JPH05241100A - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPH05241100A
JPH05241100A JP4127392A JP4127392A JPH05241100A JP H05241100 A JPH05241100 A JP H05241100A JP 4127392 A JP4127392 A JP 4127392A JP 4127392 A JP4127392 A JP 4127392A JP H05241100 A JPH05241100 A JP H05241100A
Authority
JP
Japan
Prior art keywords
light
rotator
liquid crystal
polarizer
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4127392A
Other languages
Japanese (ja)
Inventor
Shigeki Aizawa
茂樹 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4127392A priority Critical patent/JPH05241100A/en
Publication of JPH05241100A publication Critical patent/JPH05241100A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide the small-sized optical isolator which has no wavelength dependency. CONSTITUTION:A rotary polarizing liquid crystal rotator 2 and a Faraday rotator 3 which change the polarizing direction of light are arranged between a polarizer 1 and an analyzer 4 which pass specific linear polarized light, and a magnetic field 5 is applied to the Faraday rotator 3; and the liquid crystal rotator 2 has exactly opposite rotational angle characteristics from a polarized light rotational angle depending upon the wavelength of the Faraday rotator 3 for reverse-directional incident light to the isolator, and the analyzer 4 has its polarizing direction slanted to the polarizer 1 by the sum of an angle alphaof polarized light rotation of reference wavelength by the liquid crystal rotator 2 and 45 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、小形化を図った光アイ
ソレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact optical isolator.

【0002】[0002]

【従来の技術】半導体レーザ等を光源として用いる光通
信、書き込み可能なビデオディスク等においては、光フ
ァイバ、レンズ系、コネクタ類端面からの反射光を防止
する光アイソレータが用いられる。
2. Description of the Related Art In optical communication and writable video discs using a semiconductor laser as a light source, an optical fiber, a lens system, and an optical isolator for preventing reflected light from end faces of connectors are used.

【0003】従来の光アイソレータを図3,4に示す。
両図に示すように、この光アイソレータは偏光子10
1,旋光性の水晶回転子102,ファラデー回転子10
3及び検光子104が光軸をそろえて順次配置したもの
であり、磁場105を与えてファラデー回転子103に
ファラデー効果を発生させる図示しない磁石を具えてい
る。ここで、旋光性水晶回転子102はファラデー回転
子103の偏光回転角波長依存性を補償するものであ
る。また、検光子104は、旋光性水晶回転子102の
基準波長における偏光回転角と45度との和だけ偏光子
101に対して偏光方向を傾けてある。
A conventional optical isolator is shown in FIGS.
As shown in both figures, this optical isolator has a polarizer 10
1, an optical rotator crystal rotator 102, a Faraday rotator 10
3 and the analyzer 104 are sequentially arranged with their optical axes aligned, and are provided with a magnet (not shown) that applies a magnetic field 105 to the Faraday rotator 103 to generate the Faraday effect. Here, the optical rotatory crystal rotator 102 compensates for the polarization rotation angle wavelength dependency of the Faraday rotator 103. Further, the analyzer 104 is tilted in the polarization direction with respect to the polarizer 101 by the sum of the polarization rotation angle at the reference wavelength of the optical rotation rotator 102 and 45 degrees.

【0004】このような光アイソレータに基準波長の光
を導入した様子を図3(A),(B) を参照しながら説明す
る。図3(A) の106−1〜5は順方向に進む光の偏光
の様子を示し、順方向に進む基準波長の光(106−
1)は偏光子101の通過によりその偏光方向に一致す
る光(106−2)となった後、旋光性水晶回転子10
2により角度αの回転を受けて出力される(106−
3)。そして、この光(106−3)はファラデー回転
子103により同方向に45度の回転を受け、通過後に
は偏光子101の偏光方向に対してα+45度だけ回転
した光となっている(106−4)。よって、この光
(106−4)は、偏光子101に対して偏光方向がα
+45度だけ傾けて配されている検光子104を通過す
る(106−5)。
A state in which light of a reference wavelength is introduced into such an optical isolator will be described with reference to FIGS. 3 (A) and 3 (B). Reference numerals 106-1 to 10-5 in FIG. 3 (A) show polarization states of light traveling in the forward direction, and light of a reference wavelength traveling in the forward direction (106-
The light 1) becomes light (106-2) that matches the polarization direction of the light after passing through the polarizer 101.
2 receives the rotation of the angle α and is output (106-
3). Then, this light (106-3) is rotated by 45 degrees in the same direction by the Faraday rotator 103, and after passing, it becomes light rotated by α + 45 degrees with respect to the polarization direction of the polarizer 101 (106-. 4). Therefore, the polarization direction of this light (106-4) is α with respect to the polarizer 101.
The light passes through the analyzer 104 tilted by +45 degrees (106-5).

【0005】図3(B) の107−1〜4は逆方向に進む
光の偏光の様子を示し、逆方向に進む基準波長の光(1
07−1)は検光子104の偏光方向に一致する光(1
07−2)のみ当該検光子104を通過する。この光
(107−2)は偏光子101の偏光方向に対してα+
45度(順方向での回転方向を基準とする。以下同じ)
回転した光であり、この光(107−2)はファラデー
回転子103通過後には45度の回転を受け、偏光子1
01の偏光方向に対してα+90度回転した光(107
−3)となる。そしてこの光(107−3)はさらに旋
光性水晶回転子102により−αの回転を受け、偏光子
101の偏光方向に対して90度回転した光(107−
4)となるので、偏光子101を通過することはできな
い。
Reference numerals 107-1 to 10-4 in FIG. 3 (B) show polarization states of light traveling in the reverse direction, and light of the reference wavelength (1
07-1) is light (1 that matches the polarization direction of the analyzer 104).
Only 07-2) passes through the analyzer 104. This light (107-2) is α + with respect to the polarization direction of the polarizer 101.
45 degrees (referenced to the rotation direction in the forward direction. The same applies hereinafter)
The light (107-2) is rotated, and after passing through the Faraday rotator 103, the light (107-2) is rotated by 45 degrees, and
Light rotated by α + 90 degrees with respect to the polarization direction of 01 (107
-3). Then, this light (107-3) is further rotated by −α by the optical rotatory crystal rotator 102, and is rotated by 90 ° with respect to the polarization direction of the polarizer 101 (107-).
4), the light cannot pass through the polarizer 101.

【0006】次に、基準波長と異なる光を導入した場合
を図4(A),(B) を参照しながら説明する。図4(A) の1
08−1〜5は順方向に進む光の偏光の様子を示し、基
準波長と異なる波長の光(108−1)は偏光子101
の通過によりその偏光方向に一致した光(108−2)
となった後、旋光性水晶回転子102により角度α+δ
の回転を受けて出力される(108−3)。そして、こ
の光(108−3)はファラデー回転子103により同
方向に45度+δの回転を受け、通過後には偏光子10
1の偏光方向に対してα+2δ+45度だけ回転した光
となっている(108−4)。したがって、検光子10
4から出力される光(108−5)は検光子104の損
失を無視すると、ファラデー回転子103からの出力光
(108−3)に対してcos2 2δ倍の強度となる。
Next, the case where light different from the reference wavelength is introduced will be described with reference to FIGS. 4 (A) and 4 (B). 1 in Figure 4 (A)
Reference numerals 08-1 to 08-5 show polarization states of light traveling in the forward direction, and light (108-1) having a wavelength different from the reference wavelength is the polarizer 101.
(108-2) light whose polarization direction matches that of light passing through
Then, the angle α + δ is set by the optical rotator crystal rotator 102.
Is output upon receipt of the rotation (108-3). Then, this light (108-3) is rotated by 45 ° + δ in the same direction by the Faraday rotator 103, and after passing through the polarizer 10
The light is rotated by α + 2δ + 45 degrees with respect to the polarization direction of 1 (108-4). Therefore, the analyzer 10
When the loss of the analyzer 104 is neglected, the light (108-5) output from No. 4 has cos 2 2δ times the intensity of the output light (108-3) from the Faraday rotator 103.

【0007】図4(B) の109−1〜4は逆方向に進む
光の偏光の様子を示している。基準波長と異なる波長の
光(109−1)のうち、検光子104を通過する光
(109−2)は偏光子101の偏光方向に対してα+
45度回転している光であり、この光はファラデー回転
子103通過後には偏光子101の偏光方向に対してα
+δ+90度回転した光(109−3)となる。さら
に、この光は旋光性水晶回転子102により−(α+
δ)だけ回転を受けるので、水晶回転子102を通過し
た光は偏光子101の偏光方向に直交する光(109−
4)となるため、偏光子101を通過することはできな
い。
Reference numerals 109-1 to 109-4 in FIG. 4 (B) show how the light traveling in the opposite direction is polarized. Of the light (109-1) having a wavelength different from the reference wavelength, the light (109-2) passing through the analyzer 104 is α + with respect to the polarization direction of the polarizer 101.
The light is rotated by 45 degrees, and this light is α with respect to the polarization direction of the polarizer 101 after passing through the Faraday rotator 103.
The light (109-3) is rotated by + δ + 90 degrees. Further, this light is converted into-(α +) by the optical rotatory crystal rotator 102.
Since it is rotated by δ), the light passing through the crystal rotator 102 is light (109−) orthogonal to the polarization direction of the polarizer 101.
4), the light cannot pass through the polarizer 101.

【0008】[0008]

【発明が解決しようとする課題】前述したように、従来
の光アイソレータでは、ファラデー回転子103の偏光
回転角波長依存性を補償するために旋光性水晶回転子1
02を用いている。しかし、旋光性水晶回転子102の
偏光回転能は、ファラデー回転子103の偏光回転能に
比較して二桁程度小さいため、ファラデー回転子103
の波長依存性を補償するために必要な水晶回転子102
の厚みもファラデー回転子103より二桁程度大きくな
ってしまうという問題がある。すなわち、従来において
は、ファラデー回転子103の波長依存性を補償しよう
とすると、光アイソレータの全体サイズが大形化してし
まうという問題がある。
As described above, in the conventional optical isolator, in order to compensate the polarization rotation angle wavelength dependency of the Faraday rotator 103, the optical rotatory crystal rotator 1 is used.
02 is used. However, the polarization rotatory power of the optical rotatory crystal rotator 102 is smaller than that of the Faraday rotator 103 by about two orders of magnitude, so the Faraday rotator 103
Crystal rotator 102 required to compensate the wavelength dependence of
There is also a problem that the thickness of the Faraday rotator becomes larger than that of the Faraday rotator 103 by about two digits. That is, in the related art, there is a problem that if the wavelength dependence of the Faraday rotator 103 is attempted to be compensated, the overall size of the optical isolator becomes large.

【0009】本発明ではこのような事情に鑑み、ファラ
デー回転子の波長依存性を補償し、且つ全体サイズの小
さい光アイソレータを提供することを目的とする。
In view of such circumstances, it is an object of the present invention to provide an optical isolator that compensates for the wavelength dependence of a Faraday rotator and has a small overall size.

【0010】[0010]

【課題を解決するための手段】前記目的を達成する本発
明の光アイソレータは、特定の直線偏光を通過させる偏
光子及び検光子の間に、光の偏光方向を変化させること
ができる旋光性の液晶回転子と、磁気によって偏光方向
を変化させることができるファラデー回転子とを配置
し、且つ上記ファラデー回転子にファラデー効果を発生
させるための磁石を具えた光アイソレータであって、上
記液晶回転子は当該光アイソレータへの逆方向の入射光
に対して上記ファラデー回転子の波長に依存した偏光回
転角と全く逆の回転角特性を有し、上記検光子は上記液
晶回転子による基準波長における偏光回転角と45度と
の和だけ上記偏光子に対して偏光方向を傾けてあること
を特徴とする。
The optical isolator of the present invention which achieves the above object has an optical rotatory property capable of changing the polarization direction of light between a polarizer and an analyzer which pass a specific linearly polarized light. An optical isolator having a liquid crystal rotator and a Faraday rotator capable of changing the polarization direction by magnetism, and having a magnet for generating a Faraday effect in the Faraday rotator, wherein the liquid crystal rotator is provided. Has a rotation angle characteristic that is completely opposite to the polarization rotation angle depending on the wavelength of the Faraday rotator with respect to the incident light in the opposite direction to the optical isolator, and the analyzer has a polarization at the reference wavelength by the liquid crystal rotator. It is characterized in that the polarization direction is inclined with respect to the polarizer by the sum of the rotation angle and 45 degrees.

【0011】[0011]

【作用】ファラデー回転子は順方向と逆方向とで偏光回
転角が逆になり、且つこの偏光回転角には波長依存性が
ある。一方、液晶回転子は順方向と逆方向とで偏光回転
角が同じであり、且つファラデー回転子と同様な大きさ
波長依存性のある偏光回転角を有する。したがって、フ
ァラデー回転子の波長依存性は旋光性の液晶回転子によ
り補償される。
In the Faraday rotator, the polarization rotation angle is reversed in the forward direction and the reverse direction, and this polarization rotation angle has wavelength dependence. On the other hand, the liquid crystal rotator has the same polarization rotation angle in the forward direction and the reverse direction, and has the same polarization rotation angle as the Faraday rotator with wavelength dependence. Therefore, the wavelength dependence of the Faraday rotator is compensated by the optically active liquid crystal rotator.

【0012】[0012]

【実施例】以下、本発明を実施例に基づいて説明する。EXAMPLES The present invention will be described below based on examples.

【0013】本実施例の光アイソレータを図1,2に示
す。両図に示すように、この光アイソレータは偏光子
1,旋光性の液晶回転子2,ファラデー回転子3及び検
光子4をその光軸をそろえた状態で順次配置したもので
あり、磁場5を与えてファラデー回転子3にファラデー
効果を発生させる図示しない磁石を具えている。ここ
で、旋光性液晶回転子2はファラデー回転子3の偏光回
転角波長依存性を補償するものである。また、検光子4
は、旋光性液晶回転子2の基準波長における偏光回転角
と45どとの和だけ偏光子1に対して偏光方向を傾けて
ある。
The optical isolator of this embodiment is shown in FIGS. As shown in both figures, this optical isolator comprises a polarizer 1, a liquid crystal rotator 2 having optical rotatory power, a Faraday rotator 3 and an analyzer 4 which are sequentially arranged with their optical axes aligned. The Faraday rotator 3 is provided with a magnet (not shown) for generating the Faraday effect. Here, the optical rotatory liquid crystal rotator 2 compensates the polarization rotation angle wavelength dependency of the Faraday rotator 3. Also, the analyzer 4
Is tilted in the polarization direction with respect to the polarizer 1 by the sum of the polarization rotation angle of the optical rotation liquid crystal rotator 2 at the reference wavelength and 45.

【0014】ここで、旋光性液晶回転子2とは、通過す
る光を常に同方向へ回転する特性を有するものである。
すなわち、基準波長の光は図1(A) に示すように順方向
に通過する場合にはαだけ回転を受け、図1(B) に示す
ように逆方向に通過する場合には順方向の回転方向を基
準にすると−αだけ回転を受けることになる。また、旋
光性液晶回転子2の偏光回転角が波長に依存し、ファラ
デー回転子3の波長依存性を補償するように設定してい
る。つまり、ファラデー回転子3と旋光性液晶回転子2
の波長に依存した偏光回転角の増加(減少分)を同一に
しておくことにより、例えば図2(A) に示すように順方
向では基準波長より2δだけ余分に回転させられるが、
図2(B) に示すように逆方向ではファラデー回転子3と
旋光性液晶回転子2とで波長依存性が相殺されることに
なる。
Here, the optical rotatory liquid crystal rotator 2 has a characteristic that the light passing therethrough is always rotated in the same direction.
That is, the light of the reference wavelength is rotated by α when passing in the forward direction as shown in FIG. 1 (A), and is rotated in the forward direction when passing in the backward direction as shown in FIG. 1 (B). When the rotation direction is used as a reference, it is rotated by -α. Further, the polarization rotation angle of the optical rotatory liquid crystal rotator 2 depends on the wavelength, and the wavelength dependence of the Faraday rotator 3 is set to be compensated. That is, the Faraday rotator 3 and the optically active liquid crystal rotator 2
By setting the same increase (decrease) in the polarization rotation angle depending on the wavelength of, the light can be rotated by 2δ more than the reference wavelength in the forward direction as shown in Fig. 2 (A).
As shown in FIG. 2B, the wavelength dependence is canceled by the Faraday rotator 3 and the optically active liquid crystal rotator 2 in the opposite directions.

【0015】旋光性液晶回転子2の一例としてのツイス
ティッド・ネマティック(TN)液晶は、次式で示され
る光の通過率Tを有している。
A twisted nematic (TN) liquid crystal as an example of the optical rotatory liquid crystal rotator 2 has a light transmittance T expressed by the following equation.

【0016】[0016]

【数1】 [Equation 1]

【0017】ここで、u=2dΔn/λであり、dは液
晶の厚さ、Δnは屈折率差、λは光の波長である。上式
より光の透過率が波長により異なっていることがわかる
が、これは偏光回転角が波長に依存するためである。す
なわち、この性質を利用することにより、上述したよう
に、ファラデー回転子3の波長依存性を補償することが
できる。そして、旋光性液晶回転子2の厚さは、水晶回
転子に比べて二桁程度小さくすることができ、光アイソ
レータ自体の小形化を図ることができる。なお、液晶回
転子2は上記TN液晶に限定されるものではないことは
言うまでもない。
Here, u = 2dΔn / λ, d is the thickness of the liquid crystal, Δn is the refractive index difference, and λ is the wavelength of light. It can be seen from the above equation that the light transmittance varies depending on the wavelength, but this is because the polarization rotation angle depends on the wavelength. That is, by utilizing this property, the wavelength dependence of the Faraday rotator 3 can be compensated as described above. Further, the thickness of the optical rotatory liquid crystal rotator 2 can be reduced by about two digits as compared with the crystal rotator, and the optical isolator itself can be miniaturized. Needless to say, the liquid crystal rotator 2 is not limited to the TN liquid crystal.

【0018】本実施例の光アイソレータに基準波長の光
を導入した様子を図1(A),(B) を参照しながら説明す
る。図1(A) の6−1〜5は順方向に進む光の偏光の様
子を示し、順方向に進む基準波長の光(6−1)は偏光
子1の通過によりその偏光方向に一致する光(6−2)
となった後、旋光性液晶回転子2により角度の回転を受
けて出力される(6−3)。そして、この光(6−3)
はファラデー回転子3により同方向に45度の回転を受
け、通過後には偏光子1の偏光方向に対してα+45度
だけ回転した光となっている(6−4)。よって、この
光(6−4)は、偏光子1に対して偏光方向がα+45
度だけ傾けて配されている検光子4を通過する(6−
5)。
The manner in which light of the reference wavelength is introduced into the optical isolator of this embodiment will be described with reference to FIGS. 1 (A) and 1 (B). 6-1 to 5 of FIG. 1 (A) show the polarization state of the light traveling in the forward direction, and the light of the reference wavelength (6-1) traveling in the forward direction matches the polarization direction by passing through the polarizer 1. Light (6-2)
After that, the light is rotated by an angle by the optically active liquid crystal rotator 2 and is output (6-3). And this light (6-3)
Is rotated by 45 degrees in the same direction by the Faraday rotator 3 and, after passing, is light rotated by α + 45 degrees with respect to the polarization direction of the polarizer 1 (6-4). Therefore, the polarization direction of this light (6-4) is α + 45 with respect to the polarizer 1.
It passes through the analyzer 4 which is tilted by an angle (6-
5).

【0019】図1(B) の7−1〜4は逆方向に進む光の
偏光の様子を示し、逆方向に進む基準波長の光(7−
1)は検光子4の偏光方向に一致する光(7−2)のみ
当該検光子4を通過する。この光(7−2)は偏光子1
の偏光方向に対してα+45度(順方向での回転方向を
基準とする。以下同じ)回転した光であり、この光(7
−2)はファラデー回転子3通過後には45度の回転を
受け、偏光子1の偏光方向に対してα+90度回転した
光(7−3)となる。そしてこの光(7−3)はさらに
旋光性液晶回転子2により−αの回転を受け、偏光子1
の偏光方向に対して90度回転した光(7−4)となる
ので、偏光子1を通過することはできない。
Reference numerals 7-1 to 4 in FIG. 1 (B) show how the light traveling in the reverse direction is polarized, and the light having the reference wavelength (7-
In 1), only the light (7-2) that matches the polarization direction of the analyzer 4 passes through the analyzer 4. This light (7-2) is the polarizer 1
Light rotated by α + 45 degrees (referenced to the rotation direction in the forward direction. The same applies hereinafter) with respect to the polarization direction of
-2) is rotated by 45 degrees after passing through the Faraday rotator 3, and becomes light (7-3) rotated by α + 90 degrees with respect to the polarization direction of the polarizer 1. Then, this light (7-3) is further rotated by -α by the optical rotatory liquid crystal rotator 2, and the polarizer 1
Since the light (7-4) is rotated by 90 degrees with respect to the polarization direction of, the light cannot pass through the polarizer 1.

【0020】次に、基準波長と異なる光を導入した場合
を図2(A),(B) を参照しながら説明する。図2(A) の8
−1〜5は順方向に進む光の偏光の様子を示し、基準波
長と異なる波長の光(8−1)は偏光子1の通過により
その偏光方向に一致した光(8−2)となった後、旋光
性液晶回転子2により角度α+δの回転を受けて出力さ
れる(8−3)。そして、この光(8−3)はファラデ
ー回転子3により同方向に45度+δの回転を受け、通
過後には偏光子1の偏光方向に対してα+2δ+45度
だけ回転した光となっている(8−4)。したがって、
検光子4から出力される光(8−5)は検光子4の損失
を無視すると、ファラデー回転子3からの出力光(8−
3)に対してcos2 2δ倍の強度となる。
Next, the case of introducing light different from the reference wavelength will be described with reference to FIGS. 2 (A) and 2 (B). 8 in Figure 2 (A)
-1 to 5 show the polarization state of the light traveling in the forward direction, and the light (8-1) having a wavelength different from the reference wavelength becomes the light (8-2) that matches the polarization direction due to the passage of the polarizer 1. After that, the light is rotated by the angle α + δ by the rotatory liquid crystal rotator 2 and output (8-3). Then, this light (8-3) is rotated by 45 ° + δ in the same direction by the Faraday rotator 3, and after passing, it becomes α + 2δ + 45 ° rotated with respect to the polarization direction of the polarizer 1 (8 -4). Therefore,
The light (8-5) output from the analyzer 4 is the output light (8-) from the Faraday rotator 3 when the loss of the analyzer 4 is ignored.
It is cos 2 2δ times stronger than 3).

【0021】図2(B) の9−1〜4は逆方向に進む光の
偏光の様子を示している。基準波長と異なる波長の光
(9−1)のうち、検光子4を通過する光(9−2)は
偏光子1の偏光方向に対してα+45度回転している光
であり、この光はファラデー回転子3通過後には偏光子
1の偏光方向に対してα+δ+90度回転した光(9−
3)となる。さらに、この光は旋光性液晶回転子2によ
り−(α+δ)だけ回転を受けるので、液晶回転子2を
通過した光は偏光方向に直交する光(9−4)となるた
め、偏光子1を通過することはできない。
Reference numerals 9-1 to 9-4 in FIG. 2 (B) show how the light traveling in the opposite direction is polarized. Of the light (9-1) having a wavelength different from the reference wavelength, the light (9-2) passing through the analyzer 4 is light rotated by α + 45 degrees with respect to the polarization direction of the polarizer 1, and this light is After passing through the Faraday rotator 3, the light rotated by α + δ + 90 degrees with respect to the polarization direction of the polarizer 1 (9−
3). Further, since this light is rotated by-(α + δ) by the optical rotatory liquid crystal rotator 2, the light passing through the liquid crystal rotator 2 becomes light (9-4) orthogonal to the polarization direction. You cannot pass.

【0022】以上説明したように、本実施例の光アイソ
レータはファラデー回転子3の波長依存性を液晶回転子
2で補償し、入射光の波長依存性のない小形の光アイソ
レータといえる。なお、上記構成において、ファラデー
回転子3と液晶回転子2の配置を逆にしても同様の効果
が得られることは言うまでもない。
As described above, the optical isolator of this embodiment is a small optical isolator in which the wavelength dependence of the Faraday rotator 3 is compensated by the liquid crystal rotator 2 and the wavelength dependence of the incident light is not present. It is needless to say that the same effect can be obtained by reversing the arrangement of the Faraday rotator 3 and the liquid crystal rotator 2 in the above configuration.

【0023】[0023]

【発明の効果】以上説明したように、ファラデー回転子
の偏光回転角波長依存性を波長に対する偏光回転角がフ
ァラデー回転子の偏光回転角に対して全く逆である液晶
回転子を用いて補正しており、波長依存性のない光アイ
ソレータを構成することができる。この際、液晶回転子
の偏光回転能はファラデー回転子より大きくすることが
できるため、ファラデー回転子の波長依存性を補償する
ための厚みを薄くすることがで、それ故、光アイソレー
タ全体のサイズを小さくすることができる。
As described above, the polarization rotation angle wavelength dependence of the Faraday rotator is corrected by using the liquid crystal rotator whose polarization rotation angle with respect to wavelength is completely opposite to that of the Faraday rotator. Therefore, it is possible to configure an optical isolator having no wavelength dependence. At this time, since the polarization rotation ability of the liquid crystal rotator can be made larger than that of the Faraday rotator, the thickness for compensating for the wavelength dependence of the Faraday rotator can be reduced, and therefore the size of the entire optical isolator can be reduced. Can be made smaller.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例に係る光アイソレータを示す構成図で
ある。
FIG. 1 is a configuration diagram showing an optical isolator according to an embodiment.

【図2】一実施例に係る光アイソレータを示す構成図で
ある。
FIG. 2 is a configuration diagram showing an optical isolator according to an embodiment.

【図3】従来技術に係る光アイソレータを示す構成図で
ある。
FIG. 3 is a configuration diagram showing an optical isolator according to a conventional technique.

【図4】従来技術に係る光アイソレータを示す構成図で
ある。
FIG. 4 is a configuration diagram showing an optical isolator according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 偏光子 2 液晶回転子 3 ファラデー回転子 4 検光子 5 磁場の方向 6 順方向入射光の偏光の様子 7 逆方向入射光の偏光の様子 8 順方向入射光の偏光の様子 9 逆方向入射光の偏光の様子 1 Polarizer 2 Liquid crystal rotator 3 Faraday rotator 4 Analyzer 5 Magnetic field direction 6 State of polarization of forward incident light 7 State of polarization of backward incident light 8 State of polarization of forward incident light 9 Reverse incident light Of the polarized light

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 特定の直線偏光を通過させる偏光子及び
検光子の間に、光の偏光方向を変化させることができる
旋光性の液晶回転子と、磁気によって偏光方向を変化さ
せることができるファラデー回転子とを配置し、且つ上
記ファラデー回転子にファラデー効果を発生させるため
の磁石を具えた光アイソレータであって、上記液晶回転
子は当該光アイソレータへの逆方向の入射光に対して上
記ファラデー回転子の波長に依存した偏光回転角と全く
逆の回転角特性を有し、上記検光子は上記液晶回転子に
よる基準波長における偏光回転角と45度との和だけ上
記偏光子に対して偏光方向を傾けてあることを特徴とす
る光アイソレータ。
1. An optically active liquid crystal rotator capable of changing the polarization direction of light between a polarizer and an analyzer for passing a specific linearly polarized light, and a Faraday capable of changing the polarization direction by magnetism. An optical isolator having a rotor and a magnet for producing a Faraday effect in the Faraday rotator, wherein the liquid crystal rotator is the Faraday rotator with respect to incident light in the opposite direction to the optical isolator. It has a rotation angle characteristic that is completely opposite to the polarization rotation angle depending on the wavelength of the rotator, and the analyzer polarizes the polarizer by the sum of the polarization rotation angle at the reference wavelength by the liquid crystal rotator and 45 degrees. An optical isolator characterized by tilting the direction.
JP4127392A 1992-02-27 1992-02-27 Optical isolator Withdrawn JPH05241100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4127392A JPH05241100A (en) 1992-02-27 1992-02-27 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4127392A JPH05241100A (en) 1992-02-27 1992-02-27 Optical isolator

Publications (1)

Publication Number Publication Date
JPH05241100A true JPH05241100A (en) 1993-09-21

Family

ID=12603838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4127392A Withdrawn JPH05241100A (en) 1992-02-27 1992-02-27 Optical isolator

Country Status (1)

Country Link
JP (1) JPH05241100A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025533A1 (en) * 2004-09-03 2006-03-09 Tokyo Institute Of Technology Photodiode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025533A1 (en) * 2004-09-03 2006-03-09 Tokyo Institute Of Technology Photodiode
US7701537B2 (en) 2004-09-03 2010-04-20 Tokyo Institute Of Technology Optical diode

Similar Documents

Publication Publication Date Title
RU2187134C2 (en) Integrated optical polarization device
US20020005987A1 (en) Polarization beam splitter or combiner
EP0932068A3 (en) Tunable optical filter
WO2015081682A1 (en) Method for eliminating relevance of rotation angle of faraday rotator mirror to wavelength and temperature and rotator mirror
JP2006510935A (en) Apparatus and method for optically tunable polarization interference filter
JP2003121807A (en) Variable polarization plane rotator and optical device using it
CN105425427A (en) Method of eliminating correlation of Faraday rotator mirror rotation angle and wavelength and temperature and Faraday rotator mirror thereof
JPH0990279A (en) Polarization independent type optical isolator and optical circulator
JPH05241100A (en) Optical isolator
JPH085976A (en) Variable wavelength optical filter
JP2721879B2 (en) Self-temperature compensated optical isolator
JP2805106B2 (en) Active optical isolator
JPH0391715A (en) Optical isolator
JP4382344B2 (en) Reflective variable magneto-optical device
JPH0473712A (en) Variable direction optical isolator
JPH05249506A (en) Optical switch
JPH085977A (en) Variable wavelength liquid crystal optical filter
JP2761141B2 (en) Polarization rotating mirror
JPS63262602A (en) Diffraction grating type optical polarizing plat
CN118502140B (en) Polarization-independent self-stabilizing light intensity modulation device
JPH02188715A (en) Optical isolator
JPH11125801A (en) Wavelength selection filter
JPS61151612A (en) Single pole double throw optical switch
JPH03243919A (en) Liquid crystal electrooptical element
JPS61151611A (en) By-pass optical switch

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518