaxing the electric field between the insulator 11 and the wall 1A. A specific configuration for connecting the insulator 11 and the electron beam source unit 4 will be described later.

【0012】前記のように電子線源部4は、フィラメン
ト部2とシールド電極3とにより主として構成されてい
るが、フィラメント部2がシールド電極3に機械的に連
結されてあるので、シールド電極3を真空チャンバ1の
壁1Aに対して支持することにより、電子線源部4は壁
1Aに機械的に支持されることになる。
As described above, the electron beam source section 4 is mainly composed of the filament section 2 and the shield electrode 3. However, since the filament section 2 is mechanically connected to the shield electrode 3, the shield electrode 3 Is supported on the wall 1A of the vacuum chamber 1, the electron beam source unit 4 is mechanically supported on the wall 1A.

【0013】一端がフィラメント部2に接続される中心
導体7の他端は、圧力容器5内にある導入端子部13に
接続される。そして導入端子部13と真空チャンバ1と
の間に絶縁機構14が設けてある。絶縁機構14は、セ
ラミックなどの絶縁材料からなる絶縁リング15と、リ
ング状の電極16とを交互にかつ多段に重ね合わして構
成してある。
The other end of the center conductor 7 whose one end is connected to the filament part 2 is connected to the introduction terminal part 13 in the pressure vessel 5. An insulating mechanism 14 is provided between the introduction terminal portion 13 and the vacuum chamber 1. The insulating mechanism 14 is configured by stacking insulating rings 15 made of an insulating material such as ceramic and ring-shaped electrodes 16 alternately and in multiple stages.

【0014】絶縁機構14の中心を中心導体7が通るよ
うにしてある。絶縁機構14の電極16のうちの最終電
極17は真空チャンバ1のフランジ18に連結されてい
る。各電極16間には分圧抵抗19が接続されてある。
この絶縁機構14は真空チャンバ1と圧力容器5とを区
画する隔壁の役目を果たす。
The center conductor 7 passes through the center of the insulating mechanism 14. The final electrode 17 of the electrodes 16 of the insulation mechanism 14 is connected to the flange 18 of the vacuum chamber 1. A voltage dividing resistor 19 is connected between the electrodes 16.
The insulating mechanism 14 functions as a partition that partitions the vacuum chamber 1 and the pressure vessel 5.

【0015】絶縁機構14の外周と圧力容器5との間の
電界緩和のために、絶縁機構14の外周に複数の電界緩
和用リング20を設ける。電界緩和用リング20は各電
極16に接続される。絶縁リング15の径は、最終電極
17と中心導体7との間の空間電界が許容される範囲内
で最小となるように選択される。
In order to alleviate the electric field between the outer periphery of the insulating mechanism 14 and the pressure vessel 5, a plurality of electric field alleviating rings 20 are provided on the outer periphery of the insulating mechanism 14. The electric field relaxation ring 20 is connected to each electrode 16. The diameter of the insulating ring 15 is selected so that the spatial electric field between the final electrode 17 and the central conductor 7 is minimized within the allowable range.

【0016】以上の構成において、電子線源部4は碍子
11により真空チャンバ1に対して機械的に支持され
る。碍子11は絶縁性でしかも耐熱性であることによ
り、電子線源部4からの伝熱に対して十分に絶縁特性が
維持される。
In the above structure, the electron beam source section 4 is mechanically supported by the insulator 11 with respect to the vacuum chamber 1. Since the insulator 11 is insulative and heat resistant, the insulating property is sufficiently maintained against the heat transfer from the electron beam source section 4.

【0017】中心導体7と真空チャンバ1および圧力容
器5に対する絶縁は、絶縁機構14が司る。絶縁機構1
4を構成している絶縁リング16は、その間の電極16
とこれに接続されている分圧抵抗19によって、中心導
体7と真空容器1との間の電界をほぼ均等に分担する。
したがって電界の分担は安定し、電界が変動するような
ことがあっても、その影響は少なくなる。しかも絶縁機
構14の表面積が少なくてすむので、面積効果を減少す
ることができ、放電の発生を極力回避することができ
る。
The insulating mechanism 14 controls the insulation between the central conductor 7, the vacuum chamber 1 and the pressure vessel 5. Insulation mechanism 1
The insulating ring 16 forming the
And the voltage-dividing resistor 19 connected to this, the electric field between the central conductor 7 and the vacuum container 1 is substantially evenly shared.
Therefore, the sharing of the electric field is stable, and even if the electric field fluctuates, its influence is reduced. Moreover, since the surface area of the insulating mechanism 14 is small, the area effect can be reduced and the occurrence of discharge can be avoided as much as possible.

【0018】図1の構成では、碍子11をシールド電極
3のその長さ方向に沿う中央に設けているが、シールド
電極が長尺に及ぶときは、点線で示す碍子11Aのよう
に、2個所またはそれ以上の箇所で支持するようにして
もよい。図1の例は電子線を垂直下方に向けて照射する
構成であるが、これが水平方向に向けて照射する構成の
ものでも本発明は適用される。この場合の碍子11は図
1と同様に、シールド電極の上部に設けるとよい。
In the structure shown in FIG. 1, the insulator 11 is provided at the center of the shield electrode 3 along the length direction thereof. However, when the shield electrode extends over a long length, two places are provided like the insulator 11A shown by the dotted line. Alternatively, it may be supported at more places. Although the example of FIG. 1 has a structure in which the electron beam is irradiated vertically downward, the present invention is also applicable to a structure in which the electron beam is irradiated in the horizontal direction. In this case, the insulator 11 is preferably provided above the shield electrode, as in FIG.

【0019】図2に碍子11の取り付けのための具体的
構成を示す。この例では碍子11の下端面に、ねじ孔を
有する金具21を埋め込んでおき、この金具21にねじ
22を締め込むことによって取付金具23を固定する。
取付金具23はねじ24によりシールド電極3に固定さ
れる。これにより碍子11の下端は、シールド電極3に
連結される。この場合ねじ24として、レベル出しので
きるジヤッキ用のものが望ましい。また金具21はシー
ルド電極3内におさめるようにしてある。
FIG. 2 shows a specific structure for mounting the insulator 11. In this example, a metal fitting 21 having a screw hole is embedded in the lower end surface of the insulator 11, and a mounting metal fitting 23 is fixed by tightening a screw 22 in the metal fitting 21.
The mounting bracket 23 is fixed to the shield electrode 3 with screws 24. As a result, the lower end of the insulator 11 is connected to the shield electrode 3. In this case, as the screw 24, a screw for a jack capable of leveling is desirable. Further, the metal fitting 21 is designed to be housed in the shield electrode 3.

【0020】碍子11の上端面にもねじ孔を有する金具
25を埋め込んでおき、この金具25にねじこまれるね
じ26により、フープ12を介して、真空チャンバ1に
固着されてある金具27に碍子11を連結する。このよ
うにしてシールド電極3は真空チャンバ1に取り付けら
れるようになる。なお碍子11としては、その沿面距離
を長くする必要があるときは、図2中の点線で示すよう
に、ひだ28を設けても良い。
A metal fitting 25 having a screw hole is also embedded in the upper end surface of the insulator 11, and an insulator is attached to the metal fitting 27 fixed to the vacuum chamber 1 via the hoop 12 by a screw 26 screwed into the metal fitting 25. 11 is connected. In this way, the shield electrode 3 is attached to the vacuum chamber 1. As the insulator 11, when it is necessary to increase the creepage distance, a fold 28 may be provided as shown by the dotted line in FIG.

【0021】前記のように絶縁機構14の電極16及び
アース電位である最終電極17は、中心導体7の高電界
にさらされる。そこでこの電界緩和のために、図3に示
すように、各電極16の内端をわん曲させ、アース電位
側にある絶縁リング15を中心導体7に対して露出しな
いように隠蔽するとよい。特に最終段付近では電極16
を大きくわん曲させるようにして絶縁リング15を覆う
ようにするとよい。これにより中心導体7と絶縁機構1
4との間の電界を緩和することができるようになる。
As described above, the electrode 16 of the insulating mechanism 14 and the final electrode 17 at the ground potential are exposed to the high electric field of the central conductor 7. Therefore, in order to alleviate this electric field, as shown in FIG. 3, it is preferable to bend the inner end of each electrode 16 and conceal the insulating ring 15 on the ground potential side so as not to be exposed from the central conductor 7. Especially near the final stage, the electrode 16
It is preferable that the insulating ring 15 is covered with a large bend. As a result, the central conductor 7 and the insulation mechanism 1
The electric field between 4 and 4 can be relaxed.

【0022】図1の点線で示したように、複数の碍子1
1Aで電子線源部4を支持した場合、シールド電極3が
熱によりその長さ方向に膨張することによって、碍子1
1Aとの間に応力が作用する恐れがある。これを避ける
ために、図4、図5に示すように、金具23のねじ22
が通る孔を長孔29としておくとよい。これによれば膨
張によるねじ22の逃げが形成されるため、シールド電
極3と碍子11Aとの間に応力が作用するのが回避でき
る。
As shown by the dotted lines in FIG. 1, a plurality of insulators 1
When the electron beam source unit 4 is supported by 1A, the shield electrode 3 expands in the lengthwise direction due to heat, so that the insulator 1
There is a possibility that a stress will act between 1A and the 1A. In order to avoid this, as shown in FIG. 4 and FIG.
It is advisable to make the hole through which the long hole 29 passes. According to this, since the escape of the screw 22 due to expansion is formed, it is possible to avoid the stress acting between the shield electrode 3 and the insulator 11A.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、電
子線源部のフィラメントに高電圧を給電する中心導体と
真空チャンバとの絶縁を電子線源部の機械的支持に直接
関与しない絶縁機構により絶縁するようにし、この絶縁
機構を絶縁リングとリング状電極とを重ね合わせ、リン
グ状電極に分圧抵抗を接続して構成したので、各絶縁リ
ングは均等な電界を受け、従来のようなスペースコーン
による絶縁構成に比較して安定となり、電界変動の影響
は少なくなるとともに、その表面積を小さくすることが
できるため、面積効果は減少し、放電の発生を極力阻止
することができるようになり、更に電子線源部を耐熱性
の碍子を介して真空チャンバに機械的に支持するように
したので、電子線源部からの伝熱に対して、絶縁特性が
十分に維持されるといった効果を奏する。
As described above, according to the present invention, the insulation between the central conductor for supplying a high voltage to the filament of the electron beam source section and the vacuum chamber is not directly involved in the mechanical support of the electron beam source section. This insulation mechanism is constructed by superposing an insulating ring and a ring-shaped electrode and connecting a voltage dividing resistor to the ring-shaped electrode. Since it is more stable than the insulation configuration with a space cone, the influence of electric field fluctuations is reduced and its surface area can be reduced, so that the area effect is reduced and the occurrence of discharge can be prevented as much as possible. Furthermore, since the electron beam source is mechanically supported in the vacuum chamber through the heat-resistant insulator, sufficient insulation characteristics are maintained against heat transfer from the electron beam source. Achieve the kind of effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】図1の碍子の支持部分を示す拡大断面図であ
る。
FIG. 2 is an enlarged sectional view showing a supporting portion of the insulator of FIG.

【図3】図1の絶縁機構の変形例を示す部分断面図であ
る。
FIG. 3 is a partial cross-sectional view showing a modified example of the insulating mechanism of FIG.

【図4】碍子とシールド電極との連結部分の変形例を示
す部分断面図である。
FIG. 4 is a partial cross-sectional view showing a modified example of a connecting portion between an insulator and a shield electrode.

【図5】図4の底面図である。FIG. 5 is a bottom view of FIG.

【図6】従来例の断面図である。FIG. 6 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 真空チャンバ 2 フィラメント部 3 シールド電極 4 電子線源部 5 圧力容器 7 中心導体 8 加速電源 11 碍子 14 絶縁機構 15 絶縁リング 16 リング状電極 19 分圧抵抗 20 電界緩和用リング 1 Vacuum Chamber 2 Filament Part 3 Shield Electrode 4 Electron Beam Source 5 Pressure Vessel 7 Center Conductor 8 Accelerating Power Supply 11 Insulator 14 Insulation Mechanism 15 Insulation Ring 16 Ring Electrode 19 Voltage Dividing Resistance 20 Electric Field Relaxation Ring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電子線源部のフィラメント部をシールド
しているシールド電極を、前記電子線源部が収納されて
ある真空チャンバの壁に、耐熱性材料からなる碍子によ
って機械的に支持するとともに、前記フィラメント部に
接続される中心導体を導入端子部に連結し、前記導入端
子部と前記真空チャンバとの間を、絶縁リングと、リン
グ状電極とを交互にかつ多段に重ね合わした絶縁機構に
よって絶縁し、前記各リング状電極間に、前記絶縁リン
グの分担電圧を均等とするための分圧抵抗を接続してな
る電子線照射装置。
1. A shield electrode, which shields a filament portion of an electron beam source portion, is mechanically supported on a wall of a vacuum chamber in which the electron beam source portion is housed by an insulator made of a heat resistant material. , A central conductor connected to the filament portion is connected to an introduction terminal portion, and an insulation mechanism in which insulating rings and ring-shaped electrodes are alternately and multiply stacked between the introduction terminal portion and the vacuum chamber An electron beam irradiation apparatus which is insulated and has a voltage dividing resistor connected between the respective ring-shaped electrodes for equalizing the shared voltage of the insulating ring.
【請求項2】 絶縁機構のリング状電極を、前記絶縁機
構の内部において、アース電位側の絶縁リングを中心導
体に対して隠蔽するように、わん曲させてなる請求項1
に記載の電子線照射装置。
2. The ring-shaped electrode of the insulating mechanism is bent inside the insulating mechanism so that the insulating ring on the ground potential side is hidden from the center conductor.
The electron beam irradiation apparatus according to.
JP10889494A 1994-04-11 1994-04-11 Electron beam irradiation device Expired - Lifetime JP3324275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10889494A JP3324275B2 (en) 1994-04-11 1994-04-11 Electron beam irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10889494A JP3324275B2 (en) 1994-04-11 1994-04-11 Electron beam irradiation device

Publications (2)

Publication Number Publication Date
JPH07282755A true JPH07282755A (en) 1995-10-27
JP3324275B2 JP3324275B2 (en) 2002-09-17

Family

ID=14496316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10889494A Expired - Lifetime JP3324275B2 (en) 1994-04-11 1994-04-11 Electron beam irradiation device

Country Status (1)

Country Link
JP (1) JP3324275B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086201A1 (en) * 2004-03-09 2005-09-15 Korea Atomic Energy Research Institute A large-area shower electron beam irradiator with field emitters as an electron source
JP2011185784A (en) * 2010-03-09 2011-09-22 Sumitomo Heavy Ind Ltd Target device, and neutron capture therapy device including the same
EP2991095A1 (en) * 2014-08-25 2016-03-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. High voltage feedthrough assembly, electron diffraction apparatus and method of electrode manipulation in a vacuum environment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086201A1 (en) * 2004-03-09 2005-09-15 Korea Atomic Energy Research Institute A large-area shower electron beam irradiator with field emitters as an electron source
US7671522B2 (en) 2004-03-09 2010-03-02 Korea Atomic Energy Research Institute Large-area shower electron beam irradiator with field emitters as an electron source
JP2011185784A (en) * 2010-03-09 2011-09-22 Sumitomo Heavy Ind Ltd Target device, and neutron capture therapy device including the same
EP2991095A1 (en) * 2014-08-25 2016-03-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. High voltage feedthrough assembly, electron diffraction apparatus and method of electrode manipulation in a vacuum environment
WO2016030004A3 (en) * 2014-08-25 2016-04-21 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. High voltage feedthrough assembly, time-resolved transmission electron microscope and method of electrode manipulation in a vacuum environment
US10366861B2 (en) 2014-08-25 2019-07-30 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. High voltage feedthrough assembly, time-resolved transmission electron microscope and method of electrode manipulation in a vacuum environment

Also Published As

Publication number Publication date
JP3324275B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
US6218627B1 (en) Bushing
US5075592A (en) Gas discharge switch
JPS5880251A (en) X-ray tube
JPH07282755A (en) Electron beam irradiating device
US3126439A (en) High-voltage electrical insulating bushing
US3823335A (en) Electrode arrangement serving to accelerate a charge carrier beam in a vacuum
JP3161027B2 (en) Gas insulated current transformer
US4008413A (en) Compact high voltage feedthrough for gas discharge devices
JP6519167B2 (en) Electric field relaxation device of vacuum interrupter
EP0106315A1 (en) Circuit breaker of porcelain insulator type
US4071802A (en) Hollow-cathode spectral light source with means to prevent high voltage arcing
JP2003531452A (en) Post insulator
US3935491A (en) Discharge lamp
SE8902481L (en) STOEDISOLATOR
JP2543346Y2 (en) Gas insulated current transformer
JP3096172B2 (en) Ion implanter
US1587156A (en) Vacuum insulator
JPH0475244A (en) Electron beam irradiation device
JPH0834091B2 (en) Electron beam irradiation device
JPH0669047A (en) Bushing shield device
JPS647542Y2 (en)
JP3096167B2 (en) Ion implanter
US1949005A (en) X-ray tube
JPH04337613A (en) Gas insulated current transformer
JP2626187B2 (en) Internal partitioning equipment for stationary electrical equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080705

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100705