JPH0524237B2 - - Google Patents

Info

Publication number
JPH0524237B2
JPH0524237B2 JP22856787A JP22856787A JPH0524237B2 JP H0524237 B2 JPH0524237 B2 JP H0524237B2 JP 22856787 A JP22856787 A JP 22856787A JP 22856787 A JP22856787 A JP 22856787A JP H0524237 B2 JPH0524237 B2 JP H0524237B2
Authority
JP
Japan
Prior art keywords
cathode
anode
current
perforated plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22856787A
Other languages
Japanese (ja)
Other versions
JPS6473095A (en
Inventor
Teruo Takiguchi
Eijiro Matsuzaka
Tomio Kawada
Shinichi Nemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Doryokuro Kakunenryo Kaihatsu Jigyodan
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Asahi Kasei Kogyo KK filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP22856787A priority Critical patent/JPS6473095A/en
Publication of JPS6473095A publication Critical patent/JPS6473095A/en
Publication of JPH0524237B2 publication Critical patent/JPH0524237B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ウラン・プルトニウムを電解還元・
分離するための、隔膜なしに、陰極と陽極とから
構成される向流抽出電解装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to electrolytic reduction of uranium and plutonium.
It relates to a countercurrent extraction electrolyzer consisting of a cathode and an anode without a diaphragm for separation.

[従来の技術] 不溶性の二つの液相の間で、金属イオンの液々
抽出操作を進めながら、同時に金属の電気分解を
行う向流抽出塔は、特公昭57−26813号および特
公昭60−48206号に示されている。これらの向流
抽出塔では、ウラン、プルトニウムを含む有機溶
媒相と水溶液相が向流で接触し、有機溶媒相は細
かい粒となつて水溶液中に分散し、ウランとプル
トニウムは有機溶媒中から水溶液中へ逆抽出さ
れ、水溶液中ではウラン、プルトニウムの電解還
元がおこなわれ、三価に還元されたプルトニウム
は水溶液中にとどまり、有機溶媒相に抽出されや
すいウランと分離される。
[Prior Art] A countercurrent extraction column that performs a liquid-liquid extraction operation of metal ions between two insoluble liquid phases and electrolyzes the metal at the same time is disclosed in Japanese Patent Publication No. 57-26813 and Japanese Patent Publication No. 1988-60. No. 48206. In these countercurrent extraction towers, the organic solvent phase containing uranium and plutonium and the aqueous solution phase are brought into contact with each other in countercurrent flow, and the organic solvent phase is dispersed in the aqueous solution as fine particles, and the uranium and plutonium are extracted from the organic solvent into the aqueous solution. The uranium and plutonium are electrolytically reduced in the aqueous solution, and the trivalent plutonium remains in the aqueous solution and is separated from the uranium, which is easily extracted into the organic solvent phase.

向流抽出電解装置では、有機溶媒中に含まれて
いるプルトニウムとウランの硝酸水溶液への逆抽
出、水溶液中でプルトニウムとウランの電気還元
反応などが並行して起こり、抽出操作と電解反応
が重畳する。これらの二つの操作を並行して円滑
に進めるために、向流抽出電解装置は単位容積当
りの電解還元能力が高く、電解還元能力を最大限
に発揮できる構造であると共に、有機溶媒相と水
溶液相の充分な混合接触が起こり、抽出効果の大
きな構造であること、また、その条件で安定に運
転できる事が必要である。
In a countercurrent extraction electrolyzer, the back extraction of plutonium and uranium contained in an organic solvent into a nitric acid aqueous solution and the electroreduction reaction of plutonium and uranium in the aqueous solution occur in parallel, and the extraction operation and electrolytic reaction are superimposed. do. In order to smoothly carry out these two operations in parallel, the countercurrent extraction electrolyzer has a high electrolytic reduction capacity per unit volume and has a structure that maximizes the electrolytic reduction capacity. It is necessary to have a structure that allows sufficient mixing and contact of the phases to occur, to have a large extraction effect, and to be able to operate stably under these conditions.

向流抽出電解装置において、陰極域と陽極域を
区画する分離素子あるいは隔膜を設けない装置
は、特公昭57−26813号明細書によつて公知であ
り、さらに改良された向流抽出塔が特公昭60−
48206号に示されている。
A countercurrent extraction electrolyzer without a separation element or diaphragm for dividing a cathode region and an anode region is known from Japanese Patent Publication No. 57-26813, and a further improved countercurrent extraction column has been proposed. Kosho 60-
No. 48206.

特公昭57−26813号に示される装置は、陰極、
陽極および陰極域と陽極域を連結する貫通口のあ
る管体を備える向流抽出塔であるが、貫通口を備
えた管体が抽出塔内で占める比率が大きく、また
その構造が複雑であるために液の流動状態が不安
定となり、運転の妨げとなる溢流を生じやすい欠
点がある。また、陰極および陽極が塔内に部分的
に配置されているために、抽出塔の単位容積当り
の電解能力が低く、そのため、装置の単位容積当
りの分離能力が著しく低いという欠点を有する。
特公昭60−48206号に示される向流抽出塔は、こ
れらの欠点を改良するため、陰極域と陽極域を連
結する貫通口を備えた管体を除き、塔の内壁と多
孔板とを陰極とし、中心棒を陽極とする装置であ
る。しかし、この装置でも、単位容積当りの電
解・分離能力は低いという欠点を有している。こ
の単位容積当りの電解分離能力が低いということ
は、所要の処理能力を持つ向流抽出塔は大型にな
る事を意味する。
The device shown in Japanese Patent Publication No. 57-26813 has a cathode,
This is a countercurrent extraction tower equipped with a tube with a through hole that connects the anode and cathode areas with the anode area, but the tube with the through hole occupies a large proportion of the extraction tower, and its structure is complicated. Therefore, the flow state of the liquid becomes unstable, and there is a drawback that overflow is likely to occur, which hinders operation. Furthermore, since the cathode and anode are partially disposed within the column, the extraction column has a low electrolytic capacity per unit volume, and therefore has the disadvantage that the separation capacity per unit volume of the apparatus is extremely low.
In order to improve these drawbacks, the countercurrent extraction column shown in Japanese Patent Publication No. 60-48206 removes the tube body with a through hole connecting the cathode area and the anode area, and uses the inner wall of the column and the perforated plate as the cathode. This device uses the central rod as the anode. However, this device also has the drawback that the electrolysis/separation capacity per unit volume is low. This low electrolytic separation capacity per unit volume means that a countercurrent extraction column with the required processing capacity will be large.

[発明が解決しようとする問題点] 向流抽出電解装置はウラン、プルトニウムや核
分裂生成物などの放射性物質を大量に処理する装
置であるため、放射線を遮蔽する厚い壁で囲まれ
た密閉された区画内に設置され運転されるが、こ
れらの建物・設備は極めて高い信頼性が要求さ
れ、非常に高価である。従つて、この中に設置す
る設備・装置類は、単位容積当りの処理能力の高
い、コンパクトなものが強く望まれている。
[Problems to be solved by the invention] Countercurrent extraction electrolyzers are devices that process large quantities of radioactive materials such as uranium, plutonium, and fission products, so they must be installed in a sealed space surrounded by thick walls to shield radiation. These buildings and equipment are installed and operated within the premises, but require extremely high reliability and are extremely expensive. Therefore, it is strongly desired that the equipment and equipment installed therein be compact and have high throughput per unit volume.

[問題点を解決するための手段] 本発明者らは、従来の欠点を克服し、抽出およ
び電解還元の双方について装置単位容積当りの処
理能力の極めて高い向流抽出電解装置を開発する
ため鋭意検討を進め本発明に到達した。本発明の
目的は極めて適切な電解構造を持つ事によつて処
理能力の極めて改良された向流抽出電解装置の提
供にある。
[Means for Solving the Problems] The present inventors have worked diligently to overcome the conventional drawbacks and develop a countercurrent extraction and electrolysis device that has an extremely high processing capacity per unit volume of the device for both extraction and electrolytic reduction. After further investigation, we arrived at the present invention. It is an object of the present invention to provide a countercurrent extraction electrolyzer with extremely improved throughput by having an extremely appropriate electrolytic structure.

以下に本発明の内容を詳しく説明する。 The content of the present invention will be explained in detail below.

電解反応の特徴としては、反応は反応物と電極
表面との接触によつて起こる。即ち、電解反応の
場は電極表面に限られ、また、電解反応の速さは
電流の大きさに等しい。一方、電解槽内部では、
一般に電流分布が生じる。電流は電解液の中を、
通り易い抵抗の少ない経路を通つて陽極から陰極
へ流れるために電極の配置によつて電極上には電
流の分布が生じる。陰極においては、陽極に近い
部分に流れ込む電流は陽極から遠い部分に達する
電流より多く、また、陽極から離れるに従つてそ
の部分の電流は小さくなる。即ち、電解反応の起
こる場所は電極表面であり、反応の速さは電流の
大きさに比例するので、電解装置内で電流分布が
あると、これによつて反応速度の分布が生じる。
電流分布の大きい電解還元装置では、陰極表面の
電流が大きすぎる部分では目的の還元反応と共に
副反応が起こり全体の電流効率を下げ、また、電
流が小さすぎる部分では、反応量は電流で定まる
ため、広い電極表面を設けても電極として有効に
利用されないという不都合が生じる。陽極棒に対
して垂直な位置におかれる多孔板陰極上では、陽
極棒の極近傍部分には多くの電流が流れるが、陽
極棒から離れるに従つて電流は急速に低下し、多
孔板全体には大きな電流分布が生じ、陰極全体と
しての効率は低い。
The electrolytic reaction is characterized by the reaction occurring through contact between the reactants and the electrode surface. That is, the field of electrolytic reaction is limited to the electrode surface, and the speed of electrolytic reaction is equal to the magnitude of the current. On the other hand, inside the electrolytic cell,
A current distribution generally occurs. The current flows through the electrolyte,
The arrangement of the electrodes creates a distribution of current on the electrodes so that the current flows from the anode to the cathode through an easy path of low resistance. In the cathode, the current flowing into the part near the anode is larger than the current reaching the part far from the anode, and the current in that part becomes smaller as the distance from the anode increases. That is, the place where the electrolytic reaction occurs is the electrode surface, and the speed of the reaction is proportional to the magnitude of the current, so if there is a current distribution in the electrolytic device, this will cause a distribution of the reaction rate.
In an electrolytic reduction device with a large current distribution, in areas on the cathode surface where the current is too large, side reactions occur along with the desired reduction reaction, lowering the overall current efficiency, and in areas where the current is too small, the amount of reaction is determined by the current. However, even if a wide electrode surface is provided, the problem arises that it is not effectively used as an electrode. On a perforated plate cathode placed perpendicular to the anode rod, a large amount of current flows in the extreme vicinity of the anode rod, but the current rapidly decreases as you move away from the anode rod, and the current flows across the entire perforated plate. A large current distribution occurs, and the efficiency of the cathode as a whole is low.

本発明者らは、陰極棒と陽極棒に直交する多孔
板陰極から成る電解装置においては、多孔板陰極
の電流分布は主として多孔板の間隔によつて決ま
ること、また、多孔板陰極に対して垂直に補助陰
極を配置する事によつて多孔板陰極の電流分布が
著しく均一になる事を見出し本発明に到達した。
即ち、本発明の目的は、電解反応の場である陰極
面積を大きくとると共に、陰極板と陽極棒を極め
て適切に配置した電解装置の提供にある。
The present inventors have discovered that in an electrolytic device consisting of a perforated plate cathode orthogonal to a cathode rod and an anode rod, the current distribution of the perforated plate cathode is mainly determined by the spacing between the perforated plates; The inventors have discovered that by arranging the auxiliary cathode vertically, the current distribution of the perforated plate cathode can be made extremely uniform, and the present invention has been achieved.
That is, an object of the present invention is to provide an electrolytic device in which the area of the cathode, which is the site of electrolytic reaction, is large, and the cathode plate and the anode rod are arranged very appropriately.

すなわち、本発明の構成は、隔膜なしに陰極と
陽極とから構成される向流抽出電解装置におい
て、陰極が液の流れの方向に対して垂直に配置さ
れる多孔板陰極と液の流れ方向に対して平行に配
置されるハニカム状陰極板とから構成され、陽極
がハニカムの各室ごとに多孔板陰極を貫通して配
置されている向流抽出電解装置であり、更に、多
孔板陰極の間隔をd、ハニカムの面間距離をlと
する時、dとlの関係が d/2<l<3d/2 で示される範囲にある向流抽出電解装置である。
That is, the configuration of the present invention is that in a countercurrent extraction electrolyzer that is composed of a cathode and an anode without a diaphragm, the cathode is arranged perpendicularly to the direction of liquid flow, and the perforated plate cathode is arranged perpendicularly to the direction of liquid flow. This is a countercurrent extraction electrolysis device consisting of a honeycomb-shaped cathode plate arranged in parallel to the honeycomb, and an anode passing through the perforated plate cathode in each chamber of the honeycomb. This is a countercurrent extraction electrolyzer in which the relationship between d and l is in the range d/2<l<3d/2, where d is the distance between the surfaces of the honeycomb and l is the distance between the surfaces of the honeycomb.

本発明の装置においては、抽出操作と電解操作
を同時に並行して行う事も、また、電解操作のみ
を行うこともできる。
In the apparatus of the present invention, the extraction operation and the electrolytic operation can be performed simultaneously in parallel, or only the electrolytic operation can be performed.

陽極棒に直交する多孔板陰極の電流分布は多孔
板の間隔によつて決まり、多孔板の間隔をdとす
る時、多孔板陰極上で陽極から電流が到達する範
囲は、ほぼ3d/4までの範囲であり、これより
離れた部分には殆ど流れない。
The current distribution on the perforated plate cathode perpendicular to the anode rod is determined by the spacing between the perforated plates, and when the perforated plate spacing is d, the range that the current reaches from the anode on the perforated plate cathode is approximately 3d/4. , and almost no water flows beyond this range.

また、多孔板陰極の陽極棒に最も近い部分には
大きな電流が流れ、この部分の電流密度は平均電
流密度の5倍にも達する。しかし、新たに補助陰
極板を多孔板陰極に垂直に配置すると、多孔板陰
極上の電流分布は著しく改善される。
Furthermore, a large current flows through the portion of the perforated plate cathode closest to the anode rod, and the current density in this portion reaches five times the average current density. However, if the auxiliary cathode plate is newly arranged perpendicular to the perforated plate cathode, the current distribution on the perforated plate cathode is significantly improved.

補助陰極板を配置する事によつて、陽極棒から
多孔板陰極に流れていた電流の一部は補助陰極板
へも流れるようになり、また、陽極近傍の多孔板
陰極部分の電流密度が顕著に低下し、平均電流密
度に近づくとともに多孔板陰極の電流密度分布は
平坦になる。また、補助陰極板の電流密度分布も
平坦である。
By arranging the auxiliary cathode plate, part of the current flowing from the anode rod to the perforated plate cathode now flows to the auxiliary cathode plate, and the current density in the perforated plate cathode portion near the anode becomes remarkable. As the current density approaches the average current density, the current density distribution of the perforated plate cathode becomes flat. Furthermore, the current density distribution of the auxiliary cathode plate is also flat.

この多孔板陰極の電流分布に対する補助陰極板
の効果を図面によつて更に詳しく説明する。
The effect of the auxiliary cathode plate on the current distribution of the porous plate cathode will be explained in more detail with reference to the drawings.

第1図および第2図は電極構造と電流密度分布
の関係を示す説明図である。第2図は多孔板陰極
1と陽極棒2とからなる電極構造の、中心軸を含
む断面図に電流流線5と電流密度分布aを示した
ものである。第1図は多孔板陰極1と補助陰極板
3および陽極棒2からなる電極構造の、中心軸を
含む断面図に電流流線5と電流密度分布aを示し
たものである。
FIGS. 1 and 2 are explanatory diagrams showing the relationship between electrode structure and current density distribution. FIG. 2 shows a current flow line 5 and a current density distribution a in a sectional view including the central axis of an electrode structure consisting of a perforated plate cathode 1 and an anode rod 2. FIG. 1 shows a current flow line 5 and a current density distribution a in a cross-sectional view including the central axis of an electrode structure consisting of a porous plate cathode 1, an auxiliary cathode plate 3, and an anode rod 2.

第1図および第2図では中心軸の左側には電解
液を流れる電流の状態を電流流線5で示し、右側
はこれに対応する陰極上の電流密度分布aをi/
imとして示す。但し、iは電流密度、imは平均
電流密度である。第2図に示す電極構造では、多
孔板陰極1の陽極棒2に近い部分に流れる電流が
多く、この部分の電流密度iは平均電流密度im
の約5倍に達している。一方、陽極棒2から離れ
るにつれて流れる電流は急速に少なくなり、中心
からの距離がdの部分の電流密度は平均電流密度
imの0.2倍程度になる。
In Figures 1 and 2, the state of the current flowing through the electrolyte is shown on the left side of the central axis by a current flow line 5, and the corresponding current density distribution a on the cathode is shown on the right side as i/
Shown as im. However, i is the current density and im is the average current density. In the electrode structure shown in FIG. 2, a large amount of current flows in the part of the porous plate cathode 1 near the anode rod 2, and the current density i in this part is the average current density im
This is approximately five times the number. On the other hand, the flowing current rapidly decreases as it moves away from the anode rod 2, and the current density at the distance d from the center is the average current density.
It will be about 0.2 times of im.

第1図は本発明の電極構造を示す。補助陰極板
3を加えることによつて、多孔板陰極1の陽極棒
2に最も近い部分の電流密度が小さくな、平均電
流密度の1.5倍程度となる。また、多孔板陰極上
の電流密度分布aは平坦になり、補助陰極板3の
すぐ内側の部分の多孔板陰極1の電流密度は平均
電流密度の0.7倍程度となり、補助陰極板3を適
切に配置する事によつて、多孔板陰極1の電流分
布が著しく改善される事が分かる。この補助陰極
板3は陽極棒2を取り巻く様に配置する事が良
く、その配置の形状は蜂の巣状、ハニカムの形に
して、ハニカムの各室に陽極棒を多孔板と直交す
る様に配置する。ハニカムの具体的な形状は、処
理量および臨界管理上の制約などから決まる電解
装置の直径と多孔板の間隔に合わせて決定する必
要があるが、適宜、三角形、四角形、五角形、六
角形などの形状とする。また、補助陰極板3の形
態としては、平板、多孔板、網目板などを選ぶ事
ができる。
FIG. 1 shows the electrode structure of the present invention. By adding the auxiliary cathode plate 3, the current density at the portion of the perforated plate cathode 1 closest to the anode rod 2 becomes small, about 1.5 times the average current density. In addition, the current density distribution a on the perforated plate cathode becomes flat, and the current density of the perforated plate cathode 1 immediately inside the auxiliary cathode plate 3 is about 0.7 times the average current density. It can be seen that the current distribution of the perforated plate cathode 1 is significantly improved by this arrangement. This auxiliary cathode plate 3 is preferably arranged so as to surround the anode rod 2, and the shape of the arrangement is honeycomb-like, and the anode rod is arranged in each chamber of the honeycomb so as to be perpendicular to the perforated plate. . The specific shape of the honeycomb needs to be determined according to the diameter of the electrolyzer and the spacing between the perforated plates, which are determined by the throughput and criticality control constraints. Shape. Further, as the form of the auxiliary cathode plate 3, a flat plate, a perforated plate, a mesh plate, etc. can be selected.

補助陰極板の陽極棒からの距離l/2と多孔板
の間隔dとの関係は、 d/4<l/2<3d/4 の関係にある事が良い。ここで、ハニカムの面間
距離lとは、補助陰極の断面図において、その頂
点から対面する補助陰極板に下ろした垂線の中で
最も長い垂線の長さとする。
The relationship between the distance l/2 of the auxiliary cathode plate from the anode rod and the distance d between the porous plates is preferably d/4<l/2<3d/4. Here, the inter-plane distance l of the honeycomb is defined as the length of the longest perpendicular line drawn from the apex to the facing auxiliary cathode plate in the cross-sectional view of the auxiliary cathode.

第3図の電解においては、ハニカムの面間距離
は第3図に示した2つの垂線l1,l2の中で大きい
方の長さである。
In the electrolysis shown in FIG. 3, the distance between the surfaces of the honeycomb is the length of the larger one of the two perpendicular lines l 1 and l 2 shown in FIG.

第4図の電極においては、ハニカムの面間距離
は第4図に示した4つの垂線l1,l2,l3,l4の中で
も最も大きいものの長さである。
In the electrode shown in FIG. 4, the distance between the surfaces of the honeycomb is the length of the largest of the four perpendicular lines l 1 , l 2 , l 3 , and l 4 shown in FIG.

補助陰極板の陽極棒からの距離l/2がd/2
より小さいと、多孔板のうちで陰極として作用す
る部分の面積が小さくなり、また、装置内で電極
部材の占る体積が大きくなり、抽出操作に悪影響
を与える。補助陰極板の陽極棒からの距離l/2
が3d/4より大きいと、多孔板の陽極から離れ
た部分が陰極として有効に作用せず、また、陽極
近傍の多孔板陰極の電流密度が非常に大きくな
る。
The distance l/2 of the auxiliary cathode plate from the anode rod is d/2
If it is smaller, the area of the part of the porous plate that acts as a cathode will be smaller, and the volume occupied by the electrode member in the apparatus will be larger, which will have a negative impact on the extraction operation. Distance of auxiliary cathode plate from anode rod l/2
When is larger than 3d/4, the portion of the perforated plate remote from the anode does not function effectively as a cathode, and the current density of the perforated plate cathode near the anode becomes extremely large.

第3図および第4図に本発明の電極構造を示
す。第3図および第4図はいずれも装置を陽極棒
2に対して垂直で、かつ、補助陰極を含む平面で
切断した断面図である。第3図は直径10cmの長円
筒形の向流抽出電解装置の電極である。電極は円
筒の長さ方向に5cm間隔で配置する多孔板陰極
(本図には示されていない)と多孔板陰極の間に
配置する補助陰極板3および補助陰極板3によつ
て分けられる各室の中央部に配置する陽極棒2か
ら構成される。補助陰極板3の形状は6個の三角
形の集合したハニカム形状である。4は装置の側
壁である。第4図は直径14cmの長円筒形の向流抽
出電解装置の電極である。電極は円筒の長さ方向
に5cm間隔で配置する多孔板陰極(本図には示さ
れていない)と多孔板陰極の間に配置する補助陰
極板3およびこれによつて分けられる各室の中央
部に配置する陽極棒2から構成される。補助陰極
の形状は6個の四角形と1個の六角形が集合した
ハニカム形状である。4は装置の側壁である。
FIGS. 3 and 4 show the electrode structure of the present invention. 3 and 4 are sectional views of the device taken along a plane perpendicular to the anode rod 2 and including the auxiliary cathode. Figure 3 shows the electrodes of a long cylindrical countercurrent extraction electrolyzer with a diameter of 10 cm. The electrodes are divided by perforated plate cathodes (not shown in this figure) arranged at 5 cm intervals in the length direction of the cylinder, auxiliary cathode plates 3 arranged between the perforated plate cathodes, and auxiliary cathode plates 3. It consists of an anode rod 2 placed in the center of the chamber. The shape of the auxiliary cathode plate 3 is a honeycomb shape made up of six triangles. 4 is a side wall of the device. Figure 4 shows the electrodes of a long cylindrical countercurrent extraction electrolyzer with a diameter of 14 cm. The electrodes are perforated plate cathodes (not shown in this figure) placed at intervals of 5 cm in the length direction of the cylinder, auxiliary cathode plate 3 placed between the perforated plate cathodes, and the center of each chamber divided by these. It consists of an anode rod 2 placed in the section. The shape of the auxiliary cathode is a honeycomb shape consisting of six squares and one hexagon. 4 is a side wall of the device.

陰極と陽極が短絡すると電流は電解反応の場で
あるプロセス液と電極との界面を通らないため、
電解反応を進めるためには陰極と陽極を絶縁する
事が当然必要である。絶縁体としてプロセス液を
そのまま使用してもよく、即ち、陰極と陽極の間
隔を適切に保つ事でもよく、また、アルミナある
いは有機高分子などの絶縁材料を入れても良い。
逆抽出・電解操作を行う場合は有機溶媒相が陰極
と陽極の〓間を通り抜けて上昇し、抽出効率が低
下する事を防ぐため、適当な絶縁材料を用いてこ
の間〓を塞ぐ事が好ましい。
If the cathode and anode are short-circuited, the current will not pass through the interface between the process liquid and the electrode, which is the site of the electrolytic reaction.
In order to proceed with the electrolytic reaction, it is naturally necessary to insulate the cathode and anode. The process liquid may be used as is as an insulator, that is, the distance between the cathode and anode may be maintained appropriately, or an insulating material such as alumina or an organic polymer may be added.
When performing reverse extraction and electrolytic operations, it is preferable to close this gap with a suitable insulating material to prevent the organic solvent phase from passing through the gap between the cathode and anode and rising and reducing extraction efficiency.

[実施例] 本発明を実施例によつて更に詳しく説明する。[Example] The present invention will be explained in more detail by way of examples.

実施例 1 直径14cm、高さ50cmの長円筒形の小型向流抽出
電解装置に、5cm間隔に配置する多孔板陰極10枚
と多孔板の間に配置する第4図に示す本発明のハ
ニカム形補助陰極9個および補助陰極の各室の中
心を多孔板に直交する様に配置する陽極棒7本か
ら構成される電極を組み込む。電極の陽極および
陰極は適当な手段で直流電源の陽極および陰極に
接続する。装置の側壁と電極は絶縁する。また、
陰極はチタン製、陽極は白金製である。この電解
装置に、硝酸ウラニル0.15M、硝酸ヒドラジン
0.2Mを含む。0.2N硝酸水溶液を流量40/hで
供給し、45Aの電流を加え、硝酸ウラニルU()
を硝酸ウラナスU()に電解還元する。定常状
態に達した時の装置出口の硝酸ウラナスの濃度は
0.017Mであつた。硝酸ウラニルの11%が還元さ
れ、電流効率は非常に高く81%に達した。
Example 1 A honeycomb-shaped auxiliary cathode of the present invention shown in FIG. 4 was placed between ten perforated plate cathodes arranged at intervals of 5 cm and the perforated plates in a compact countercurrent extraction electrolyzer having a long cylindrical shape of 14 cm in diameter and 50 cm in height. An electrode consisting of 9 anode rods and 7 anode rods arranged such that the center of each chamber of the auxiliary cathode is perpendicular to the perforated plate is incorporated. The anode and cathode of the electrodes are connected to the anode and cathode of a DC power source by suitable means. The side walls of the device and the electrodes should be insulated. Also,
The cathode is made of titanium and the anode is made of platinum. In this electrolyzer, uranyl nitrate 0.15M, hydrazine nitrate
Contains 0.2M. 0.2N nitric acid aqueous solution was supplied at a flow rate of 40/h, a current of 45A was applied, and uranyl nitrate U ()
is electrolytically reduced to uranus nitrate U(). The concentration of uranus nitrate at the outlet of the device when steady state is reached is
It was 0.017M. 11% of uranyl nitrate was reduced, and the current efficiency was very high, reaching 81%.

比較例 1 直径14cm、高さ50cmの長円筒形の小型向流抽出
電解装置に、5cm間隔に配置する多孔板陰極10枚
と陽極棒1本から構成される、第2図に示される
電極を組み込む。装置の側壁と多孔板は接続し、
装置の側壁も陰極として利用する。電極の陽極お
よび陰極は適当な手段で直流電源の陽極および陰
極に接続する。また、陰極はチタン製、陽極は白
金製である。この電解装置に、硝酸ウラニル
0.15M、硝酸ヒドラジン0.2Mを含む。0.2N硝酸
水溶液を流量40/hで供給し、45Aの電流を加
え、硝酸ウラニルU()を硝酸ウラナスU()
に電解還元する。定常状態に達した時の装置出口
の硝酸ウラナスの濃度は0.010Mであつた。硝酸
ウラニルの6.7%が還元され、電流効率は48%で
あつた。
Comparative Example 1 The electrodes shown in Figure 2, consisting of 10 perforated cathodes arranged at 5 cm intervals and one anode rod, were installed in a small countercurrent extraction electrolyzer with a long cylindrical shape of 14 cm in diameter and 50 cm in height. Incorporate. The side wall of the device and the perforated plate are connected,
The side wall of the device is also used as a cathode. The anode and cathode of the electrodes are connected to the anode and cathode of a DC power source by suitable means. Further, the cathode is made of titanium, and the anode is made of platinum. This electrolyzer is equipped with uranyl nitrate.
Contains 0.15M and hydrazine nitrate 0.2M. 0.2N nitric acid aqueous solution was supplied at a flow rate of 40/h, a current of 45A was applied, and uranyl nitrate U() was converted to uranyl nitrate U().
electrolytically reduced to The concentration of uranus nitrate at the outlet of the device when steady state was reached was 0.010M. 6.7% of uranyl nitrate was reduced, and the current efficiency was 48%.

[発明の効果] 以上説明したように、本発明の向流抽出電解装
置は電流効率が高く、したがつて、単位容積当り
の処理能力および信頼性の高い、装置である。
[Effects of the Invention] As explained above, the countercurrent extraction electrolyzer of the present invention has high current efficiency, and therefore has high throughput per unit volume and high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第1図は電極構造と電流密度分布
の関係を示す説明図、第3図および第4図は本発
明の向流抽出電解装置の電極構造を陽極棒に対し
垂直で、かつ、補助陰極板の位置における断面で
示した説明図である。 1……多孔板陰極、2……陽極棒、3……補助
陰極板、4……側壁、5……電流流線、a……電
流密度分布、d……多孔板の間隔。
1 and 1 are explanatory diagrams showing the relationship between the electrode structure and current density distribution, and FIGS. 3 and 4 show the electrode structure of the countercurrent extraction electrolyzer of the present invention perpendicular to the anode rod, and FIG. 3 is an explanatory diagram showing a cross section at the position of an auxiliary cathode plate. 1... Porous plate cathode, 2... Anode rod, 3... Auxiliary cathode plate, 4... Side wall, 5... Current flow line, a... Current density distribution, d... Spacing between porous plates.

Claims (1)

【特許請求の範囲】 1 隔膜なしに、陰極と陽極とから構成される向
流抽出電解装置において、陰極が液の流れ方向に
対して垂直に配置される多孔板陰極と液の流れ方
向に対して平行に配置されるハニカム状陰極板と
から構成され、陽極がハニカムの各室ごとに多孔
板陰極を貫通して配置され、かつ、多孔板陰極の
間隔をd、ハニカムの面間距離をlとする時、d
とlの関係が d/2<l<3d/2 で示される範囲にあることを特徴とする向流抽出
電解装置。
[Scope of Claims] 1. In a countercurrent extraction electrolyzer consisting of a cathode and an anode without a diaphragm, the cathode is a perforated plate cathode arranged perpendicularly to the flow direction of the liquid, and the perforated plate cathode is arranged perpendicularly to the flow direction of the liquid. and honeycomb-shaped cathode plates arranged in parallel with each other, and an anode is arranged to penetrate the perforated plate cathode in each chamber of the honeycomb, and the interval between the perforated plate cathodes is d, and the distance between the surfaces of the honeycomb is l. When d
A countercurrent extraction electrolysis device characterized in that the relationship between d/2<l<3d/2 is expressed as d/2<l<3d/2.
JP22856787A 1987-09-14 1987-09-14 Countercurrent extractive electrolyzer Granted JPS6473095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22856787A JPS6473095A (en) 1987-09-14 1987-09-14 Countercurrent extractive electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22856787A JPS6473095A (en) 1987-09-14 1987-09-14 Countercurrent extractive electrolyzer

Publications (2)

Publication Number Publication Date
JPS6473095A JPS6473095A (en) 1989-03-17
JPH0524237B2 true JPH0524237B2 (en) 1993-04-07

Family

ID=16878386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22856787A Granted JPS6473095A (en) 1987-09-14 1987-09-14 Countercurrent extractive electrolyzer

Country Status (1)

Country Link
JP (1) JPS6473095A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104164683A (en) * 2014-08-22 2014-11-26 温州市工业科学研究院 Dot-matrix-anode-type electroreduction metal deposition part 3D printing device
CN104178782B (en) * 2014-08-22 2016-12-07 温州市工业科学研究院 Electroreduction metal deposit dot matrix distributed anodes important actor

Also Published As

Publication number Publication date
JPS6473095A (en) 1989-03-17

Similar Documents

Publication Publication Date Title
DE2847955C2 (en) Process for producing halogens by electrolysis of aqueous alkali metal halides
DE2435185C3 (en) Electrolytic cell
US4260469A (en) Massive dual porosity gas electrodes
US3770612A (en) Apparatus for electrolytic oxidation or reduction, concentration, and separation of elements in solution
JPH0813177A (en) Method of destroying organic solute present in aqueous solution
Storck et al. The behaviour of porous electrodes in a flow-by regime—I. theoretical study
EP0095997A1 (en) Process for the electrolytic production of hydrogen peroxide, and use thereof
CN111359680A (en) Membrane-free ion exchange resin electric regeneration device based on filter element electrode
US3915834A (en) Electrowinning cell having an anode with no more than one-half the active surface area of the cathode
US4278521A (en) Electrochemical cell
US3819503A (en) Electrolytic cell for the production of oxyhalogens
US4139449A (en) Electrolytic cell for producing alkali metal hypochlorites
JPH0524237B2 (en)
CN211988678U (en) Membrane-free ion exchange resin electric regeneration device based on filter element electrode
US3730851A (en) Method for the continuous separation of plutonium from uranium in the two-phase system by means of electrolytic reduction
JPH11226576A (en) Method and apparatus for treating wastewater
DE68908992T2 (en) Process for changing the ion valence and device therefor.
JP2802276B2 (en) Electrolytic treatment method and electrolytic reaction tank
US4341606A (en) Method of operating electrolytic cells having massive dual porosity gas electrodes
CN1396121A (en) Process for treating sewage by bipolar oxidizing and electrochemical method
JP3406390B2 (en) Deuterium enrichment method and apparatus
CN109666952A (en) A kind of method of electro-deposition production metallic silver
Horbez et al. Coupling between electrolysis and liquid-liquid extraction in an undivided electrochemical reactor: applied to the oxidation of Ce3+ to Ce4+ in an emulsion Part I. Experimental
GB1578811A (en) Electrochemical reactor and process
US3616444A (en) Electrolytic cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees