JPH05240834A - Oxygen sensor and manufacture thereof - Google Patents

Oxygen sensor and manufacture thereof

Info

Publication number
JPH05240834A
JPH05240834A JP4079024A JP7902492A JPH05240834A JP H05240834 A JPH05240834 A JP H05240834A JP 4079024 A JP4079024 A JP 4079024A JP 7902492 A JP7902492 A JP 7902492A JP H05240834 A JPH05240834 A JP H05240834A
Authority
JP
Japan
Prior art keywords
solid electrolyte
oxygen
electrode
oxygen sensor
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4079024A
Other languages
Japanese (ja)
Inventor
Kazuo Yamana
一男 山名
Shizuo Nakamura
静夫 中村
Sukeyasu Kanno
救泰 漢野
Katsuyoshi Ina
克芳 伊奈
Takuji Yoshimura
卓二 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP4079024A priority Critical patent/JPH05240834A/en
Publication of JPH05240834A publication Critical patent/JPH05240834A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To manufacture an oxygen sensor, which is excellent in detecting accuracy, above all the measuring accuracy of low-concentration oxygen gas, by the easy method. CONSTITUTION:In an oxygen sensor, an electrochemical pump part, wherein first and second electrode 4 and 5 are formed on a first zirconia ceramics electrolyte member 1, and an electrochemical sensor part, wherein third and fourth electrodes 6 and 7 are formed on a second zirconia ceramics solid electrolyte member 2, are arranged through a tightly sealed space, which is formed in a sealing shape of the zirconia ceramics solid electrolyte members and a mica- glass ceramics sealing member 3 in the sealing shape. When the oxygen sensor is manufactured, the zirconia ceramics solid electrolyte members and the mica- glass ceramics sealing member are heated and bonded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低濃度酸素ガスの測定
に特に優れた酸素センサ及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen sensor particularly excellent in measuring low-concentration oxygen gas and a method for manufacturing the same.

【0002】[0002]

【従来の技術】ジルコニアは600〜800℃で完全な
酸素イオン伝導性を示すため、酸素センサに応用されて
いる。一般に空気を基準ガスとして、ネルンストの理論
式から被検ガスの酸素濃度を求めている。実際にこの方
法により測定を行うと、酸素濃度が0.1%程度まで
は、このネルンストの理論式を用いて測定できるのに対
し、それ以下の酸素濃度領域では装置を安定させ、正確
に理論値にのるデータを得るのが非常に困難となる。例
えば被検ガスの酸素濃度が10ppmと低い場合、その
測定精度が悪くなる。その理由は、電気化学的ガス透
過、即ち固体電解質に僅かに存在する電子伝導に見合う
酸素イオンの移動が空気側電極から被検側電極に向って
起こり、被検ガス側電極の近傍の酸素濃度が変化する為
とされている。その改良策として、点接触式又は二重管
式のセンサが提案されているが例えば斉藤安俊,表面,
21巻11号page7(1983)、いずれも構造が
複雑で、長期に亘る安定性に難点がある。
2. Description of the Related Art Zirconia has been applied to oxygen sensors because it exhibits perfect oxygen ion conductivity at 600 to 800 ° C. Generally, the oxygen concentration of the test gas is obtained from the Nernst theoretical formula using air as the reference gas. When actually measured by this method, the oxygen concentration up to about 0.1% can be measured by using this Nernst's theoretical formula, whereas in the oxygen concentration range below that, the device is stabilized and the theoretical It will be very difficult to get the value data. For example, when the oxygen concentration of the test gas is as low as 10 ppm, the measurement accuracy becomes poor. The reason is that electrochemical gas permeation, that is, movement of oxygen ions corresponding to electron conduction, which is slightly present in the solid electrolyte, occurs from the air side electrode toward the test side electrode, and the oxygen concentration near the test gas side electrode Is supposed to change. As an improvement measure, a point contact type or double tube type sensor has been proposed.
Vol. 21, No. 11, page 7 (1983), all have complicated structures and have a problem in stability over a long period of time.

【0003】一方、電気化学的センサ部と電気化学式酸
素ポンプとを併用し、基準ガスの酸素濃度を電気化学式
酸素ポンプを用いて積極的に制御する方式が、特にリー
ンバー方式の自動車空燃比制御用のセンサ素子への適用
を目指して開発が進められている。このセンサ素子は酸
素濃度が常に変動する被検ガス即ち自動車排ガス中にセ
ンサ素子全体が曝される為に、一定酸素濃度のガスと接
していないので、酸素ポンプを用いて自動車排ガス中の
酸素をセンサ内部に供給し、高濃度の酸素を含む基準ガ
スを作製しようとするものである。しかし、こうして得
られる基準ガスの酸素濃度を厳密に制御する事は困難で
あり、自動車空燃比制御に求められる所謂λ型センサと
しては使用できるが、厳密な測定精度が必要な用途には
使用出来ない。
On the other hand, a method in which an electrochemical sensor section and an electrochemical oxygen pump are used in combination and the oxygen concentration of the reference gas is actively controlled by using the electrochemical oxygen pump is particularly suitable for lean-bar system air-fuel ratio control of automobiles. Is being developed with the aim of applying to the sensor element. Since this sensor element is not in contact with a gas having a constant oxygen concentration because the whole sensor element is exposed to the test gas whose oxygen concentration constantly changes, that is, the exhaust gas of the automobile, oxygen in the exhaust gas of the vehicle is removed using an oxygen pump. The reference gas is supplied to the inside of the sensor to produce a reference gas containing a high concentration of oxygen. However, it is difficult to strictly control the oxygen concentration of the reference gas obtained in this way, and although it can be used as a so-called λ type sensor required for automobile air-fuel ratio control, it cannot be used for applications that require strict measurement accuracy. Absent.

【0004】またジルコニアセラミックスは硬度が高
く、靱性が低いので機械加工が容易ではない。従来は粉
末から成形、焼結した製品はほとんど加工されずに使わ
れることが多かった。しかし、本発明のような用途面か
らの強い要求により、セラミックス部品の製造・加工技
術は急速に進歩し、精密機能材料部品としての応用が拡
大している。それには、切削、研磨のように単に素材の
一部を除去するだけでなく、接着、付着のように他の物
質や、同種物質を合体させることの必要性も高くなって
きた。本発明でのセラミックス同種物質のような方法に
は介在層利用や加熱、加圧接着などの固相接着とレーザ
ー溶接、電子ビーム溶接、放電による溶接など溶融接着
に分けられる。ここで溶融接着は最近注目されるように
なったが、事例は比較的少ない。その理由は、装置が不
十分で、コストが高く、接着用治具などに問題があるこ
とによる。一方固相接着は一般によく行われる方法であ
る。酸素センサ用素子の接着では、現時点ではコスト、
密着性、接着力、他の部材への損傷などを考えると、固
相接着のみが利用できる。その接着方法としては、ジル
コニア材料に金属アルミニウムを介在させて加熱する方
法(特開59−217682)、ジルコニア材料の面に
Ti、Zrなどを薄くろう付する方法(特開60−81
069)、ジルコニア粉末と有機バインダーなどを混練
して作った接着用ペーストを用いる方法(特開62−2
30681)、酸化物の結晶化ガラスと希土類酸化物か
ら作られる接着剤を利用する方法(特開63−1592
63)そして、ジルコニアの塑性変形により強固な接着
をえる方法(特開01−145382)があり、このよ
うに種々な方法が試みられている。このように、ジルコ
ニアの接着方法は多種多様に試みられている。しかし、
接着面にAlやTiなどの金属を介在させる方法では電
気絶縁性や高温での接着力に課題が生じる。セラミック
ス粉末などを介在させる方法では緻密性が劣り、分子状
ガス透過を生ずる。更に塑性加工で接着する方法も考え
られるが、1300℃以上の温度を必要とすることや、
接着物の寸法精度にも問題を生ずる。
Since zirconia ceramics have high hardness and low toughness, they are not easy to machine. In the past, products formed from powder and sintered were often used without being processed. However, due to strong demands from the application aspect such as the present invention, the manufacturing and processing techniques of ceramic parts have been rapidly advanced, and the applications as precision functional material parts are expanding. For this purpose, not only the removal of a part of the material such as cutting and polishing, but also the need to combine other substances such as adhesion and adhesion and the same kind of substance has been increased. The method of using the same kind of ceramic material in the present invention can be divided into solid phase adhesion such as using an intervening layer, heating and pressure bonding, and melt bonding such as laser welding, electron beam welding and welding by electric discharge. Here, melt bonding has recently received attention, but there are relatively few cases. The reason is that the device is insufficient, the cost is high, and there is a problem with the bonding jig. On the other hand, solid phase adhesion is a commonly used method. At present, the cost of bonding oxygen sensor elements is
Considering adhesion, adhesive strength, damage to other members, etc., only solid-phase adhesion can be used. As the bonding method, a method of heating a zirconia material with metallic aluminum interposed (Japanese Patent Laid-Open No. 59-217682) and a method of thinly brazing Ti, Zr, etc. on the surface of the zirconia material (Japanese Patent Laid-Open No. 60-81)
069), using a bonding paste made by kneading a zirconia powder and an organic binder (JP-A-62-2).
30681), a method using an adhesive made of crystallized glass of oxide and a rare earth oxide (Japanese Patent Laid-Open No. 63-1592).
63) Then, there is a method (Japanese Patent Laid-Open No. 01-145382) for obtaining strong adhesion by plastic deformation of zirconia, and various methods have been tried in this way. Thus, various bonding methods for zirconia have been tried. But,
In the method of interposing a metal such as Al or Ti on the bonding surface, there are problems in electrical insulation and adhesive strength at high temperature. The method of interposing ceramic powder or the like is inferior in denseness and causes molecular gas permeation. Further, a method of adhering by plastic working is also conceivable, but it requires a temperature of 1300 ° C. or higher,
There is also a problem in the dimensional accuracy of the adhesive.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは既存の酸
素センサ及びセラミックス同志を接着する際の上述の問
題点に鑑み、鋭意研究を重ねた結果本発明を完成したも
のであって、その目的とするところは、検出精度、就中
低濃度酸素ガスの測定精度に優れた酸素センサ及びその
製造方法を提供するにある。本発明の他の目的及び効果
は以下の説明から明らかにされよう。
SUMMARY OF THE INVENTION The present inventors have completed the present invention as a result of intensive studies in view of the above-mentioned problems in bonding existing oxygen sensors and ceramics to each other. An object of the present invention is to provide an oxygen sensor excellent in detection accuracy, particularly low-concentration oxygen gas measurement accuracy, and a manufacturing method thereof. Other objects and effects of the present invention will be apparent from the following description.

【0006】[0006]

【課題を解決するための手段】上述の目的は、第1のジ
ルコニアセラミックス固体電解質部材に第1及び第2の
電極を形成した電気化学的ポンプ部と、第2のジルコニ
アセラミックス固体電解質部材に第3及び第4の電極を
形成した電気化学的センサ部とが、前記ジルコニアセラ
ミックス固体電解質部材とマイカガラスセラミックスシ
ーリング部材にてシーリング形状に形成した密封空間を
介して配置されていることを特徴とする酸素センサ並び
に、
The above-described object is to provide an electrochemical pump portion having first and second electrodes formed on a first zirconia ceramics solid electrolyte member and a second zirconia ceramics solid electrolyte member. The electrochemical sensor part having the third and fourth electrodes formed therein is arranged via a sealed space formed in a sealing shape by the zirconia ceramics solid electrolyte member and the mica glass ceramics sealing member. Oxygen sensor and

【0007】酸素センサを製造するに際し、ジルコニア
セラミックス固体電解質部材とマイカガラスセラミック
スシーリング部材とを加熱して接着せしめることを特徴
とする酸素センサの製造方法により達成される。
This is achieved by a method of manufacturing an oxygen sensor, characterized in that a zirconia ceramics solid electrolyte member and a mica glass ceramics sealing member are heated and adhered when manufacturing the oxygen sensor.

【0008】かかる本発明の酸素センサの実施態様の一
例を図面に基づいて説明する。図1及び図2は本発明に
係る酸素センサ一例を示す説明図である。図1におい
て、1は第1のジルコニアセラミックス固体電解質部
材、2は第2のジルコニアセラミックス固体電解質部
材、3はマイカガラスセラミックスシーリング部材、4
は第1の電極、5は第2の電極、6は第3の電極、7は
第4の電極、8は電圧計、9は直流電源である。図2に
おいて、1は第1のジルコニアセラミックス固体電解質
部材、2は第2のジルコニアセラミックス固体電解質部
材、3はマイカガラスセラミックスシーリング部材、4
は第1の電極、5は第2の電極、6は第3の電極、7は
第4の電極、8,8′は電圧計、9は直流電源である。
An example of an embodiment of the oxygen sensor of the present invention will be described with reference to the drawings. 1 and 2 are explanatory views showing an example of the oxygen sensor according to the present invention. In FIG. 1, 1 is a first zirconia ceramics solid electrolyte member, 2 is a second zirconia ceramics solid electrolyte member, 3 is a mica glass ceramics sealing member, 4
Is a first electrode, 5 is a second electrode, 6 is a third electrode, 7 is a fourth electrode, 8 is a voltmeter, and 9 is a DC power supply. In FIG. 2, 1 is a first zirconia ceramics solid electrolyte member, 2 is a second zirconia ceramics solid electrolyte member, 3 is a mica glass ceramics sealing member, 4
Is a first electrode, 5 is a second electrode, 6 is a third electrode, 7 is a fourth electrode, 8 and 8'are voltmeters, and 9 is a DC power supply.

【0009】図1に示す酸素センサは、第1のジルコニ
アセラミックス固体電解質部材1と第2のジルコニアセ
ラミックス固体電解質部材2の両面には、それぞれ第1
の電極4及び第2の電極5と、第3の電極6及び第4の
電極7とが配設され、第1のジルコニアセラミックス固
体電解質部材1、第2のジルコニアセラミックス固体電
解質部材2及びマイカガラスセラミックスシーリング部
材3により形成される密封空間(以下チャンバーと略記
する)を介して一体化されている。そして、第2の固体
電解質部材2を介して配設された第3の電極6と第4の
電極7の間に直流電源9により電圧を印加すると、電気
化学的ポンプ部が形成される。また、第1の固体電解質
部材1を介して配設された第1の電極4と第2の電極5
と電圧計8により電気化学的センサ部が形成されてい
る。かかる酸素センサを用いて酸素ガス濃度を測定する
には、例えば第1の電極4を被検ガスに、第4の電極7
を空気に接触し、被検ガス濃度を測定する場合について
説明すると第3の電極6と第4の電極との間に一定の直
流電圧を負荷すると電気化学的ポンプとして機能し供給
する電圧に応じて空気中の酸素分圧P1 と、チャンバー
内酸素分圧P3 との比P3 /P1 に相当する電圧を一定
にする。電圧が一定となったところで、電圧計8で被検
ガス中の酸素分圧P2 とチャンバー内酸素分圧P3 の比
2 /P3 に相当する起電力を読み取り、ネルンスト
(Nernst)の式により被検ガスの濃度を算出す
る。
The oxygen sensor shown in FIG. 1 has a first zirconia ceramics solid electrolyte member 1 and a second zirconia ceramics solid electrolyte member 2 each having a first
Electrode 4 and second electrode 5, and third electrode 6 and fourth electrode 7 are provided, and first zirconia ceramic solid electrolyte member 1, second zirconia ceramic solid electrolyte member 2 and mica glass It is integrated via a sealed space (hereinafter abbreviated as a chamber) formed by the ceramics sealing member 3. Then, when a voltage is applied between the third electrode 6 and the fourth electrode 7 arranged via the second solid electrolyte member 2 by the DC power supply 9, an electrochemical pump portion is formed. In addition, the first electrode 4 and the second electrode 5 arranged via the first solid electrolyte member 1
And the voltmeter 8 form an electrochemical sensor section. To measure the oxygen gas concentration using such an oxygen sensor, for example, the first electrode 4 is used as the test gas and the fourth electrode 7 is used.
When contacting the air with air to measure the concentration of the test gas, when a constant direct current voltage is applied between the third electrode 6 and the fourth electrode, it functions as an electrochemical pump and is dependent on the supplied voltage. The voltage corresponding to the ratio P 3 / P 1 of the oxygen partial pressure P 1 in the air and the oxygen partial pressure P 3 in the chamber is made constant. When the voltage becomes constant, the voltmeter 8 reads the electromotive force corresponding to the ratio P 2 / P 3 of the oxygen partial pressure P 2 in the test gas and the oxygen partial pressure P 3 in the chamber, and the Nernst (Nernst) The concentration of the test gas is calculated by the formula.

【0010】図2の酸素センサは、図1のセンサの第2
のジルコニアセラミックス固体電解質を2,2′に2分
割し間に絶縁性のマイカガラスセラミックスシーリング
部材を間挿せしめ、固体電解質部材2を介して第3の電
極6と第4の電極7を固体電解質部材2′を介して第3
の電極6′と第4の電極7′を配設し、電極6と電極7
の間には直流電源9により電圧を印荷し電気化学的ポン
プ部を形成し、電極6′と電極7′の間には電圧計8′
を配設し、直流電源から供給される電流を制御する。か
かる酸素センサを用いて酸素ガス濃度を測定するには、
例えば第1の電極4を被検ガスに、第4の電極7,7′
を空気に接触し、被検ガス濃度を測定する場合について
説明すると、第3の電極6′と第4の電極7′間の電圧
を電圧計8′にて検出しつつ、9の直流電源から供給さ
れる電流を制御する(電圧計8′の電圧をチャンバー内
酸素ガス分圧P3 が所望の分圧になる様電流を制御す
る。)。電圧計8で被検ガス中の酸素分圧P2 とチャン
バー内酸素分圧の比P2 /P3 に相当する起電力を読み
取り、ネルンストの式により被検ガスの濃度を算出す
る。
The oxygen sensor of FIG. 2 is the second sensor of the sensor of FIG.
The zirconia ceramic solid electrolyte of 2 is divided into 2 and 2'and an insulating mica glass ceramics sealing member is inserted between them, and the third electrode 6 and the fourth electrode 7 are connected to each other through the solid electrolyte member 2. Third through member 2 '
The electrode 6'and the fourth electrode 7'of the
A voltage is applied by a DC power supply 9 between the electrodes to form an electrochemical pump section, and a voltmeter 8'is provided between the electrodes 6'and 7 '.
Is provided to control the current supplied from the DC power supply. To measure the oxygen gas concentration using such an oxygen sensor,
For example, the first electrode 4 is used as the test gas, and the fourth electrodes 7, 7 '
When the sample gas is measured by contacting it with air and measuring the concentration of the test gas, the voltage between the third electrode 6'and the fourth electrode 7'is detected by the voltmeter 8'and the DC power source 9 is used. The supplied current is controlled (the voltage of the voltmeter 8'is controlled so that the oxygen gas partial pressure P 3 in the chamber becomes a desired partial pressure). The voltmeter 8 reads the electromotive force corresponding to the ratio P 2 / P 3 of the oxygen partial pressure P 2 in the test gas and the oxygen partial pressure in the chamber, and the concentration of the test gas is calculated by the Nernst equation.

【0011】本発明でシーリング部材として使用するマ
イカガラスセラミックスはフッ素雲母が体積分率で30
%以上含むものが好ましい。これは、電気絶縁性を保つ
必要があることと機械加工性を維持し、シーリング材等
に加工する必要があることによる。マイカガラスセラミ
ックスのガラス成分は体積分率で20%以上含むことが
好ましい。フッ素雲母間の緻密性を保つことと、分子状
ガス不透過を維持する材料を必要とすることによる。こ
の材料として市販のマイカガラスセラミックスの中で
も、ガラス結晶法で作製したものが望ましい。接着に要
する加熱温度は1100℃以上とするとフッ素雲母がマ
イカガラスセラミックス表面から分解し、接着効果を生
み出すため好適である。また、1300℃以下で行うと
シーリング材等に加工しても形状を維持でき好適であ
る。加熱方式としては空気中などによる開放型とするの
がよい。固体電解質ジルコニア部材の熱膨張係数は10
×10-6-1であり、マイカガラスセラミックスの熱膨
張係数も加熱冷却時に破損しないため11×10-6から
9×10-6-1の範囲に含まれることがよい。この材料
としてはマイカガラスセラミックスのフッ素雲母含有量
としては30〜80%材料が好ましい。以下実施例を挙
げて本発明を具体的に説明する。
In the mica glass ceramics used as the sealing member in the present invention, fluorine mica has a volume fraction of 30.
% Or more is preferable. This is because it is necessary to maintain electrical insulation and to maintain machinability and to process into a sealing material or the like. The glass component of mica glass ceramics is preferably contained in a volume fraction of 20% or more. This is due to the fact that the denseness between the fluorine mica is maintained and the material that maintains the impermeability of molecular gas is required. Among the commercially available mica glass ceramics as this material, those produced by the glass crystallization method are preferable. When the heating temperature required for adhesion is 1100 ° C. or higher, fluoromica is decomposed from the surface of the mica glass ceramics, and an adhesive effect is produced, which is preferable. Further, if it is performed at 1300 ° C. or lower, the shape can be maintained even when processed into a sealing material or the like, which is preferable. The heating method is preferably an open type such as in air. The coefficient of thermal expansion of the solid electrolyte zirconia member is 10
Since it is × 10 -6 ° C -1 , and the thermal expansion coefficient of the mica glass ceramics is not damaged during heating and cooling, it is preferable to be included in the range of 11 × 10 -6 to 9 × 10 -6 ° C -1 . As this material, a material having a fluorine mica content of mica glass ceramics of 30 to 80% is preferable. The present invention will be specifically described below with reference to examples.

【0012】(実施例)東ソー製ジルコニア粉末(TZ
−6Y)をプレス成形し、焼成後研削し次いでその両面
に白金電極を設置した2枚のジルコニア板の間に、マイ
カガラスセラミックスを内径23mmφ、外径25mm
φ、高さ2mmのリング状に加工したものを間挿し、電
気炉で加熱し図1に示すような酸素センサを作成した。
シーリング部材として使用したマイカガラスセラミック
スのフッ素雲母体積含量を表1に示すように変化し、1
200℃迄100℃/hの昇温速度で加熱し、同温度で
1時間保持した後、100℃/hの降温速度で冷却し、
図1に示す酸素センサを作成したときの結果を表1に示
す。
(Example) Tosoh zirconia powder (TZ
-6Y) is press-molded, fired and ground, and then a mica glass ceramic is placed between two zirconia plates having platinum electrodes on both sides thereof, an inner diameter of 23 mmφ and an outer diameter of 25 mm.
A ring-shaped product having a diameter of φ and a height of 2 mm was inserted and heated in an electric furnace to prepare an oxygen sensor as shown in FIG.
Fluorine mica volume content of mica glass ceramics used as a sealing member was changed as shown in Table 1.
Heat up to 200 ° C at a temperature rising rate of 100 ° C / h, hold at the same temperature for 1 hour, and then cool at a temperature lowering rate of 100 ° C / h,
Table 1 shows the results when the oxygen sensor shown in FIG. 1 was produced.

【表1】 [Table 1]

【0013】次に、フッ素雲母体積含有率50%のマイ
カガラスセラミックスをシーリング部材として使用し表
2に示すように加熱接着温度を変化する以外は上記と同
様にして図1に示す酸素センサを作成した。結果を〔表
2〕に示す。
Next, the oxygen sensor shown in FIG. 1 was prepared in the same manner as described above except that mica glass ceramics having a volume content of fluorine mica of 50% was used as a sealing member and the heating adhesion temperature was changed as shown in Table 2. did. The results are shown in [Table 2].

【表2】 [Table 2]

【0014】上表からシーリング効果をあげるには、1
100℃以上1300℃以下の温度で加熱接着するのが
好ましく、1150℃〜1250℃の範囲では更に好ま
しいことがわかる。フッ素雲母体積含有率50%のマイ
カガラスセラミックスに代替してシーリング部材として
バイコールガラス又はパイレックスガラスを使用し、図
1に示す酸素センサを作成した。結果を表3に示す。
To increase the sealing effect from the above table, 1
It is understood that it is preferable to heat and bond at a temperature of 100 ° C. or higher and 1300 ° C. or lower, and it is more preferable in the range of 1150 ° C.-1250 ° C. The oxygen sensor shown in FIG. 1 was prepared by using Vycor glass or Pyrex glass as a sealing member in place of the mica glass ceramics having a volume content of fluorine mica of 50%. The results are shown in Table 3.

【表3】 [Table 3]

【0015】[0015]

【発明の効果】本発明によれば、検出精度、就中低濃度
酸素ガスの測定精度に優れた酸素センサが容易に作成で
きる。
According to the present invention, it is possible to easily prepare an oxygen sensor which is excellent in detection accuracy and particularly in low-concentration oxygen gas measurement accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る酸素センサの実施態様の一例を示
す説明図である。
FIG. 1 is an explanatory diagram showing an example of an embodiment of an oxygen sensor according to the present invention.

【図2】本発明に係る酸素センサの実施態様の一例を示
す説明図である。
FIG. 2 is an explanatory diagram showing an example of an embodiment of an oxygen sensor according to the present invention.

【符号の説明】 1 第1のジルコニアセラミックス固体電解質部材 2 第2のジルコニアセラミックス固体電解質部材 3 マイカガラスセラミックスシーリング部材 4 第1の電極 5 第2の電極 6 第3の電極 7 第4の電極 8 電圧計 9 直流電源[Description of Reference Signs] 1 first zirconia ceramic solid electrolyte member 2 second zirconia ceramic solid electrolyte member 3 mica glass ceramics sealing member 4 first electrode 5 second electrode 6 third electrode 7 fourth electrode 8 Voltmeter 9 DC power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊奈 克芳 大阪府箕面市今宮2丁目3番7−203号 (72)発明者 吉村 卓二 大阪府豊中市北緑丘2丁目1番10−104号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuyoshi Ina 2-3-3, 203 Imamiya, Minoh City, Osaka Prefecture (72) Inventor Takuji Yoshimura 2-10-10, Kitamidoka, Toyonaka City, Osaka Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1のジルコニアセラミックス固体電解
質部材に第1及び第2の電極を形成した電気化学的ポン
プ部と、第2のジルコニアセラミックス固体電解質部材
に第3及び第4の電極を形成した電気化学的センサ部と
が、前記ジルコニアセラミックス固体電解質部材とマイ
カガラスセラミックスシーリング部材にてシーリング形
状に形成した密封空間を介して配置されていることを特
徴とする酸素センサ。
1. An electrochemical pump portion having first and second electrodes formed on a first zirconia ceramic solid electrolyte member, and third and fourth electrodes formed on a second zirconia ceramic solid electrolyte member. An oxygen sensor, wherein an electrochemical sensor part is arranged via a sealed space formed in a sealing shape by the zirconia ceramics solid electrolyte member and a mica glass ceramics sealing member.
【請求項2】 酸素センサを製造するに際し、ジルコニ
アセラミックス固体電解質部材とマイカガラスセラミッ
クスシーリング部材とを加熱して接着せしめることを特
徴とする酸素センサの製造方法。
2. A method for manufacturing an oxygen sensor, which comprises heating a zirconia ceramics solid electrolyte member and a mica glass ceramics sealing member to bond them when manufacturing the oxygen sensor.
JP4079024A 1992-02-28 1992-02-28 Oxygen sensor and manufacture thereof Pending JPH05240834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4079024A JPH05240834A (en) 1992-02-28 1992-02-28 Oxygen sensor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4079024A JPH05240834A (en) 1992-02-28 1992-02-28 Oxygen sensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05240834A true JPH05240834A (en) 1993-09-21

Family

ID=13678377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4079024A Pending JPH05240834A (en) 1992-02-28 1992-02-28 Oxygen sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05240834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166000A (en) * 2022-06-21 2022-10-11 湖北天瑞电子股份有限公司 Sensor chip for fuel inerting oxygen measurement and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166000A (en) * 2022-06-21 2022-10-11 湖北天瑞电子股份有限公司 Sensor chip for fuel inerting oxygen measurement and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS61170650A (en) Oxygen concentration sensor
EP0718247A1 (en) Lithium ion-conductive glass film and thin carbon dioxide gas sensor using the same film
JPS6036948A (en) Electrochemical device
JP3760573B2 (en) NOx sensor manufacturing method and NOx sensor
JPH09318594A (en) Gas sensor and method for measuring quantity of specific component in gas to be measured
EP0203351B1 (en) Oxygen sensor element and process for producing the same
JPH05240834A (en) Oxygen sensor and manufacture thereof
JP2830877B2 (en) Solid electrolyte material
JPS62140061A (en) Sensor for measuring gas partial pressure and manufacture thereof
JPH0351753A (en) Limiting current sensor for measuring partial pressure of oxygen gas
JPH09511573A (en) Reference electrode for batteries with ion-conducting solid electrolyte
JP3571861B2 (en) SOX gas sensor and method of manufacturing the same
JPH0933483A (en) Co2 sensor
JPH01262402A (en) Clip type capacity strain gauge
JPH1062380A (en) Oxygen partial pressure measuring sensor having two measuring areas
RU2092827C1 (en) Device for measuring of partial pressure of oxygen and process of its manufacture
JP3340110B2 (en) Gas sensor
JPH06273374A (en) Sensor probe for measuring solubility of oxygen in molten metal and measuring method
JPH05203604A (en) Measuring method and device for oxygen concentration
JPS5730941A (en) Detector for oxygen concentration
JP2643409B2 (en) Limit current type oxygen sensor
JPH07105505B2 (en) Anodic bonding method
JPH02186254A (en) Oxygen sensor element
JPH0234605Y2 (en)
JPH07248312A (en) Carbon dioxide sensor and manufacture thereof