JPH05242898A - Solid high polymer electrolyte for fuel cell - Google Patents

Solid high polymer electrolyte for fuel cell

Info

Publication number
JPH05242898A
JPH05242898A JP4075604A JP7560492A JPH05242898A JP H05242898 A JPH05242898 A JP H05242898A JP 4075604 A JP4075604 A JP 4075604A JP 7560492 A JP7560492 A JP 7560492A JP H05242898 A JPH05242898 A JP H05242898A
Authority
JP
Japan
Prior art keywords
proton
polymer
fuel cell
phosphoric acid
donating substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4075604A
Other languages
Japanese (ja)
Inventor
Toshihiro Ichino
敏弘 市野
Shigekuni Sasaki
重邦 佐々木
Shiro Nishi
史郎 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4075604A priority Critical patent/JPH05242898A/en
Publication of JPH05242898A publication Critical patent/JPH05242898A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a solid high polymer electrolyte excellent in heat resistance applicable to a fuel cell. CONSTITUTION:A high polymer matrix having a proton donating substituent while having heat-resisting aromatic group fluorinated polymer as a main component is made to dissociate the proton donating substituent or is made to be impregnated with a liquid midium which is proton-conductive itself in order to form a solid high polymer electrolyte. There are polyimide having a proton donating substituent and one or more fluorine.fluorine-containing substituent for examples as the heat-resisting aromatic group fluorinated polymer. A phosphoric acid/water mixed solution having phosphoric acid weight concentration 50% or more is the liquid midium as a suitable example.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料電池に適用できる、
耐熱性に優れた高分子固体電解質に関する。
The present invention can be applied to a fuel cell,
The present invention relates to a solid polymer electrolyte having excellent heat resistance.

【0002】[0002]

【従来の技術】燃料電池は高効率、クリーン、コンパク
トという特徴を持つエネルギー変換装置で、将来の電力
供給源として精力的な研究開発が行われている。燃料電
池の単セルは水素極、酸素極、電解質、付属部品で構成
され、その電解質の種類により、りん酸型、無機酸化物
固体電解質型、高分子固体電解質型、溶融塩型、アルカ
リ型に分類される。アルカリ型は、原料となる水素ガス
に含まれる炭酸ガスに汚染されて、性能が低下するとい
う欠点を有していた。無機酸化物固体電解質型、溶融塩
型は、使用温度が各々600℃以上、900℃以上とい
う高温であり、電極材料・構造材料の耐久性、使用する
材料の熱膨張率差に基づく熱ストレス制御という課題を
抱えている。りん酸型についてはコンパクト化に限界が
あり、電力出力密度が上がらないという欠点を有してい
た。一方、高分子固体電解質型については人工衛星用を
中心に開発が進められ、小規模電源として検討されてき
た。電解質材料としては、耐久性の観点からフッ化アル
キル主鎖を持つプロトン供与性高分子が優れた特性を持
ち、米国デュポン社製ナフィオン( Nafion )(商品名)
などが市販されている。このフッ化アルキル系の高分子
固体電解質は高イオン伝導化が進み、0.1〜0.2S
/cmのイオン伝導度が実現され、高出力密度の燃料電池
も試作されている〔ジャーナル オブ パワー ソーセ
ス( Journal ofPower Sources )、第29巻、第239
〜250頁(1987)参照〕。
2. Description of the Related Art A fuel cell is an energy conversion device characterized by high efficiency, cleanliness, and compactness, and vigorous research and development has been conducted as a future power supply source. A single cell of a fuel cell is composed of a hydrogen electrode, an oxygen electrode, an electrolyte, and accessory parts. Depending on the type of the electrolyte, there are phosphoric acid type, inorganic oxide solid electrolyte type, polymer solid electrolyte type, molten salt type, and alkaline type. being classified. The alkaline type has a drawback that its performance is deteriorated by being contaminated with carbon dioxide contained in hydrogen gas as a raw material. The inorganic oxide solid electrolyte type and the molten salt type have high operating temperatures of 600 ° C. or higher and 900 ° C. or higher, respectively, and the thermal stress control based on the durability of the electrode material / structural material and the difference in the coefficient of thermal expansion of the material used. I have a problem. The phosphoric acid type has a limitation in its compactness and has a drawback that the power output density cannot be increased. On the other hand, the solid polymer electrolyte type has been developed mainly for artificial satellites and has been considered as a small-scale power source. As an electrolyte material, a proton-donating polymer having an alkyl fluoride main chain has excellent characteristics from the viewpoint of durability, and Nafion (trade name) manufactured by DuPont, USA
Are commercially available. This fluorinated alkyl polymer solid electrolyte has a high ionic conductivity, and has a concentration of 0.1 to 0.2S.
/ Cm ion conductivity has been realized, and high power density fuel cells have been prototyped [Journal of Power Sources, Vol. 29, 239.
Pp. 250 (1987)].

【0003】しかし、現在の高分子固体電解質型燃料電
池は、燃料の水素ガス中に含まれる微量の一酸化炭素が
電池の性能低下を引起こすという欠点を有していた。燃
料は炭化水素やメタノールを改質して製造することが多
く、その中に含まれる微量の一酸化炭素が電極触媒の白
金に吸着して、触媒毒になることが原因であった。この
性能劣化は、高分子固体電解質型燃料電池の作動温度
(80〜100℃)を上げること、望ましくは150℃
以上に昇温することにより低減できるが、従来の高分子
固体電解質ではイオン伝導媒体として水を含浸している
ことから、水の蒸発のため100℃以上に温度を上げる
ことはできなかった。また、フッ化アルキル系高分子電
解質は150℃以上で軟化し、機械的強度が低下すると
共に、連続したイオン伝導相が破壊されるという欠点を
有していた。
However, the current solid polymer electrolyte fuel cells have the drawback that a small amount of carbon monoxide contained in hydrogen gas as a fuel causes a decrease in the performance of the cell. Fuels are often produced by reforming hydrocarbons or methanol, and a trace amount of carbon monoxide contained therein is adsorbed by platinum of the electrode catalyst to become a catalyst poison. This deterioration in performance is caused by raising the operating temperature (80 to 100 ° C.) of the polymer electrolyte fuel cell, preferably 150 ° C.
Although the temperature can be reduced by raising the temperature as described above, since the conventional solid polymer electrolyte is impregnated with water as the ion conductive medium, the temperature cannot be raised to 100 ° C. or higher due to the evaporation of water. In addition, the fluoroalkyl polymer electrolyte has the drawback that it is softened at 150 ° C. or higher, the mechanical strength is lowered, and the continuous ion conductive phase is destroyed.

【0004】[0004]

【発明が解決しようとする課題】本発明はこのような現
状にかんがみてなされたものであり、その目的は、燃料
電池に適用できる耐熱性に優れたこ高分子固体電解質を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide a polymer solid electrolyte having excellent heat resistance which can be applied to a fuel cell.

【0005】[0005]

【課題を解決するための手段】本発明を概説すれば、燃
料電池用高分子固体電解質に関する発明であって、プロ
トン供与性置換基を持ち、ガラス転移点が150℃以上
の耐熱性芳香族系フッ素化高分子を主成分とする高分子
マトリクスに、該プロトン供与性置換基を解離させる、
あるいは自らがプロトン伝導性である液体媒体が含浸さ
れていることを特徴とする。
Briefly, the present invention relates to a polymer solid electrolyte for a fuel cell, which has a proton-donating substituent and a heat-resistant aromatic system having a glass transition point of 150 ° C. or higher. Dissociating the proton-donating substituent to a polymer matrix containing a fluorinated polymer as a main component,
Alternatively, it is characterized by being impregnated with a liquid medium which itself is proton conductive.

【0006】本発明者らは、種々の既存の高分子固体電
解質型燃料電池、高分子固体電解質に関する検討を進め
てきた結果、電極触媒(白金)の被毒を低減するために
は、高分子固体電解質の使用温度を150℃以上にしな
ければならないことが明らかになった。
The inventors of the present invention have studied various existing solid polymer electrolyte fuel cells and solid polymer electrolytes, and as a result, in order to reduce the poisoning of the electrode catalyst (platinum), It became clear that the use temperature of the solid electrolyte must be 150 ° C. or higher.

【0007】本発明の高分子固体電解質では、高分子マ
トリクスを構成する高分子中でプロトン供与性置換基は
凝集相を形成し、この凝集相に、プロトン供与性置換基
を解離させる、あるいは自らがプロトン伝導性である液
体媒体が含浸されてイオン伝導相を構成する。このイオ
ン伝導相中で高誘電率の液体媒体がプロトン供与性置換
基に配位してプロトンが解離し、あるいは自らプロトン
を放出し、このプロトンが移動してイオン伝導性を発現
する。また、本発明の高分子固体電解質では、高分子固
体電解質の機械的強度を維持する高分子マトリクスが1
50℃以上のガラス転移点を持っているため、150℃
以上でも使用上問題になる程軟化することがない。ま
た、高分子主鎖が芳香族系の耐熱構造を有するため、熱
分解による劣化を低減することができる。更に高分子構
造内にフッ素置換基を含有するため、表面エネルギーが
低下し、イオン伝導相を安定に維持することができる。
In the polymer solid electrolyte of the present invention, the proton donating substituent forms an aggregate phase in the polymer constituting the polymer matrix, and the proton donating substituent is dissociated into this aggregate phase or by itself. Are impregnated with a liquid medium that is proton conductive to form an ion conductive phase. In this ionic conduction phase, the liquid medium having a high dielectric constant coordinates with the proton-donating substituent to dissociate the protons or release the protons themselves, and the protons move to develop ionic conductivity. Moreover, in the solid polymer electrolyte of the present invention, the polymer matrix that maintains the mechanical strength of the solid polymer electrolyte is 1
150 ° C because it has a glass transition temperature of 50 ° C or higher
Even with the above, it does not soften so much that it becomes a problem in use. Further, since the polymer main chain has an aromatic heat-resistant structure, deterioration due to thermal decomposition can be reduced. Further, since the polymer structure contains a fluorine substituent, the surface energy is lowered and the ion conductive phase can be stably maintained.

【0008】本発明の高分子マトリクスに使われる高分
子主成分は、芳香環を主鎖に1種類以上含有する耐熱構
造を有するが、芳香環はフェニレン基などの単環、ナフ
タレン基などの多環でもよいし、これら芳香環はハロゲ
ン、アルキル基、ハロゲン化アルキル基等で置換されて
もよい。また、ベンズイミダゾール等のヘテロ複素環で
もよく、フタリックイミド構造は特に優れた耐熱性を有
し、好適である。したがって、前記耐熱性芳香族系フッ
素化高分子が、下記一般式(化1):
The main component of the polymer used in the polymer matrix of the present invention has a heat-resistant structure containing at least one aromatic ring in the main chain, and the aromatic ring is composed of a monocyclic ring such as a phenylene group or a naphthalene group. It may be a ring, and these aromatic rings may be substituted with a halogen, an alkyl group, a halogenated alkyl group or the like. Further, a hetero heterocycle such as benzimidazole may be used, and a phthalic imide structure is preferable because it has particularly excellent heat resistance. Therefore, the heat-resistant aromatic fluorinated polymer has the following general formula (Formula 1):

【0009】[0009]

【化1】 [Chemical 1]

【0010】〔式中、Xは4価の有機基、Yは2価の有
機基を示し、X、Yの一方又は双方に1つ以上のプロト
ン供与性置換基と1つ以上のフッ素・含フッ素置換基の
片方あるいは双方を有する〕で表される繰返し単位を含
むポリイミドであるものが好ましい。
[In the formula, X represents a tetravalent organic group, Y represents a divalent organic group, and one or both of X and Y have at least one proton-donating substituent and at least one fluorine-containing group. A polyimide containing a repeating unit represented by "having one or both of fluorine substituents" is preferable.

【0011】前記フッ素置換基は、主鎖あるいは側鎖の
芳香環に直接結合してもよいし、フッ化アルキル基、フ
ッ化アルケニル基などの形で主鎖あるいは側鎖に導入し
てもよい。また、アミド基、エステル基、エーテル基、
カーボネート基、スルフィド基、スルホン基等を含有し
てもよい。
The fluorine substituent may be directly bonded to the aromatic ring of the main chain or the side chain, or may be introduced into the main chain or the side chain in the form of a fluorinated alkyl group, a fluorinated alkenyl group or the like. .. In addition, an amide group, an ester group, an ether group,
It may contain a carbonate group, a sulfide group, a sulfone group or the like.

【0012】前記プロトン供与性置換基には、フェノー
ル性水酸基、スルホン酸基、カルボン酸基、りん酸基等
が挙げられる。
Examples of the proton donating substituent include a phenolic hydroxyl group, a sulfonic acid group, a carboxylic acid group and a phosphoric acid group.

【0013】含浸するプロトン供与性置換基を解離させ
る、あるいは自らがプロトン伝導性である液体媒体に
は、酸、あるいは酸又は塩を高濃度に含有した水溶液で
もよいが、りん酸重量濃度50%以上のりん酸/水混合
溶液が特に好適に用いられる。また、プロトン供与性置
換基を十分に解離させるには、その比誘電率が20以上
であることが好適である。
The liquid medium which dissociates the proton-donating substituent to be impregnated or which is itself proton-conductive may be an acid or an aqueous solution containing a high concentration of an acid or a salt, but the phosphoric acid weight concentration is 50%. The above phosphoric acid / water mixed solution is particularly preferably used. Further, in order to sufficiently dissociate the proton-donating substituent, the relative permittivity thereof is preferably 20 or more.

【0014】高分子マトリクスシートは、高分子溶液を
基板上にキャスト・加熱して作製してもよいし、原料高
分子を加熱・溶融してから加圧プレスにより成形しても
よい。
The polymer matrix sheet may be produced by casting and heating a polymer solution on a substrate, or may be formed by heating and melting a raw material polymer and then pressing it.

【0015】高誘電率液体媒体の含浸は通常の方法でよ
く、例えば高分子マトリクスシートを液体媒体中に浸漬
すればよい。液体媒体の含浸量は浸漬時間の長さで制御
できるが、高分子電解質中10重量%以上含浸させるこ
とが好適である。含浸温度については、150℃以上に
上げることが好適である。
The impregnation of the high dielectric constant liquid medium may be carried out by an ordinary method, for example, by immersing the polymer matrix sheet in the liquid medium. The impregnation amount of the liquid medium can be controlled by the length of the immersion time, but it is preferable to impregnate it with 10% by weight or more in the polymer electrolyte. The impregnation temperature is preferably raised to 150 ° C or higher.

【0016】[0016]

【実施例】以下に本発明を実施例によって更に詳しく説
明するが、本発明はこれに限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited thereto.

【0017】実施例1 2,2−ビス(3,4−ジカルボキシフェニル)ヘキサ
フルオロプロパン二無水物4.44gと2,2−ビス
(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオ
ロプロパン3.66gを30gのN−メチル−2−ピロ
リドン(NMP)の中に入れ、窒素雰囲気下室温で15
時間かくはんした。引続きこの溶液に40mlのp−キシ
レンを加え、水分回収器付還流コンデンサを付けたフラ
スコで、180℃で4時間還流させた。この間0.41
gの水を回収した。p−キシレンを留去した後室温まで
冷却し、この溶液を2リットルの水中に滴下した。析出
した白色固体をろ過し、水で洗浄した後100℃で真空
乾燥して高分子マトリクス原料を得た。この高分子のガ
ラス転移温度は303℃、熱分解温度(熱重量分析、昇
温速度10℃/min 測定)は501℃であった。この高
分子を再びNMPに溶解して15重量%の溶液を調製し
た後、ガラスシャーレ中にキャストし、190℃で5時
間乾燥した後200℃で3時間真空乾燥して高分子マト
リクスシートを得た。
Example 1 4.44 g of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride and 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane 66 g was placed in 30 g of N-methyl-2-pyrrolidone (NMP), and 15 at room temperature under a nitrogen atmosphere.
I stirred it for a while. Subsequently, 40 ml of p-xylene was added to this solution, and the mixture was refluxed at 180 ° C. for 4 hours in a flask equipped with a reflux condenser with a moisture collector. 0.41 during this time
g water was collected. After distilling off p-xylene, the solution was cooled to room temperature, and this solution was added dropwise to 2 liters of water. The white solid deposited was filtered, washed with water and then vacuum dried at 100 ° C. to obtain a polymer matrix raw material. The glass transition temperature of this polymer was 303 ° C., and the thermal decomposition temperature (thermogravimetric analysis, temperature rising rate 10 ° C./min measurement) was 501 ° C. This polymer was again dissolved in NMP to prepare a 15 wt% solution, cast in a glass petri dish, dried at 190 ° C. for 5 hours and then vacuum dried at 200 ° C. for 3 hours to obtain a polymer matrix sheet. It was

【0018】プロトン供与性置換基を解離させる、ある
いは自らがプロトン伝導性である液体媒体として、りん
酸重量濃度85%のりん酸/水混合溶液を用意した。こ
れに作製した高分子マトリクスシートを浸漬し、150
℃で3時間含浸して目的の高分子固体電解質シートを得
た。作製した高分子固体電解質と2つの白金電極からな
る測定セルを組み、交流複素インピーダンス法でイオン
伝導度を測定したところ、7×10-2S/cm(150
℃)であった。また、この電解質を酸素雰囲気の密閉容
器中150℃で500時間放置し、イオン伝導率を再び
測定したところ5×10-2S/cm(150℃)であっ
た。
A phosphoric acid / water mixed solution having a phosphoric acid weight concentration of 85% was prepared as a liquid medium which dissociates the proton-donating substituent or is itself proton-conductive. The prepared polymer matrix sheet is dipped in this, and 150
Impregnation was carried out at 0 ° C. for 3 hours to obtain a target polymer solid electrolyte sheet. When the measurement cell consisting of the produced solid polymer electrolyte and two platinum electrodes was assembled and the ionic conductivity was measured by the AC complex impedance method, it was 7 × 10 -2 S / cm (150
℃). The electrolyte was allowed to stand for 500 hours at 150 ° C. in a closed container in an oxygen atmosphere, and the ionic conductivity was measured again. As a result, it was 5 × 10 −2 S / cm (150 ° C.).

【0019】比較例1 デュポン社製 Nafion 119(商品名)を室温で水中に
1日間浸漬した後、150℃でイオン伝導度を測定した
ところ、高温のため大部分の水が蒸発しイオン伝導度は
1×10-7S/cm以下であった。
Comparative Example 1 After immersing Nafion 119 (trade name) manufactured by DuPont at room temperature in water for 1 day and measuring the ionic conductivity at 150 ° C., most of the water was evaporated and the ionic conductivity was high. Was 1 × 10 −7 S / cm or less.

【0020】[0020]

【発明の効果】以上の説明で明らかなように、本発明に
より、燃料電池に適用できる、耐熱性に優れた高分子固
体電解質を得られるという利点がある。
As is apparent from the above description, the present invention has an advantage that a polymer solid electrolyte having excellent heat resistance, which can be applied to a fuel cell, can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 プロトン供与性置換基を持ち、ガラス転
移点が150℃以上の耐熱性芳香族系フッ素化高分子を
主成分とする高分子マトリクスに、該プロトン供与性置
換基を解離させる、あるいは自らがプロトン伝導性であ
る液体媒体が含浸されていることを特徴とする燃料電池
用高分子固体電解質。
1. A proton-donating substituent is dissociated in a polymer matrix having a proton-donating substituent and having a glass transition point of 150 ° C. or higher as a main component of a heat-resistant aromatic fluorinated polymer. Alternatively, a polymer solid electrolyte for a fuel cell, characterized in that it is impregnated with a liquid medium which is itself proton conductive.
【請求項2】 前記耐熱性芳香族系フッ素化高分子が、
下記一般式(化1): 【化1】 〔式中、Xは4価の有機基、Yは2価の有機基を示し、
X、Yの一方又は双方に1つ以上のプロトン供与性置換
基と1つ以上のフッ素・含フッ素置換基の片方あるいは
双方を有する〕で表される繰返し単位を含むポリイミド
である請求項1に記載の燃料電池用高分子固体電解質。
2. The heat-resistant aromatic fluorinated polymer,
The following general formula (Formula 1): [In the formula, X represents a tetravalent organic group, Y represents a divalent organic group,
A polyimide having a repeating unit represented by one or both of X and Y having one or more proton donating substituents and one or more of one or more fluorine / fluorine-containing substituents. A polymer solid electrolyte for a fuel cell as described above.
【請求項3】 前記液体媒体がりん酸重量濃度50%以
上のりん酸/水混合溶液である請求項1又は2に記載の
燃料電池用高分子固体電解質。
3. The polymer solid electrolyte for a fuel cell according to claim 1, wherein the liquid medium is a phosphoric acid / water mixed solution having a phosphoric acid weight concentration of 50% or more.
JP4075604A 1992-02-27 1992-02-27 Solid high polymer electrolyte for fuel cell Pending JPH05242898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4075604A JPH05242898A (en) 1992-02-27 1992-02-27 Solid high polymer electrolyte for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4075604A JPH05242898A (en) 1992-02-27 1992-02-27 Solid high polymer electrolyte for fuel cell

Publications (1)

Publication Number Publication Date
JPH05242898A true JPH05242898A (en) 1993-09-21

Family

ID=13580983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4075604A Pending JPH05242898A (en) 1992-02-27 1992-02-27 Solid high polymer electrolyte for fuel cell

Country Status (1)

Country Link
JP (1) JPH05242898A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105200A (en) * 2000-09-29 2002-04-10 Kanegafuchi Chem Ind Co Ltd Proton conductive membrane for direct type alcohol fuel cell and direct type alcohol fuel cell utilizing the same
KR100449788B1 (en) * 2002-02-23 2004-09-22 학교법인연세대학교 Synthesis of Sulfonated Polyimides and Preparation of Membranes for PEMFC
JP2005290318A (en) * 2004-04-05 2005-10-20 Teijin Ltd Solid polyelectrolyte
KR100709220B1 (en) * 2005-11-30 2007-04-18 삼성에스디아이 주식회사 Polymer electrolyte membrane for fuel cell, preparing method thereof and fuel cell system comprising same
KR20230085373A (en) * 2021-12-07 2023-06-14 김병주 Solid electrolyte for secondary battery and secondary battery comprising same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105200A (en) * 2000-09-29 2002-04-10 Kanegafuchi Chem Ind Co Ltd Proton conductive membrane for direct type alcohol fuel cell and direct type alcohol fuel cell utilizing the same
KR100449788B1 (en) * 2002-02-23 2004-09-22 학교법인연세대학교 Synthesis of Sulfonated Polyimides and Preparation of Membranes for PEMFC
JP2005290318A (en) * 2004-04-05 2005-10-20 Teijin Ltd Solid polyelectrolyte
KR100709220B1 (en) * 2005-11-30 2007-04-18 삼성에스디아이 주식회사 Polymer electrolyte membrane for fuel cell, preparing method thereof and fuel cell system comprising same
KR20230085373A (en) * 2021-12-07 2023-06-14 김병주 Solid electrolyte for secondary battery and secondary battery comprising same
WO2023106821A3 (en) * 2021-12-07 2024-02-08 김병주 Solid-state electrolyte for secondary battery, and secondary battery comprising same

Similar Documents

Publication Publication Date Title
Sun et al. Acid–Organic base swollen polymer membranes
JP3877794B2 (en) Acid-modified polybenzimidazole fuel cell element
US7842410B2 (en) Polymer electrolyte membrane and fuel cell including the polymer electrolyte membrane
CN1742402A (en) Proton-conducting polymer membrane containing polyazole blends, and application thereof in fuel cells
FR2748485A1 (en) SULPHONATED POLYIMIDES, MEMBRANES PREPARED THEREWITH, AND FUEL CELL DEVICE COMPRISING SUCH MEMBRANES
JP2003123791A (en) Proton conductor and fuel cell using the same
JP2004534890A (en) Ionomer used for fuel cell and method for producing the same
JP3973503B2 (en) Ion conductive binder for fuel cell, electrode forming composition and varnish, and fuel cell
CN1414652A (en) Method of preparing membrane electrode using recasted perfluro sulfonic acid proton exchange film
JPH05242898A (en) Solid high polymer electrolyte for fuel cell
KR100907476B1 (en) Polymer membranes containing partially fluorinated copolymer, manufacturing method thereof and polymer electrolyte fuel cell using them
JP2006032181A (en) Film/electrode structure for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
US20050112440A1 (en) Polymer comprising terminal sulfonic acid group, and polymer electrolyte and fuel cell using the same
KR100654244B1 (en) High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell
KR100754376B1 (en) Proton conductive electrolyte membrane, method for preparing the same and fuel cell comprising the same
RU2313859C2 (en) High-temperature proton-exchange membrane using ionometer/solid-material proton conductor, method for its manufacture, and fuel cell incorporating it
JP4664683B2 (en) Membrane-electrode assembly and fuel cell thereof
US7736780B2 (en) Fuel cell membrane containing zirconium phosphate
JPH08171923A (en) High polymer electrolyte for fuel cell
KR100355392B1 (en) Fuel cell adopting multi-layered ion conductive polymer layer
Krishnan et al. Sulfonated poly (ether sulfone)‐based catalyst binder for a proton‐exchange membrane fuel cell
JP2003526184A (en) Method for producing electrode-membrane assembly, method for producing electrode-membrane-electrode assembly, assembly obtained in the manner described above, and fuel cell device provided with these assemblies
JP3949416B2 (en) Ion conductive polymer membrane for fuel cell and fuel cell using the same
KR100581753B1 (en) A Polytriazole Electrolyte Membrane for Fuel Cell and It's Preparation Method
JP2003338298A (en) Polyamide precursor varnish containing protonic acid group and cross-linked polyamide containing protonic acid group