JPH05243043A - Current lead for superconducting apparatus - Google Patents

Current lead for superconducting apparatus

Info

Publication number
JPH05243043A
JPH05243043A JP4044583A JP4458392A JPH05243043A JP H05243043 A JPH05243043 A JP H05243043A JP 4044583 A JP4044583 A JP 4044583A JP 4458392 A JP4458392 A JP 4458392A JP H05243043 A JPH05243043 A JP H05243043A
Authority
JP
Japan
Prior art keywords
current lead
high temperature
superconducting device
intermediate cooling
temperature superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4044583A
Other languages
Japanese (ja)
Inventor
Shoichi Yokoyama
彰一 横山
Itsuo Kodera
溢男 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4044583A priority Critical patent/JPH05243043A/en
Publication of JPH05243043A publication Critical patent/JPH05243043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To enable execution of stable electrification by making it possible to reduce sharply the amount of invasion of heat into a first thermal source for cooling down the body of a superconducting apparatus and also to reduce invasion of heat into an intermediate cooling part at the time of nonelectrification and by preventing a sharp change of the internal pressure of a low-temperature vessel. CONSTITUTION:A body 4 of a superconducting apparatus is kept cooled by a first thermal source 3, an intermediate cooling part 7 is cooled by a second thermal source 8, a high-temperature superconductor 9 is provided between the body 4 of the superconducting apparatus and the intermediate cooling part 7, a part on the high-temperature side from the intermediate cooling part 7 is constructed of a metal member 10, and the high-temperature superconductor 9 and the metal member 10 are constructed removably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば超電導マグネ
ット装置や超電導送電装置などの超電導装置に電流を導
入するための電流リードに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current lead for introducing a current into a superconducting device such as a superconducting magnet device or a superconducting power transmitting device.

【0002】[0002]

【従来の技術】図5は、例えば特開昭60ー32374
号公報に記載された従来の超電導装置用電流リードを示
す断面図である。この電流リードは超電導装置として例
えば超電導マグネット装置に適用したものである。図に
おいて、1は真空容器、2は真空容器1に収納され、第
1の冷熱源、例えば液体ヘリウム3を貯える低温容器、
4は低温容器2に収納され液体ヘリウム3で冷却される
超電導マグネット、5は超電導マグネット4に接続され
低温容器2の外壁に取り付けられた通電用着脱部材、6
は真空中で通電用着脱部材5に着脱される銅製の着脱式
電流リード、7は着脱式電流リード6の中間部で、第2
の冷熱源、例えば液体窒素8で液体ヘリウム温度より高
い温度に冷却されている中間冷却部である。
2. Description of the Related Art FIG. 5 shows, for example, JP-A-60-32374.
FIG. 7 is a cross-sectional view showing a conventional current lead for a superconducting device described in Japanese Patent Publication No. This current lead is applied to, for example, a superconducting magnet device as a superconducting device. In the figure, 1 is a vacuum container, 2 is a vacuum container 1, and a first cold heat source, for example, a low temperature container for storing liquid helium 3,
Reference numeral 4 denotes a superconducting magnet which is housed in the cryocontainer 2 and cooled by liquid helium 3. Reference numeral 5 denotes an energization attaching / detaching member which is connected to the superconducting magnet 4 and attached to the outer wall of the cryocontainer 6,
Is a detachable current lead made of copper that is detachably attached to the energizing detachable member 5 in a vacuum, and 7 is an intermediate portion of the detachable current lead 6.
This is an intermediate cooling unit that is cooled to a temperature higher than the liquid helium temperature by a cold heat source such as liquid nitrogen 8.

【0003】上記のように構成された超電導装置用電流
リードにおいて、通電時には着脱式電流リード6を矢印
A方向に移動して、通電用着脱部材5に接続する。非通
電時には図5に示すように電流リード6を真空中で切り
離す。このように構成することにより、超電導マグネッ
ト4を冷却している液体ヘリウム3への熱侵入量を軽減
できる。
In the current lead for the superconducting device constructed as described above, the detachable current lead 6 is moved in the direction of arrow A when energized and connected to the energizing detachable member 5. When not energized, the current lead 6 is disconnected in a vacuum as shown in FIG. With this configuration, the amount of heat entering the liquid helium 3 cooling the superconducting magnet 4 can be reduced.

【0004】[0004]

【発明が解決しようとする課題】上記のような従来の超
電導装置用電流リードは、非通電時に電流リード6を真
空中で切り離しているので、通電用着脱部材5や真空容
器1での電流リード取り出し部で電気絶縁と耐真空が必
要となり構造が複雑になる。また、真空中での電流通電
を行なうので、通電時の発熱による焼損を防ぐため、電
流リード6の構造部材容積が大きくなる。さらに、電流
リード6の低温側は通電用着脱部材5に接続されていな
い時は中間冷却部の温度で冷却されており、この温度は
液体ヘリウム温度より高い。このため、通電用着脱部材
5に接続した場合に、電流リード6から急激に液体ヘリ
ウム3に熱が加わる。ところが、液体ヘリウム3は蒸発
潜熱が約20J/gと非常に小さいので、急激に蒸発す
る。この結果、低温容器2の内圧が上昇し、超電導マグ
ネット4が永久電流モードで運転している場合に超電導
マグネット4がクエンチする恐れがあった。また、高温
(室温)部と中間冷却部7は電流リード6で熱的に短絡
されているので、非通電時においても中間冷却部7への
熱侵入があるなどの問題点があった。
In the conventional current lead for a superconducting device as described above, the current lead 6 is disconnected in a vacuum when it is not energized. Therefore, the current lead in the energizing attachment / detachment member 5 and the vacuum container 1 is cut off. Electrical extraction and vacuum resistance are required at the take-out portion, which complicates the structure. Further, since the current is supplied in a vacuum, the volume of the structural member of the current lead 6 is increased in order to prevent the burnout due to the heat generated during the supply of current. Further, the low temperature side of the current lead 6 is cooled at the temperature of the intermediate cooling section when not connected to the energization attaching / detaching member 5, and this temperature is higher than the liquid helium temperature. Therefore, when it is connected to the energization attaching / detaching member 5, heat is rapidly applied to the liquid helium 3 from the current lead 6. However, since liquid helium 3 has a very small latent heat of vaporization of about 20 J / g, it rapidly vaporizes. As a result, the internal pressure of the cryogenic container 2 rises, and there is a risk that the superconducting magnet 4 will be quenched when the superconducting magnet 4 is operating in the permanent current mode. Further, since the high temperature (room temperature) part and the intermediate cooling part 7 are thermally short-circuited by the current lead 6, there is a problem that heat enters the intermediate cooling part 7 even when the power is not supplied.

【0005】この発明は、かかる問題点を解決するため
になされたもので、超電導マグネットなどの超電導装置
本体を冷却する第1の冷熱源、例えば液体ヘリウムへの
熱侵入量を大幅に軽減でき、また、非通電時における中
間冷却部への熱侵入を軽減でき、低温容器の内圧が急激
に変化するのを防止して安定した通電ができる超電導装
置用電流リードを得ることを目的としている。
The present invention has been made to solve the above problems, and can greatly reduce the amount of heat entering a first cold heat source for cooling the body of a superconducting device such as a superconducting magnet, for example, liquid helium, Another object of the present invention is to obtain a current lead for a superconducting device, which can reduce heat intrusion into the intermediate cooling part when not energized, prevent the internal pressure of the cryogenic container from abruptly changing, and can stably energize.

【0006】[0006]

【課題を解決するための手段】請求項1の発明に係る超
電導装置用電流リードは、第1の冷熱源によって冷却保
持される超電導装置本体、及び第2の冷熱源によって冷
却される中間冷却部を有し、超電導装置本体に通電する
超電導装置用電流リードにおいて、超電導装置本体と中
間冷却部の間に高温超電導体を設け、中間冷却部より高
温側を金属部材で構成し、高温超電導体と金属部材を着
脱自在に構成したものである。
According to a first aspect of the present invention, there is provided a superconducting device current lead, the superconducting device main body being cooled and held by a first cold heat source, and an intermediate cooling section being cooled by a second cold heat source. In the current lead for a superconducting device which has a current flowing through the main body of the superconducting device, a high temperature superconductor is provided between the superconducting device body and the intermediate cooling part, and the high temperature side of the intermediate cooling part is made of a metal member, The metal member is detachably configured.

【0007】また、請求項2の発明に係る超電導装置用
電流リードは、請求項1の発明に加えて、往復の電流に
対応する一対の高温超電導体の低温端及び高温端にそれ
ぞれ高温超電導体保護用素子を備えたものである。
Further, in addition to the invention of claim 1, the current lead for a superconducting device according to the invention of claim 2 is a high temperature superconductor at a low temperature end and a high temperature end of a pair of high temperature superconductors corresponding to a reciprocating current. It is provided with a protective element.

【0008】[0008]

【作用】上記のように構成された超電導装置用電流リー
ドでは、高温超電導体を用いており、第1の冷熱源への
熱伝導と抵抗発熱による熱侵入量を低減する。また、高
温超電導体と金属部材を着脱自在にし、非通電時におい
て電流リードの中間冷却部で金属部材を切り離すので、
中間冷却部における室温端からの熱侵入を軽減でき、冷
却ガス中で低熱侵入量の電流リードを実現できるので超
電導装置の構造が簡単になる。また、超電導装置本体の
近傍では着脱を行わず中間冷却部で着脱を行うので、電
流リードの装着時における第1の冷熱源への過渡的な熱
の流入がなく、第2の冷熱源に例えば液体窒素(77
K)を用いた場合、温度が液体ヘリウムに比べて高く蒸
発潜熱も約200J/gと約10倍大きいので、急激な
蒸発がなく第2の冷熱源への影響は小さい。
In the current lead for the superconducting device constructed as described above, the high temperature superconductor is used to reduce the amount of heat conduction to the first cold heat source and the amount of heat intrusion due to resistance heating. Also, since the high temperature superconductor and the metal member are detachable, the metal member is cut off at the intermediate cooling part of the current lead when not energized.
Since heat intrusion from the room temperature end in the intermediate cooling unit can be reduced and a current lead with a low heat intrusion amount can be realized in the cooling gas, the structure of the superconducting device is simplified. In addition, since the intermediate cooling unit does not attach / detach in the vicinity of the superconducting device main body, the transient heat does not flow into the first cold heat source when the current lead is attached, and the second cold heat source is Liquid nitrogen (77
When K) is used, the temperature is higher than that of liquid helium and the latent heat of vaporization is about 200 J / g, which is about 10 times larger, so there is no sudden vaporization and the effect on the second cold heat source is small.

【0009】また、高温超電導体がクエンチしたとして
も、低温端に高温超電導体保護用素子が接続されている
ので、超電導装置本体に蓄積されたエネルギーを保護用
素子で吸収する。このため、高温超電導体は焼損しな
い。また、高温端にも高温超電導体保護用素子が接続さ
れているので、高温超電導体がクエンチ時に電源が切れ
なかった場合でも、高温超電導体の焼損を防止できる。
Even if the high temperature superconductor is quenched, since the high temperature superconductor protection element is connected to the low temperature end, the energy stored in the main body of the superconducting device is absorbed by the protection element. Therefore, the high temperature superconductor does not burn out. Further, since the high-temperature superconductor protection element is also connected to the high-temperature end, even if the high-temperature superconductor is not turned off during quenching, the high-temperature superconductor can be prevented from burning.

【0010】[0010]

【実施例】【Example】

実施例1.図1、図2は、この発明の一実施例による超
電導装置用電流リードを示す断面図である。図におい
て、1は真空容器、2は低温容器、4は低温容器2に収
容されている超電導装置本体、例えば超電導マグネット
であり、第1の冷熱源である温度4.2Kの液体ヘリウ
ム3中で冷却されている。7は超電導装置用電流リード
の中間冷却部、8は第2の冷熱源である温度77Kの液
体窒素であり、中間冷却部7を冷却している。9は超電
導マグネット4から中間冷却部7に至る部分に設けた高
温超電導体で、その高温端9aは中間冷却部7に接続し
ている。他方の低温端9bはさらに金属部材を介して超
電導装置本体4に接続している。10は中間冷却部7か
ら高温側(室温)の部分に接続された金属部材であり、
例えば、銅やセラミックなどの金属の棒で構成されてい
る。11は高温超電導体9と金属部材10を着脱自在に
保持する通電用着脱部材であり、金属部材10と接触す
る部分は、例えばガラスエポキシの薄い板などの絶縁物
で構成されている。図1は実施例1に示す電流リードに
おいて、通電時の高温超電導体9と金属部材10を連結
した状態を示す断面図で、図2は非通電時の高温超電導
体9と金属部材10を切り離した状態を示す断面図であ
る。
Example 1. 1 and 2 are sectional views showing a current lead for a superconducting device according to an embodiment of the present invention. In the figure, 1 is a vacuum container, 2 is a low temperature container, 4 is a superconducting device main body housed in the low temperature container 2, for example, a superconducting magnet, in a liquid helium 3 having a temperature of 4.2K as a first cold heat source. It is cooled. Reference numeral 7 is an intermediate cooling portion of the current lead for the superconducting device, and 8 is liquid nitrogen having a temperature of 77K which is a second cold heat source, and cools the intermediate cooling portion 7. Reference numeral 9 is a high-temperature superconductor provided in a portion extending from the superconducting magnet 4 to the intermediate cooling section 7, and its high-temperature end 9a is connected to the intermediate cooling section 7. The other low temperature end 9b is further connected to the superconducting device body 4 via a metal member. Reference numeral 10 denotes a metal member connected to the high temperature side (room temperature) portion from the intermediate cooling unit 7,
For example, it is made of a metal rod such as copper or ceramic. Reference numeral 11 denotes an energization attaching / detaching member that detachably holds the high temperature superconductor 9 and the metal member 10, and a portion in contact with the metal member 10 is made of an insulator such as a thin plate of glass epoxy. FIG. 1 is a cross-sectional view showing a state in which the high-temperature superconductor 9 and the metal member 10 are energized in the current lead shown in Example 1, and FIG. 2 is a diagram showing the high-temperature superconductor 9 and the metal member 10 separated when de-energized. It is a sectional view showing the state where it was opened.

【0011】上記のように構成された超電導装置用電流
リードにおいて、高温超電導体9に例えばBi系高温超
電導バルク材を用い、中間冷却部7を液体窒素(77
K)で高温超電導体9の臨界温度(115K)以下に冷
却する。Bi系高温超電導体9の熱伝導率はステンレス
以下であるので、低温部9bへの熱侵入量は従来の銅製
の電流リードだけを用いた場合に比べて約1/10以下
に低減できる。
In the current lead for a superconducting device constructed as described above, for example, a Bi type high temperature superconducting bulk material is used for the high temperature superconductor 9, and the intermediate cooling section 7 is filled with liquid nitrogen (77).
In K), the high temperature superconductor 9 is cooled to the critical temperature (115 K) or less. Since the thermal conductivity of the Bi-based high-temperature superconductor 9 is stainless steel or less, the amount of heat entering the low-temperature portion 9b can be reduced to about 1/10 or less as compared with the case where only the conventional copper current lead is used.

【0012】図3は、従来の例えば銅製の電流リード
と、この実施例1による例えば30cm長のBi系超電
導体を用いた電流リードの熱侵入量を測定した結果であ
り、横軸に液面(cm)、縦軸に熱侵入量(W)を表し
ている。図において、曲線Aは蒸発ガスで冷却していな
い(q=0)銅製の電流リードの熱侵入量、曲線Bは
0.5W相当分の蒸発ガスで冷却した(q=0.5W)
銅製の電流リードの熱侵入量、曲線Cは蒸発ガスで冷却
していない(q=0)Bi系超電導体を用いた電流リー
ドの熱侵入量、曲線Dはバックグラウンドを示してい
る。
FIG. 3 shows the results of measuring the amount of heat penetration of a conventional current lead made of, for example, copper and the current lead using the Bi-based superconductor having a length of 30 cm according to the first embodiment. (Cm), and the vertical axis represents the amount of heat penetration (W). In the figure, curve A is the amount of heat penetration of a current lead made of copper that is not cooled by evaporative gas (q = 0), and curve B is cooled by evaporative gas equivalent to 0.5 W (q = 0.5 W).
The amount of heat penetration of a current lead made of copper, curve C shows the amount of heat penetration of a current lead using a Bi-based superconductor that is not cooled by evaporative gas (q = 0), and curve D shows the background.

【0013】各電流リードの非通電時のガス中での熱侵
入量測定結果によれば、銅製の電流リードは蒸発ガスで
冷却しても、熱侵入量は約0.55Wである。これに対
し、Bi系超電導体を用いた電流リードは、断面積が5
倍ありしかもガス冷却していないにもかかわらず、熱侵
入量は約0.03Wと銅製の電流リードの約1/20で
あった。このように高温超電導体を用いることにより、
第1の冷熱源である液体ヘリウム3への熱侵入量を非常
に低減することができる。
According to the measurement results of the amount of heat penetration in the gas when each current lead is not energized, the amount of heat penetration is about 0.55 W even when the current lead made of copper is cooled by the evaporative gas. On the other hand, a current lead using a Bi-based superconductor has a cross-sectional area of 5
The amount of heat penetration was about 0.03 W, which was about 1/20 of that of the current lead made of copper, although it was doubled and the gas was not cooled. By using a high temperature superconductor like this,
The amount of heat entering the liquid helium 3, which is the first cold heat source, can be greatly reduced.

【0014】また、定格(500A)通電時において
は、高温超電導体9を用いた電流リードは接続部で発熱
するだけで、ほとんど熱侵入量は増えない。しかし銅製
の電流リードはガス冷却しても約2倍増加する。この様
に、高温超電導体9を電流リードに用いた場合、第1の
冷熱源3への熱侵入量が極めて小さくできるので、従来
のように非通電時に着脱する必要がなく、真空中に設置
する必要がない。
Further, when the rated (500 A) current is applied, the current lead using the high temperature superconductor 9 only generates heat at the connecting portion, and the amount of heat penetration hardly increases. However, the current lead made of copper increases about twice even when it is gas cooled. As described above, when the high-temperature superconductor 9 is used as the current lead, the amount of heat entering the first cold heat source 3 can be made extremely small. You don't have to.

【0015】ところが、中間冷却部7の高温側は金属部
材10で接続されており、例えば、500A級の電流リ
ードの場合、温度定点への熱侵入量は数十〜数百Wもあ
る。従って、非通電時には金属部材10を切り離すよう
にすれば、この熱侵入量はほとんど無くなる。また、金
属部材10の装着時は室温に近い温度で装着するが、液
体窒素8は蒸発潜熱が液体ヘリウムの約10倍あるの
で、急激な蒸発もない。また、液体窒素8は超電導マグ
ネット4の冷却に直接係わっていないので、超電導マグ
ネット4への影響はほとんどない。
However, the high temperature side of the intermediate cooling unit 7 is connected by the metal member 10. For example, in the case of a current lead of 500 A class, the amount of heat penetration into the temperature fixed point is several tens to several hundreds W. Therefore, if the metal member 10 is cut off during non-energization, this amount of heat penetration is almost eliminated. Further, when the metal member 10 is attached at a temperature close to room temperature, the liquid nitrogen 8 has a latent heat of vaporization of about 10 times that of liquid helium, and therefore, no rapid vaporization occurs. Further, since the liquid nitrogen 8 is not directly involved in cooling the superconducting magnet 4, it has almost no effect on the superconducting magnet 4.

【0016】高温超電導体の運転電流密度は、一般には
臨界電流密度Jcの低い中間冷却部7の温度で決まる。
例えば、高温超電導体としてBi系超電導バルク材を用
い、中間冷却部が77Kである場合ではJcは約200
0A/cm2 程度であり、77K付近では構造材料の比
熱が0.1J/g・K以上である。これは4.2Kに比
べて2桁以上大きい値であり、温度上昇しにくく、クエ
ンチしにくくなって安定である。
The operating current density of the high temperature superconductor is generally determined by the temperature of the intermediate cooling section 7 having a low critical current density Jc.
For example, when a Bi-based superconducting bulk material is used as the high-temperature superconductor and the intermediate cooling part is 77K, Jc is about 200.
A 0A / cm 2 or so, in the vicinity of 77K is the specific heat of the structural material is 0.1 J / g · K or more. This is a value that is two or more orders of magnitude higher than that of 4.2K, and it is stable because the temperature does not easily rise and quenching does not occur easily.

【0017】このように上記実施例によれば、超電導マ
グネット4などの超電導装置本体を冷却する第1の冷熱
源、例えば液体ヘリウム3への熱侵入量を大幅に軽減で
き、また、非通電時における中間冷却部7への熱侵入を
軽減でき、低温容器2の内圧が急激に変化するのを防止
して安定した通電ができる超電導装置用電流リードを得
ることができる効果がある。
As described above, according to the above-described embodiment, the amount of heat entering the first cold heat source for cooling the main body of the superconducting device such as the superconducting magnet 4, for example, liquid helium 3 can be greatly reduced, and at the time of non-energization. It is possible to obtain the current lead for the superconducting device which can reduce the heat intrusion into the intermediate cooling part 7 and prevent the internal pressure of the cryogenic container 2 from changing rapidly and can supply stable current.

【0018】実施例2.しかし、高温超電導体9は熱伝
導率が低くく金属被膜をつけていない。このため何らか
の要因で通電中に高温超電導体9がクエンチした場合、
一部がクエンチして発熱してもクエンチが超電導体全体
に伝わりにくい。高温超電導体9は常電導比抵抗が0.
1μΩcm程度と高いので、例えば超電導マグネット4
に通電中に高温超電導体9がクエンチした場合、たとえ
電源を切っても超電導マグネット4に蓄積されたエネル
ギーが抵抗発生部に加わって焼損する恐れがあった。
Example 2. However, the high temperature superconductor 9 has a low thermal conductivity and is not provided with a metal coating. Therefore, if the high temperature superconductor 9 is quenched during energization for some reason,
Even if a part is quenched and heat is generated, the quench is hard to be transmitted to the entire superconductor. The high-temperature superconductor 9 has a normal conductivity of 0.
Since it is as high as about 1 μΩcm, for example, the superconducting magnet 4
If the high-temperature superconductor 9 is quenched during energization, the energy stored in the superconducting magnet 4 may be added to the resistance generating portion and burned even if the power is turned off.

【0019】この発明の実施例2による超電導体装置用
電流リードは、上記のような高温超電導体9を用いるこ
とにより生じた課題を解決するためになされたものであ
る。図4は、この発明の実施例2による超電導装置用電
流リードを示す回路図である。図において、13,14
は往復の電流に対応する一対の高温超電導体、12a,
12bは高温超電導体13と高温超電導体14の高温端
13a,14a及び低温端13b,14bに接続されて
いる高温超電導体保護用素子で、例えば保護用ダイオー
ドである。
The current lead for a superconductor device according to the second embodiment of the present invention is made to solve the problems caused by using the high temperature superconductor 9 as described above. Second Embodiment FIG. 4 is a circuit diagram showing a current lead for a superconducting device according to a second embodiment of the present invention. In the figure, 13, 14
Is a pair of high temperature superconductors corresponding to the round trip current, 12a,
Reference numeral 12b is a high-temperature superconductor protection element connected to the high-temperature ends 13a, 14a and the low-temperature ends 13b, 14b of the high-temperature superconductor 13 and the high-temperature superconductor 14, and is, for example, a protection diode.

【0020】このように構成された超電導装置用電流リ
ードにおいて、高温超電導体13,14は低熱侵入化す
るために金属等の被覆のないバルク材を用いている。超
電導マグネット4に通電時に高温超電導体13,14が
クエンチした場合、高抵抗が発生し電圧が生じて保護用
ダイオード12aがオンする。超電導マグネット4に流
れていた電流は高温超電導体13,14にほとんど流れ
ずに、保護用ダイオード12aに流れて徐々に減衰す
る。従って、高温超電導体13,14は発熱しないので
焼損しない。高温端13a,14aも同様の原理で、保
護用ダイオード12bが接続されているために、高温超
電導体13,14がクエンチして電源が切れない場合に
でも高温超電導体13,14を保護できる。
In the current lead for the superconducting device constructed as described above, the high temperature superconductors 13 and 14 use a bulk material without coating such as metal in order to reduce heat penetration. When the high temperature superconductors 13 and 14 are quenched when the superconducting magnet 4 is energized, high resistance is generated and a voltage is generated to turn on the protection diode 12a. The current flowing through the superconducting magnet 4 hardly flows through the high temperature superconductors 13 and 14, but flows through the protective diode 12a and is gradually attenuated. Therefore, the high-temperature superconductors 13 and 14 do not generate heat and do not burn. Since the protection diode 12b is connected to the high temperature ends 13a and 14a according to the same principle, the high temperature superconductors 13 and 14 can be protected even when the high temperature superconductors 13 and 14 are quenched and the power cannot be turned off.

【0021】このように、高温超電導体13,14がク
エンチしても、保護用素子として例えばダイオード12
a,12bを接続しており、高温超電導体13,14が
焼損するのを防止できる。また、高温超電導体保護用ダ
イオード12a,12bは高温超電導体13,14の対
の各両端を接続しているので、第1の冷熱源3への熱侵
入量が増えることがない。
In this way, even if the high temperature superconductors 13 and 14 are quenched, for example, the diode 12 is used as a protection element.
Since a and 12b are connected, it is possible to prevent the high temperature superconductors 13 and 14 from being burnt out. Further, since the high-temperature superconductor protection diodes 12a and 12b are connected to both ends of the pair of high-temperature superconductors 13 and 14, the amount of heat entering the first cold heat source 3 does not increase.

【0022】また、上記の高温超電導体保護用素子12
a,12bはダイオードに限るものではなく、高温超電
導体13,14がクエンチした時の発生抵抗より小さい
値の抵抗であってもよく、上記と同様の効果を奏する。
高温超電導体保護用素子として保護用抵抗で構成した場
合は、クエンチ時の高温超電導体抵抗より低い抵抗値の
抵抗が接続され、ダイオードと同様にクエンチ時には超
電導マグネット4の電流は保護用抵抗に流れ、高温超電
導体が焼損するのを防ぐことができる。
Further, the above-mentioned high temperature superconductor protection element 12
The a and 12b are not limited to the diodes, and may be resistors having a value smaller than the resistance generated when the high temperature superconductors 13 and 14 are quenched, and have the same effect as above.
When the protection resistor is used as the high temperature superconductor protection element, a resistor having a resistance value lower than that of the high temperature superconductor resistance at the time of quench is connected, and like the diode, the current of the superconducting magnet 4 flows to the protection resistor at the time of quench. It is possible to prevent the high-temperature superconductor from burning.

【0023】また、上記実施例では金属部材10とし
て、例えば、銅やセラミックなどの金属の棒で構成した
が、この金属部材10をパイプで構成し、ガスを内側か
らぬくようにしてもよい。
In the above embodiment, the metal member 10 is made of a metal rod such as copper or ceramic. However, the metal member 10 may be made of a pipe so that gas can be removed from the inside.

【0024】[0024]

【発明の効果】以上のように、請求項1の発明によれ
ば、第1の冷熱源によって冷却保持される超電導装置本
体、及び第2の冷熱源によって冷却される中間冷却部を
有し、超電導装置本体に通電する超電導装置用電流リー
ドにおいて、超電導装置本体と中間冷却部の間に高温超
電導体を設け、中間冷却部より高温側を金属部材で構成
し、高温超電導体と金属部材を着脱自在に構成したこと
により、超電導装置本体を冷却する第1の冷熱源への熱
侵入量を大幅に軽減でき、安定した通電ができる超電導
装置用電流リードが得られる効果がある。
As described above, according to the first aspect of the invention, the superconducting device main body is cooled and held by the first cold heat source, and the intermediate cooling section is cooled by the second cold heat source. In the current lead for the superconducting device that energizes the superconducting device main body, a high temperature superconductor is provided between the superconducting device main body and the intermediate cooling part, and the high temperature side from the intermediate cooling part is made of a metal member, and the high temperature superconductor and the metal member are attached and detached. With the flexible structure, the amount of heat entering the first cold heat source for cooling the main body of the superconducting device can be greatly reduced, and the current lead for the superconducting device can be obtained which can be stably energized.

【0025】また、請求項2の発明によれば、請求項1
の発明に加えて、往復の電流に対応する一対の高温超電
導体の低温端及び高温端にそれぞれ高温超電導体保護用
素子を備えたことにより、高温超電導体がクエンチして
も焼損するのを防止できる超電導装置用電流リードが得
られる効果がある。
According to the invention of claim 2, claim 1
In addition to the invention described above, the high temperature superconductor protection element is provided at each of the low temperature end and the high temperature end of the pair of high temperature superconductors corresponding to the reciprocating current, so that even if the high temperature superconductor is quenched, it is prevented from burning. There is an effect that a current lead for a superconducting device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による超電導装置用電流リ
ードの通電時の状態を示す断面図である。
FIG. 1 is a cross-sectional view showing a state when a current lead for a superconducting device according to a first embodiment of the present invention is energized.

【図2】この発明の実施例1による超電導装置用電流リ
ードの非通電時の状態を示す断面図である。
FIG. 2 is a sectional view showing a state in which the current lead for the superconducting device according to the first embodiment of the present invention is not energized.

【図3】実施例1に係る高温超電導体を用いた電流リー
ドと従来の銅製の電流リードの熱侵入量を測定した結果
を示すグラフである。
FIG. 3 is a graph showing the results of measuring the amount of heat penetration of a current lead using the high-temperature superconductor according to Example 1 and a conventional copper current lead.

【図4】この発明の実施例2による超電導装置用電流リ
ードを示す回路図である。
FIG. 4 is a circuit diagram showing a current lead for a superconducting device according to Embodiment 2 of the present invention.

【図5】従来の超電導装置用電流リードを示す断面図で
ある。
FIG. 5 is a cross-sectional view showing a conventional current lead for a superconducting device.

【符号の説明】[Explanation of symbols]

3 第1の冷熱源 4 超電導装置本体 7 中間冷却部 8 第2の冷熱源 9 高温超電導体 10 金属部材 11 通電用着脱部材 12a 高温超電導体保護用素子 12b 高温超電導体保護用素子 13 高温超電導体 14 高温超電導体 3 First Cold Heat Source 4 Superconducting Device Main Body 7 Intermediate Cooling Section 8 Second Cold Heat Source 9 High-Temperature Superconductor 10 Metal Member 11 Detaching Member for Energization 12a High-Temperature Superconductor Protection Element 12b High-Temperature Superconductor Protection Element 13 High-Temperature Superconductor 14 High temperature superconductor

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年4月8日[Submission date] April 8, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】実施例2.しかし、高温超電導体9は熱伝
導率が低くく金属被膜をつけていない。このため何らか
の要因で通電中に高温超電導体9がクエンチした場合、
一部がクエンチして発熱してもクエンチが超電導体全体
に伝わりにくい。高温超電導体9は常電導比抵抗が0.
Ωcm程度と高いので、例えば超電導マグネット4
に通電中に高温超電導体9がクエンチした場合、たとえ
電源を切っても超電導マグネット4に蓄積されたエネル
ギーが抵抗発生部に加わって焼損する恐れがあった。
Example 2. However, the high temperature superconductor 9 has a low thermal conductivity and is not provided with a metal coating. Therefore, if the high temperature superconductor 9 is quenched during energization for some reason,
Even if a part is quenched and heat is generated, the quench is hard to be transmitted to the entire superconductor. The high-temperature superconductor 9 has a normal conductivity of 0.
Since 1 m [Omega] cm approximately as high, for example, superconducting magnet 4
If the high-temperature superconductor 9 is quenched during energization, the energy accumulated in the superconducting magnet 4 may be added to the resistance generating portion and burned even if the power is turned off.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の冷熱源によって冷却保持される超
電導装置本体、及び第2の冷熱源によって冷却される中
間冷却部を有し、上記超電導装置本体に通電する超電導
装置用電流リードにおいて、上記超電導装置本体と上記
中間冷却部の間に高温超電導体を設け、上記中間冷却部
より高温側を金属部材で構成し、上記高温超電導体と上
記金属部材を着脱自在に構成したことを特徴とする超電
導装置用電流リード。
1. A current lead for a superconducting device, comprising: a superconducting device main body cooled and held by a first cold heat source; and an intermediate cooling section cooled by a second cold heat source, wherein the superconducting device current lead energizes the superconducting device main body. A high-temperature superconductor is provided between the superconducting device main body and the intermediate cooling unit, a high temperature side of the intermediate cooling unit is configured by a metal member, and the high temperature superconductor and the metal member are detachably configured. Current lead for superconducting device.
【請求項2】 往復の電流に対応する一対の高温超電導
体の低温端及び高温端にそれぞれ高温超電導体保護用素
子を備えたことを特徴とする請求項第1項記載の超電導
装置用電流リード。
2. A current lead for a superconducting device according to claim 1, wherein a high temperature superconductor protection element is provided at each of a low temperature end and a high temperature end of a pair of high temperature superconductors corresponding to a reciprocating current. ..
JP4044583A 1992-03-02 1992-03-02 Current lead for superconducting apparatus Pending JPH05243043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4044583A JPH05243043A (en) 1992-03-02 1992-03-02 Current lead for superconducting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4044583A JPH05243043A (en) 1992-03-02 1992-03-02 Current lead for superconducting apparatus

Publications (1)

Publication Number Publication Date
JPH05243043A true JPH05243043A (en) 1993-09-21

Family

ID=12695512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4044583A Pending JPH05243043A (en) 1992-03-02 1992-03-02 Current lead for superconducting apparatus

Country Status (1)

Country Link
JP (1) JPH05243043A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074092A1 (en) * 2009-12-17 2011-06-23 株式会社日立製作所 Superconducting magnet device, and method of imparting electric current into superconducting magnet
JP2014175524A (en) * 2013-03-11 2014-09-22 Kobe Steel Ltd Superconducting device
JP2016516297A (en) * 2013-03-14 2016-06-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Reduced gas flow conductive leads for superconducting magnet systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074092A1 (en) * 2009-12-17 2011-06-23 株式会社日立製作所 Superconducting magnet device, and method of imparting electric current into superconducting magnet
JP2014175524A (en) * 2013-03-11 2014-09-22 Kobe Steel Ltd Superconducting device
JP2016516297A (en) * 2013-03-14 2016-06-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Reduced gas flow conductive leads for superconducting magnet systems

Similar Documents

Publication Publication Date Title
EP2439754A1 (en) Refrigerator cooling-type superconducting magnet
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
JP4896620B2 (en) Superconducting magnet
EP0561552A2 (en) A magnetic field generator, a persistent current switch assembly for such a magnetic field generator, and the method of controlling such a magnetic field generator
Ballarino Current leads, links and buses
EP3712911A1 (en) Superconducting current lead and device arrangement
Manchester A cryostat for measuring specific heats between 1 and 4.2 K using a mechanical thermal switch
JP2006324325A (en) Super-conducting magnet apparatus
JPH0236504A (en) Superconducting magnet device
JPH05243043A (en) Current lead for superconducting apparatus
JP5255425B2 (en) Electromagnet device
JP2020035842A (en) Superconducting magnet device
US5419142A (en) Thermal protection for superconducting magnets
JPH05343753A (en) Current lead for superconducting device
Woodcraft An introduction to cryogenics
JPH11112043A (en) Current lead for super conducting device
Kar et al. Electrothermal behavior of the joint of binary current lead of conduction-cooled magnet
JPH07142236A (en) Current lead for superconductor apparatus
JP2515813B2 (en) Current lead for superconducting equipment
JPH0869719A (en) Current lead for superconducting device
JPH05304025A (en) High magnetic field generator and permanent current switch
JP2001066354A (en) Cryogenic container for superconducting quantum interference device storage
JPH0456106A (en) Gas cooling type current lead
KR20240018625A (en) Superconducting switch for superconducting magnets
JP2021118186A (en) Superconducting electromagnet