JPH0524069B2 - - Google Patents
Info
- Publication number
- JPH0524069B2 JPH0524069B2 JP60019531A JP1953185A JPH0524069B2 JP H0524069 B2 JPH0524069 B2 JP H0524069B2 JP 60019531 A JP60019531 A JP 60019531A JP 1953185 A JP1953185 A JP 1953185A JP H0524069 B2 JPH0524069 B2 JP H0524069B2
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- valve
- flow
- control valve
- throttle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005259 measurement Methods 0.000 claims description 18
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 1
- 239000003921 oil Substances 0.000 description 35
- 230000001133 acceleration Effects 0.000 description 13
- 230000007423 decrease Effects 0.000 description 12
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 239000010720 hydraulic oil Substances 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
Landscapes
- Types And Forms Of Lifts (AREA)
- Forklifts And Lifting Vehicles (AREA)
- Fluid-Pressure Circuits (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は油圧エレベータの流量制御装置に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a flow control device for a hydraulic elevator.
〔従来の技術〕
第5図は従来の油圧エレベータの下降用流量制
御装置を示す。なお、上昇用流量制御装置は省略
してある。[Prior Art] FIG. 5 shows a conventional descending flow rate control device for a hydraulic elevator. Note that the ascending flow rate control device is omitted.
第5図中、1は油圧ジヤツキであり、シリンダ
1aとラム1bとを主要部として構成されてい
る。2は乗かごであり、ラム1b上に取付けられ
ている。3は制御弁ケーシング、4はパイロツト
流路部が組込まれた上記ケーシング3の蓋、5は
流量制御弁であり、ピストン部5aとスプール部
5bとから構成され、スプール部5bにはオリフ
イス5cが設けられている。6は上記流量制御弁
5に対向している弁座、7は流量制御弁5のスト
ローク量を制御する調整ストツパ、8はスロー速
調整ねじ、8aはこの調整ねじ8に摺動可能に嵌
挿されたスプール、8bはスプール8aに穿設さ
れた通路、8cはスプール8aを流量制御弁5の
ピストン部5aに押圧する圧縮コイルばね、8d
はスロー速調整ねじ8に設けられた絞り穴であ
る。9,10,11は可変調整ねじ、9a,10
a,11aは可変調整ねじ9,10,11にそれ
ぞれ対応した絞り穴である。12は流量制御弁5
の背室、13,14は電磁弁、15および16は
流量制御弁5で隔てられた流入穴および流出穴で
ある。17aは流入穴15と絞り穴9a,10a
に連通したパイロツト流路、17bは絞り穴9a
と電磁弁13の流入側および流量制御弁5の背室
12に連通したパイロツト流路、17cは絞り穴
10aと電磁弁14の流入側およびスロー速調整
ねじ8の絞り穴8dに連結したパイロツト流路、
17dは電磁弁13,14の流出側および絞り穴
11aに連通したパイロツト流路、17eは絞り
穴11aと流出穴16に連通したパイロツト流路
であり、これらによつて流量制御弁5のパイロツ
ト流路17が構成されている。18および19は
流入穴15と油圧ジヤツキ1のシリンダ1aに連
通する主管路および流出穴16に連通する主管
路、20は主管路19が開口するタンクである。 In FIG. 5, 1 is a hydraulic jack, which is composed of a cylinder 1a and a ram 1b as main parts. 2 is a car, which is attached on the ram 1b. 3 is a control valve casing, 4 is a lid of the casing 3 in which a pilot passage is incorporated, and 5 is a flow control valve, which is composed of a piston part 5a and a spool part 5b, and the spool part 5b has an orifice 5c. It is provided. 6 is a valve seat facing the flow rate control valve 5, 7 is an adjustment stopper that controls the stroke amount of the flow rate control valve 5, 8 is a slow speed adjustment screw, and 8a is slidably inserted into this adjustment screw 8. 8b is a passage bored in the spool 8a; 8c is a compression coil spring that presses the spool 8a against the piston portion 5a of the flow control valve 5; 8d is a compression coil spring;
is a throttle hole provided in the slow speed adjustment screw 8. 9, 10, 11 are variable adjustment screws, 9a, 10
Reference characters a and 11a are throttle holes corresponding to variable adjustment screws 9, 10, and 11, respectively. 12 is a flow control valve 5
13 and 14 are electromagnetic valves, and 15 and 16 are inflow holes and outflow holes separated by a flow control valve 5. 17a is the inflow hole 15 and the throttle holes 9a, 10a
The pilot flow path 17b communicates with the throttle hole 9a.
17c is a pilot flow path connected to the inflow side of the solenoid valve 13 and the back chamber 12 of the flow rate control valve 5; road,
17d is a pilot flow path that communicates with the outflow side of the solenoid valves 13 and 14 and the throttle hole 11a, and 17e is a pilot flow path that communicates with the throttle hole 11a and the outflow hole 16, whereby the pilot flow of the flow rate control valve 5 is controlled. 17 is constructed. Reference numerals 18 and 19 designate a main conduit that communicates with the inflow hole 15 and the cylinder 1a of the hydraulic jack 1, and a main conduit that communicates with the outflow hole 16. Reference numeral 20 designates a tank into which the main conduit 19 opens.
次に、以上のように構成された従来の流量制御
装置の動作について説明する。 Next, the operation of the conventional flow rate control device configured as described above will be explained.
第5図は電磁弁13,14が消磁状態であり、
パイロツト流路17b,17c,17dへの圧油
の流れが阻止されており、主管路18の圧油がパ
イロツト流路17a、絞り穴9a、パイロツト流
路17bおよび絞り穴10a、パイロツト流路1
7c、絞り穴8dからスプール8aの流路8bに
通り、流量制御弁5の背室12に流入し、ピスト
ン部5aに作用して流量制御弁5を弁座6に押圧
していることにより、流入穴15から流出穴16
への圧油の流れを阻止し、油圧ジヤツキ1のラム
1bが停止状態であることを示している。 In FIG. 5, the solenoid valves 13 and 14 are in a demagnetized state,
The flow of pressure oil to the pilot channels 17b, 17c, and 17d is blocked, and the pressure oil in the main pipeline 18 flows through the pilot channel 17a, the throttle hole 9a, the pilot channel 17b, the throttle hole 10a, and the pilot channel 1.
7c, passes through the flow path 8b of the spool 8a from the throttle hole 8d, flows into the back chamber 12 of the flow rate control valve 5, and acts on the piston portion 5a to press the flow rate control valve 5 against the valve seat 6. From the inflow hole 15 to the outflow hole 16
This indicates that the ram 1b of the hydraulic jack 1 is in a stopped state.
エレベータの乗かご2の下降起動と下降加速は
電磁弁13,14を同時に励磁することで行う。
すなわち、電磁弁13,14を同時に励磁してこ
れらを開動作させると、パイロツト流路17b,
17cはパイロツト流路17dに連通し、パイロ
ツト流路17b,17cの圧油がパイロツト流路
17d、絞り穴11a、パイロツト流路17eに
流れて、流出穴16から主管路19を通りタンク
20に流出する。 The descent start and descent acceleration of the elevator car 2 are performed by simultaneously exciting the solenoid valves 13 and 14.
That is, when the solenoid valves 13 and 14 are simultaneously excited and opened, the pilot flow paths 17b,
17c communicates with the pilot flow path 17d, and the pressure oil in the pilot flow paths 17b and 17c flows into the pilot flow path 17d, the throttle hole 11a, and the pilot flow path 17e, and flows out from the outflow hole 16 through the main pipe 19 to the tank 20. do.
同時に、流入穴15からパイロツト流路17a
を通り、絞り穴9a,10aを経てパイロツト流
路17b,17cに圧油が流入する。 At the same time, the pilot channel 17a is opened from the inflow hole 15.
Pressure oil flows into the pilot channels 17b, 17c via the throttle holes 9a, 10a.
上記パイロツト流路17b,17c,17eの
流量を可変調整ねじ9,10,11によつて絞り
穴9a,10a,11aの開口面積を大きくした
り小さくしたりし、次の式の関係になるように
調整する。 The flow rates of the pilot flow paths 17b, 17c, and 17e are adjusted so that the opening areas of the throttle holes 9a, 10a, and 11a are increased or decreased using the variable adjustment screws 9, 10, and 11, and the relationship is expressed by the following equation. Adjust to.
Q11>Q9+Q10 ……
ここで、
Q9……絞り穴9aからパイロツト流路17bへ
の流入量(cm3/sec)
Q10……絞り穴10aからパイロツト流路17c
への流入量(cm3/sec)
Q11……絞り穴11aからパイロツト流路への流
出量
上記式の左辺はパイロツト流路17b,17
cへの流入量であり、右辺は流出量である。つま
り、流入穴15からパイロツト流路17b,17
cへの流入量よりも、、パイロツト流路17b,
17cから流出穴16へ流出量が大きくなるよう
に可変調整ねじ9,10,11を調整する。 Q 11 >Q 9 +Q 10 ... Here, Q 9 ... Amount of flow from the throttle hole 9a to the pilot flow path 17b (cm 3 /sec) Q 10 ... From the throttle hole 10a to the pilot flow path 17c
(cm 3 /sec) Q 11 ... Outflow amount from the throttle hole 11a to the pilot flow path The left side of the above equation is the flow rate from the pilot flow path 17b, 17.
It is the inflow amount to c, and the right side is the outflow amount. In other words, from the inflow hole 15, the pilot channels 17b, 17
The amount of flow into the pilot flow path 17b,
Adjust the variable adjustment screws 9, 10, and 11 so that the amount of outflow from the outflow hole 17c increases.
上記流入量と流出量との流量差の圧油が、流量
制御弁5の背圧12からパイロツト流路17b
と、スロー速調整ねじ8のスプール8aの通路8
bを通り絞り穴8dを経てパイロツト流路17c
とに流出する。この流出量は次の式で表わされ
る。 The pressure oil having the flow rate difference between the inflow amount and the outflow amount flows from the back pressure 12 of the flow rate control valve 5 to the pilot flow path 17b.
and the passage 8 of the spool 8a of the slow speed adjustment screw 8.
b to the pilot flow path 17c via the throttle hole 8d.
It leaks out. This outflow amount is expressed by the following formula.
Q12=Q11−(Q9+Q10) ……
ここで、
Q12……背圧12からパイロツト流路17b,1
7cへの流出量
この時、流量制御弁5は主管路18の圧油によ
つて押上げられて弁座6から離れ、スプール部5
bにあけられたオリフイル5cで流入穴15と流
出穴16とが連通し、油圧ジヤツキ1のシリンダ
1aの圧油がタンク20に流出し、ラム1bが下
降することで乗かご2が下降起動する。なお、流
量制御弁5の移動速度は次の式で表わされ、一
定速度である。 Q 12 = Q 11 - (Q 9 + Q 10 ) ... Here, Q 12 ... From the back pressure 12 to the pilot flow path 17b, 1
At this time, the flow rate control valve 5 is pushed up by the pressure oil in the main pipe line 18 and separated from the valve seat 6, and the spool part 5
The inflow hole 15 and the outflow hole 16 communicate with each other through an orifice 5c drilled in b, and the pressure oil in the cylinder 1a of the hydraulic jack 1 flows out into the tank 20, and the ram 1b descends, causing the car 2 to start descending. . Note that the moving speed of the flow rate control valve 5 is expressed by the following equation, and is a constant speed.
V=4×Q12/π×D2 ……
ただし、
V……流量制御弁5の移動速度(cm/sec)
D……ピストン部5aの外形(cm)
π……円周率
流量制御弁5の移動量が増大するのに伴つて流
入穴15に開口するオリフイス5cの面積が増加
するので、シリンダ1aからタンク20へ戻る圧
油の流量が増し、乗かご2は加速して下降する。
この時の加速度は可変調整ねじ11によつて絞り
穴11aの開口面積を変化させ、絞り穴11aか
ら流出する流量を変えることで調整できる。 V=4×Q 12 /π×D 2 ... However, V...Movement speed of flow control valve 5 (cm/sec) D...External dimension of piston portion 5a (cm) π...Pi...Flow rate control valve As the amount of movement of the car 5 increases, the area of the orifice 5c that opens into the inflow hole 15 increases, so the flow rate of pressure oil returning from the cylinder 1a to the tank 20 increases, and the car 2 accelerates and descends.
The acceleration at this time can be adjusted by changing the opening area of the throttle hole 11a using the variable adjustment screw 11 and changing the flow rate flowing out from the throttle hole 11a.
流量制御弁5はピストン部5aの上面が調整ス
トツパ7に当つて阻止されるまで移動すると停止
し、流入穴15に開口するオリフイス5cの面積
が一定になるため、シリンダ1aからタンク20
に戻る圧油の流量が一定となり、乗かご2が一定
の高速度で下降し続ける。また、スロー速調整ね
じ8に嵌まつたスプール8aも流量制御弁5と共
に上方に移動し、絞り穴8dを閉じ、絞り穴8d
からパイロツト流路17cへの圧油の流れを阻止
する。 The flow rate control valve 5 stops when the upper surface of the piston portion 5a hits the adjustment stopper 7 and moves until it is blocked, and since the area of the orifice 5c that opens to the inflow hole 15 is constant, the flow rate from the cylinder 1a to the tank 20 is
The flow rate of the pressure oil returning to 2 becomes constant, and the car 2 continues to descend at a constant high speed. In addition, the spool 8a fitted into the slow speed adjustment screw 8 also moves upward together with the flow rate control valve 5, closing the throttle hole 8d and closing the throttle hole 8d.
This prevents pressure oil from flowing from the pilot flow path 17c to the pilot flow path 17c.
乗かご2が目的とする階床に近づいた時、電磁
弁13の励磁を解き、パイロツト流路17bと1
7dの間の流れを阻止すると、絞り穴9aを通つ
て流入した圧油は出口がなくなり流量制御弁5の
背室12に流入し、背室12の圧力を高める。背
圧12の圧力が次の式を満足させた時に、流量
制御弁5は調整ストツパ7から離れて下方へ移動
する。 When the car 2 approaches the target floor, the solenoid valve 13 is de-energized and the pilot channels 17b and 1
7d, the pressure oil that has flowed in through the throttle hole 9a has no outlet and flows into the back chamber 12 of the flow rate control valve 5, increasing the pressure in the back chamber 12. When the pressure of the back pressure 12 satisfies the following equation, the flow control valve 5 moves downward away from the adjustment stopper 7.
Pp>Pc×d/D2 ……
ただし
Pp……背室12の圧力(Kg/cm2)
Pc……流入穴15の圧力(Kg/cm2)
d……流量制御弁5のスプール部5bの外径
(cm)
D……流量制御弁5のピストン部5aの外径(但
し、D>d)(cm)
流量制御弁5の下方への移動と共に流入穴15
に開口するオリフイス5cの面積が漸減し、油圧
ジヤツキ1のシリンダ1aからタンク20へ戻る
圧油の流量が減少するので、乗かご2は下降速度
が減速する。 P p > P c × d/D 2 ... However, P p ... Pressure in the back chamber 12 (Kg/cm 2 ) P c ... Pressure in the inflow hole 15 (Kg/cm 2 ) d ... Flow rate control valve 5 Outer diameter (cm) of the spool portion 5b of the flow control valve 5 (cm) Outer diameter of the piston portion 5a of the flow control valve 5 (D>d) (cm) As the flow control valve 5 moves downward, the inflow hole 15
Since the area of the orifice 5c that opens to the bottom gradually decreases and the flow rate of the pressure oil returning from the cylinder 1a of the hydraulic jack 1 to the tank 20 decreases, the descending speed of the car 2 decreases.
この減速は可変調整ねじ9によつて絞り穴9a
の開口面積を変化させ、絞り穴9aから流入する
流量を変えることで調整できる。また、流量制御
弁5の下方への移動に伴い、スロー速調整ねじ8
に嵌めたスプール8aも流量制御弁5と共に下方
に移動し、高速下降時にスプール8aで閉じてい
た絞り穴8dが開かれ、絞り穴8dからパイロツ
ト流路17cへの圧油の通路が連通し、絞り穴9
aから背室12への流入量と、背室12からスプ
ール8aの通路8bを通り絞り穴8dを経てパイ
ロツト流路17cへの流出量が等しくなつた時
に、流量制御弁5の移動が停止し、流入穴15に
開口するオリフイス5cの面積が一定になるた
め、シリンダ1aからタンク20に戻る圧油の流
量が一定となり、乗かご2は一定の低速(スロー
速と呼ぶ)で下降し続ける。このスロー速の調整
は、スロー速調整ねじ8によつて絞り穴8dの位
置を弁座6に対し上下に調整し、スプール8aに
よる絞り穴8dの開動作点を変化させることで調
整できる。 This deceleration is controlled by the variable adjustment screw 9 through the throttle hole 9a.
It can be adjusted by changing the opening area of , and changing the flow rate flowing in from the throttle hole 9a. In addition, as the flow rate control valve 5 moves downward, the slow speed adjustment screw 8
The spool 8a fitted in the flow rate control valve 5 also moves downward, and the throttle hole 8d, which was closed by the spool 8a during high-speed descent, is opened, and the pressure oil passage from the throttle hole 8d to the pilot flow path 17c is communicated. Aperture hole 9
When the flow rate from the back chamber 12 to the back chamber 12 becomes equal to the flow rate from the back chamber 12 to the pilot flow path 17c through the passage 8b of the spool 8a and the throttle hole 8d, the movement of the flow rate control valve 5 is stopped. Since the area of the orifice 5c opening into the inflow hole 15 is constant, the flow rate of the pressure oil returning from the cylinder 1a to the tank 20 is constant, and the car 2 continues to descend at a constant low speed (referred to as slow speed). The slow speed can be adjusted by adjusting the position of the throttle hole 8d up or down with respect to the valve seat 6 using the slow speed adjustment screw 8, and by changing the opening point of the throttle hole 8d by the spool 8a.
乗かご2が目的とする階床のごく近くまで接近
した時に、電磁弁14の励磁を解き、パイロツト
流路17cと17dの間の圧油の流れを阻止する
と、絞り穴9a,10aから流入した圧油は出口
がなくなり、すべてが流量制御弁5の背室12に
流入し、流量制御弁5を下方に移動させ、流入穴
15に開口するオリフイス5cの面積がさらに漸
減し、油圧ジヤツキ1のシリンダ1aからタンク
20に戻る流量が減少し、乗かご2は減速する。
流量制御弁5が弁座6に着座すると、流入穴15
から流出穴16への圧油の流れが阻止され、ラム
1bが停止して乗かご2も停止する。 When the car 2 approaches the target floor, the solenoid valve 14 is de-energized to prevent the flow of pressure oil between the pilot passages 17c and 17d, and the pressure oil flows in from the throttle holes 9a and 10a. The pressure oil has no outlet, and all of it flows into the back chamber 12 of the flow control valve 5, moving the flow control valve 5 downward, and the area of the orifice 5c that opens into the inflow hole 15 further gradually decreases, causing the hydraulic jack 1 to move downward. The flow rate returning from the cylinder 1a to the tank 20 decreases, and the car 2 decelerates.
When the flow control valve 5 is seated on the valve seat 6, the inflow hole 15
The flow of pressure oil from the to the outflow hole 16 is blocked, the ram 1b stops, and the car 2 also stops.
上述したような従来の油圧エレベータの下降流
量制御装置では、下降定格速度は流量制御弁5の
オリフイス5cの開口面積と圧油の圧力Pcによつ
て決定される。すなわち、オリフイス5cの開口
面積を決める調整ストツパ7の設定は乗かご2に
最大負荷が作用した時の圧力によつて乗かご2が
定格下降速度になるように調整される。このた
め、乗かご2の負荷が小さい場合には、オリフイ
ス5cを通過する圧油の流量が減少し、乗かご2
の下降速度は所定値よりも遅くなり、運転能率が
低下するという問題点があつた。
In the conventional descending flow rate control device for a hydraulic elevator as described above, the rated descending speed is determined by the opening area of the orifice 5c of the flow rate control valve 5 and the pressure P c of the pressure oil. That is, the setting of the adjustment stopper 7 that determines the opening area of the orifice 5c is adjusted so that the car 2 reaches its rated lowering speed based on the pressure when the maximum load is applied to the car 2. Therefore, when the load on the car 2 is small, the flow rate of pressure oil passing through the orifice 5c decreases, and the car 2
There was a problem that the descending speed of the engine was slower than a predetermined value, resulting in a decrease in operating efficiency.
この発明は、上述した問題点を解決しようとす
るもので、乗かごの負荷などによつて油圧ジヤツ
キにかかる負荷の大小にかかわらず、所定の定格
下降速度が得られ、負荷が小さい場合でも運転能
率が低下しない油圧エレベータの流量制御装置を
提供することを目的としている。 This invention is an attempt to solve the above-mentioned problems.It is possible to obtain a predetermined rated descending speed regardless of the magnitude of the load on the hydraulic jack due to the load of the passenger car, etc., and to operate even when the load is small. It is an object of the present invention to provide a flow control device for a hydraulic elevator that does not reduce efficiency.
この発明に係る油圧エレベータの流量制御装置
は、主管路中に流量計測弁を設け、この流量計測
弁によつて流量制御弁を制御するパイロツト流路
に設けた絞り弁の開度を制御し、上記流量制御弁
の全開開度を負荷に対応して制御するようにした
ものである。
The flow rate control device for a hydraulic elevator according to the present invention includes a flow rate measuring valve provided in a main pipe, and the flow rate measuring valve controlling the opening degree of a throttle valve provided in a pilot flow path that controls a flow rate control valve. The full opening degree of the flow rate control valve is controlled in accordance with the load.
この発明による流量制御装置では、上記流量計
測弁によつて主管路を流れる圧油の流量を計側
し、流量計測弁の動作をパイロツト流路に設けた
上記絞り弁の開度に変換しているので、絞り弁の
開度を圧油の圧力に影響されず流量のみに応答さ
せて制御することができ、したがつて流量制御弁
の全開開度を負荷に対応させて変化させ、油圧エ
レベータの負荷による速度変動をなくすことがで
きる。
In the flow rate control device according to the present invention, the flow rate of the pressure oil flowing through the main pipe is measured by the flow rate measuring valve, and the operation of the flow rate measuring valve is converted into the opening degree of the throttle valve provided in the pilot flow path. As a result, the opening degree of the throttle valve can be controlled in response only to the flow rate without being affected by the pressure of the pressure oil. Therefore, the full opening degree of the flow control valve can be changed in accordance with the load, and the hydraulic elevator Speed fluctuations due to load can be eliminated.
以下、この発明の一実施例を第1図について説
明する。
An embodiment of the present invention will be described below with reference to FIG.
第1図中、第5図と同一符号は相当部分を示
し、21は制御弁ケーシング3と蓋4の間に形成
した圧力室、22は流量計測弁であり、流量計測
弁22は、流量制御弁5と共にこれよりタンク2
0側に配置して、上記ケーシング3に設けた主通
路に臨ませられている。22aは流量計測弁22
に設けられて圧力室21と流出穴16とを連通さ
せる通路穴、23は流量計測弁22に対向してい
る弁座である。24は流量計測弁22とパイロツ
ト流路17fとの間に設けられた絞り弁、24a
は絞り弁24の絞り調整ねじであり、この調整ね
じ24aは、上記ケーシング3の蓋4にねじ嵌合
され、流量計測弁22に設けたスプール24dに
摺動可能に嵌合されている。24bは絞り調整ね
じ24aに設けられ、圧力室21を上記スプール
24d内および絞り調整ねじ24a内に一連に設
けた通路24cを介してパイロツト通路17fと
連通させる絞り穴、22bは流量計測弁22は弁
座23に押圧する圧縮コイルばねである。なお、
パイロツト通路17fは絞り穴11aに連通して
いる。また、この実施例の上述した以外の構成は
第5図に示す従来のものと同様である。 In FIG. 1, the same reference numerals as in FIG. 5 indicate corresponding parts, 21 is a pressure chamber formed between the control valve casing 3 and the lid 4, 22 is a flow rate measuring valve, and the flow rate measuring valve 22 is used for controlling the flow rate. Tank 2 from this with valve 5
It is arranged on the 0 side and faces the main passage provided in the casing 3. 22a is a flow rate measuring valve 22
23 is a valve seat facing the flow rate measuring valve 22. Reference numeral 24 denotes a throttle valve 24a provided between the flow rate measurement valve 22 and the pilot flow path 17f.
is a throttle adjustment screw of the throttle valve 24, and this adjustment screw 24a is threadedly fitted into the lid 4 of the casing 3 and slidably fitted onto a spool 24d provided on the flow rate measuring valve 22. 24b is a throttle hole provided in the throttle adjustment screw 24a and communicates the pressure chamber 21 with the pilot passage 17f via a passage 24c provided in series in the spool 24d and the throttle adjustment screw 24a; It is a compression coil spring that presses against the valve seat 23. In addition,
The pilot passage 17f communicates with the throttle hole 11a. Further, the configuration of this embodiment other than that described above is the same as the conventional one shown in FIG.
次に、以上のように構成された本発明の流量制
御装置の動作について説明する。 Next, the operation of the flow rate control device of the present invention configured as above will be explained.
第1図は第5図と同様電磁弁13,14は消磁
状態で油圧ジヤツキ1のラム1bが停止状態であ
ることを示している。 Similar to FIG. 5, FIG. 1 shows that the electromagnetic valves 13 and 14 are in a demagnetized state and the ram 1b of the hydraulic jack 1 is in a stopped state.
エレベータの乗かご2の下降起動と下降加速は
電磁弁13,14を励磁することで行う。電磁弁
13,14を励磁してこれらを開動作させると、
パイロツト流路17b,17cはパイロツト流路
17dに連通し、パイロツト流路17b,17c
の圧油がパイロツト流路17d、絞り穴11a、
パイロツト流路17f、絞り弁24の絞り調整ね
じ24aに設けた絞り穴24b、通路24c、圧
力室21、通路穴22aを流れて、流出穴16か
ら主管路19を通りタンク20に流出する。 Starting and accelerating the elevator car 2 to descend is performed by energizing the solenoid valves 13 and 14. When the solenoid valves 13 and 14 are energized and opened,
The pilot channels 17b, 17c communicate with the pilot channel 17d, and the pilot channels 17b, 17c communicate with the pilot channel 17d.
Pressure oil flows through the pilot flow path 17d, the throttle hole 11a,
It flows through the pilot channel 17f, the throttle hole 24b provided in the throttle adjustment screw 24a of the throttle valve 24, the passage 24c, the pressure chamber 21, and the passage hole 22a, and flows out from the outflow hole 16 through the main pipe 19 to the tank 20.
同時に、流入穴15からパイロツト流路17a
を通り、絞り穴9a,10aを経てパイロツト流
路17b,17cにも圧油が流入する。 At the same time, the pilot channel 17a is opened from the inflow hole 15.
Pressure oil also flows into the pilot channels 17b, 17c via the throttle holes 9a, 10a.
上記パイロツト流路17b,17c,17fの
流量を可変調整ねじ9,10,11によつて絞り
穴9a,10a,11aの開口面積を変えて、上
述した従来のものと同様に上記式の関係になる
ように調整する。つまり、流入穴15からパイロ
ツト流路17b,17cへの流入量よりも、パイ
ロツト流路17b,17cからの流出穴16側へ
の流出量が大きくなるように調整する。 The flow rates of the pilot flow paths 17b, 17c, and 17f are adjusted to the relationship of the above formula by changing the opening areas of the throttle holes 9a, 10a, and 11a using the variable adjustment screws 9, 10, and 11, as in the conventional system described above. Adjust accordingly. In other words, the adjustment is made so that the amount of outflow from the pilot channels 17b, 17c to the outflow hole 16 side is greater than the amount of inflow from the inflow hole 15 to the pilot channels 17b, 17c.
上記流入量と流出量との流量差の圧油が、流量
制御弁5の背室12から、パイロツト流路17b
と、スロー速調整ねじ8のスプール8aの通路8
bを通り絞り穴8dを経てパイロツト流路17c
とに流出する。この流出量は、上記式のように
なる。 The pressure oil having the flow rate difference between the inflow amount and the outflow amount is transferred from the back chamber 12 of the flow control valve 5 to the pilot flow path 17b.
and the passage 8 of the spool 8a of the slow speed adjustment screw 8.
b to the pilot flow path 17c via the throttle hole 8d.
It leaks out. This outflow amount is expressed by the above formula.
この時、流量制御弁5は主管路18の圧油によ
つて上方に押上げられて弁座6から離れ、スプー
ル部5bのオリフイス5cで流入穴15と主通路
25とが連通し、油圧ジヤツキ1のシリンダ1a
の圧油が主通路25に流入する。主通路25に流
入した圧油は流量計測弁22に作用し、これを上
方に押し開こうとする力になる。この力が流量計
測弁22を押下げる方向に作用している圧縮コイ
ルばね22bの押圧力より大きくなつた時、流量
計測弁22が弁座23から離れ、主通路25と流
出穴16とが連通し、圧油がタンク20に流出す
ることになり、シリンダ1aの圧油はタンク20
に流出し、ラム1bが下降し、乗かご2が下降起
動する。 At this time, the flow rate control valve 5 is pushed upward by the pressure oil in the main pipe line 18 and separated from the valve seat 6, and the inflow hole 15 and the main passage 25 communicate with each other through the orifice 5c of the spool portion 5b, and the hydraulic jack 1 cylinder 1a
pressure oil flows into the main passage 25. The pressure oil flowing into the main passage 25 acts on the flow rate measuring valve 22 and becomes a force that tries to push it open upward. When this force becomes larger than the pressing force of the compression coil spring 22b acting in the direction of pushing down the flow rate measurement valve 22, the flow rate measurement valve 22 separates from the valve seat 23, and the main passage 25 and the outflow hole 16 communicate with each other. However, the pressure oil will flow into the tank 20, and the pressure oil in the cylinder 1a will flow into the tank 20.
The ram 1b descends, and the car 2 starts to descend.
流量制御弁5の移動量が増すにつれて流入穴1
5に開口するオリフイス5cの面積が増加すると
共に、流量計測弁22の変位量も増加し、シリン
ダ1aからタンク20に流出する圧油の流量が増
加し、乗かご2は下降加速する。この加速度は、
可変調整ねじ11によつて絞り穴11aの開口面
積を変化させ、絞り穴11aから流出する圧油の
流量を変えることで調整できる。 As the amount of movement of the flow control valve 5 increases, the inflow hole 1
As the area of the orifice 5c opening in the cylinder 5 increases, the amount of displacement of the flow rate measuring valve 22 also increases, the flow rate of the pressure oil flowing out from the cylinder 1a to the tank 20 increases, and the car 2 accelerates downward. This acceleration is
Adjustment can be made by changing the opening area of the throttle hole 11a using the variable adjustment screw 11 and changing the flow rate of the pressure oil flowing out from the throttle hole 11a.
なお、流量計測弁22の変位に伴い絞り弁24
のスプール24dも変位し、絞り調整ねじ24a
の絞り穴24bの開口面積を縮少して行く。絞り
穴24bの開口面積が縮少すると、絞り穴11a
から流出穴16側への圧油の流出量Q11は減少
し、Q11=Q9+Q10(Q9、Q10は絞り穴9a,10
aからの圧油の流出量)点に達すると、上記式
のQ12の流量が零となり、背室12の厚油の体積
変化がなくなり流量制御弁5は停止する。 Note that as the flow rate measurement valve 22 is displaced, the throttle valve 24
The spool 24d is also displaced, and the aperture adjustment screw 24a
The opening area of the aperture hole 24b is reduced. When the opening area of the aperture hole 24b decreases, the aperture hole 11a
The amount Q 11 of pressure oil flowing from the outlet to the outlet hole 16 side decreases, and Q 11 = Q 9 + Q 10 (Q 9 and Q 10 are
When the flow rate of pressurized oil from a) reaches the point, the flow rate of Q12 in the above equation becomes zero, there is no change in the volume of the thick oil in the back chamber 12, and the flow rate control valve 5 stops.
この制御時のパイロツト流路の流量Q9、Q10、
Q11は、いずれも流入穴15の圧力Pcおよび背室
12の圧力Ppと各絞り穴9a,10a,11a
および24bの面積の関数で決まり、Pp≒0.5Pc
になるように流量制御弁5のピストン部5aの外
径Dおよびスプール部5bの外径dを求め、流入
穴15のある圧力において絞り穴9a,10a,
11a、および24bを適切に設定すれば、Q11
=Q9+Q10となる点は流入穴15の圧力が変化し
た場合でも、絞り穴24bの同一点となり、流入
穴15の圧力変化には影響されず、流量計測弁2
2を通過する流量のみで決まるようにすることが
でき、このようにすることで、乗かご2は負荷の
大小に左右されず、所定の下降速度で下降する。 The flow rate of the pilot flow path during this control is Q 9 , Q 10 ,
Q 11 is the pressure P c of the inflow hole 15, the pressure P p of the back chamber 12, and each throttle hole 9a, 10a, 11a.
It is determined by the function of the area of and 24b, P p ≒0.5P c
The outer diameter D of the piston part 5a and the outer diameter d of the spool part 5b of the flow control valve 5 are determined so that at a certain pressure of the inflow hole 15, the throttle holes 9a, 10a,
If 11a and 24b are set appropriately, Q 11
Even if the pressure in the inflow hole 15 changes, the point where =Q 9 +Q 10 remains the same point in the throttle hole 24b, and is not affected by the pressure change in the inflow hole 15, and the flow measurement valve 2
By doing so, the car 2 is lowered at a predetermined lowering speed regardless of the magnitude of the load.
この制御を数式で説明すると、パイロツト流量
Q9、Q10、Q11は
となる。ただし、
A9……可変調整ねじ9で絞られた絞り穴9aの
面積(cm2)
A10……可変調整ねじ10で絞られた絞り穴10
aの面積(cm2)
A11……可変調整ねじ11で絞られた絞り穴11
aの面積(cm2)
A24……スプール24dで絞られた絞り穴24b
の面積(cm3)
C……流量係数
γ……流体の比重(Kg/cm3)
g……重力加速度(cm/sec2)
である。 To explain this control mathematically, the pilot flow rate is
Q 9 , Q 10 , Q 11 are becomes. However, A 9 ...Area of the aperture hole 9a narrowed by the variable adjustment screw 9 (cm 2 ) A 10 ...Area of the aperture hole 10 squeezed by the variable adjustment screw 10
Area of a (cm 2 ) A 11 ... Throttle hole 11 squeezed by variable adjustment screw 11
Area of a (cm 2 ) A 24 ...Aperture hole 24b squeezed by spool 24d
area (cm 3 ) C: flow coefficient γ: specific gravity of fluid (Kg/cm 3 ) g: gravitational acceleration (cm/sec 2 ).
ここで、Pp=0.5Pcとして流入量Q9+Q10が流出
量Q11と等しくなる条件式は、次式
となる。 Here, the conditional expression that the inflow amount Q 9 + Q 10 is equal to the outflow amount Q 11 with P p = 0.5P c is as follows. becomes.
上記式は、圧力の項がなくなり、流入量と流
出量とが同量なる点は各絞り穴9a,10a,1
1a,24bのみで決まることを示している。そ
して、A9、A10、A11はある圧力で調整した後は
変化しない絞りであるため、上記点はA24の絞り
穴24aの絞りのみで決まることになる。 In the above equation, the point where the pressure term is eliminated and the inflow and outflow amounts are the same is that each throttle hole 9a, 10a, 1
This shows that it is determined only by 1a and 24b. Since A 9 , A 10 , and A 11 are throttles that do not change after being adjusted to a certain pressure, the above point is determined only by the throttle of the throttle hole 24a of A 24 .
更に、背室12の圧力Ppと流入穴15の圧力
Pcの関係について詳述する。 Furthermore, the pressure P p in the back chamber 12 and the pressure in the inflow hole 15
The relationship between P c will be explained in detail.
背室12の圧力Ppと流入穴15の圧力Pcの関
係が、Pp=0.5Pcになるように流量制御弁5の形
状を決定する。このことは、流量制御弁5で背室
圧力Ppの作用する面積を流入穴15の圧力HPcの
作用する面積の2倍とすることである。 The shape of the flow control valve 5 is determined so that the relationship between the pressure P p in the back chamber 12 and the pressure P c in the inflow hole 15 is P p =0.5P c . This means that the area on which the back chamber pressure P p acts in the flow rate control valve 5 is twice the area on which the pressure HP c in the inflow hole 15 acts.
Pp=0.5Pcであれば流入量Q9+Q10が流出量Q11
と等しくなる条件は式で表現される。 If P p = 0.5P c , the inflow Q 9 + Q 10 is the outflow Q 11
The condition for equality is expressed as an expression.
即ち、流入穴15の圧力Pcの大小に関係なく、
Q11=Q9+Q10になるときは、スプール24dで
絞られたり絞り穴24bの面積は一定となること
を意味し、構造上、流量計測弁22の開度は流量
によつてのみ変化し、流量が小さいと開度は小さ
く、流量が大きい開度も大きくなる。 That is, regardless of the magnitude of the pressure P c in the inflow hole 15,
When Q 11 = Q 9 + Q 10 , it means that the area of the spool 24d and the throttle hole 24b is constant, and due to the structure, the opening degree of the flow rate measurement valve 22 changes only depending on the flow rate. , when the flow rate is small, the opening degree is small, and when the flow rate is high, the opening degree is also large.
例えば、今、乗りかごに負荷11が作用してい
るとすると、下降運転の加速走行をする場合に絞
り穴24bの面積は大きく開いているため、Q11
>Q9+Q10の関係となつている。このため、流量
制御弁5が徐々に開口する。作動油は流量制御弁
5を通過し、流量計測弁22の圧縮コイルばね2
2bの押し付け力に打ち勝つて、流量計測弁22
を開口させる。流量計測弁22が開いていくと、
絞り穴24bが絞られていき、ある開度A24にな
つたときに、Q11=Q9+Q10の関係となる。この
とき、流量制御弁5の背室12から作動油が流出
できなくなり、流量制御弁5の開度は固定とな
る。 For example, if the load 11 is currently acting on the car, the area of the throttle hole 24b is wide open when accelerating downward driving, so Q 11
The relationship is >Q 9 + Q 10 . Therefore, the flow rate control valve 5 gradually opens. The hydraulic oil passes through the flow rate control valve 5 and is compressed by the compression coil spring 2 of the flow rate measurement valve 22.
Overcoming the pressing force of 2b, the flow rate measuring valve 22
to open. As the flow rate measurement valve 22 opens,
When the throttle hole 24b is gradually narrowed and reaches a certain opening degree A24 , the relationship Q11 = Q9 + Q10 is established. At this time, the hydraulic oil cannot flow out from the back chamber 12 of the flow control valve 5, and the opening degree of the flow control valve 5 becomes fixed.
また、乗りかごに前者と異なる負荷L2が作用
したとする。前者と同様に、下降運転の加速走行
時に流量制御弁5が徐々に開口し、流量計測弁2
2も開口する。流量計測弁22が開いていくと、
絞り穴24bが絞られていき、ある開度A24にな
つたときに、Q11=Q9+Q10となるときは、スプ
ール24bで絞られた絞り穴24bの面積は圧力
(負荷)に関係なく一定となり、流量計測弁22
の開度も一定となる。流量計測弁22の開度が負
荷L1のときと同一であるということは、流量計
測弁22を通過する流量も負荷L1のときと同一
である。 It is also assumed that a load L2 different from the former is applied to the car. Similar to the former, the flow rate control valve 5 gradually opens during acceleration during descending operation, and the flow rate measurement valve 2 opens gradually.
2 is also opened. As the flow rate measurement valve 22 opens,
When the throttle hole 24b is narrowed and reaches a certain opening A 24 , Q 11 =Q 9 +Q 10 , the area of the throttle hole 24b narrowed by the spool 24b is related to the pressure (load). The flow rate becomes constant and the flow rate measurement valve 22
The opening degree of is also constant. The fact that the opening degree of the flow rate measurement valve 22 is the same as that at the time of the load L1 means that the flow rate passing through the flow rate measurement valve 22 is also the same as at the time of the load L1.
結果的に、負荷L1と負荷L2の大きさに無関係
に、下降運転の高速走行速度は一定となる。 As a result, the high-speed traveling speed during descending operation remains constant regardless of the magnitudes of load L1 and load L2.
したがつて、一定速度の高速走行中に、乗りか
ごを揺すつたりして負荷を変化させたとき、この
とき、負荷(圧力)が大きくなつたと仮定する
と、流量制御弁5を通過する流量が大きくなり、
乗りかごの走行速度が大きくなり、流量計測弁2
2の開度が大きくなる。これにより絞り穴24b
の面積が小さくなり、Q11<Q9+Q10の関係とな
り、流入量が流出量より大きくなるため、その差
分は流量制御弁5の背室12に流入し、流量制御
弁5の開度を閉じる方向に移動する。このため、
流量制御弁5を通過する流量が抑制され、乗りか
ごの走行速度が抑制され、一定速度の高速走行速
度に戻る。高速走行速度が元に戻ると流量計測弁
22の開度も元の位置に戻り安定状態となる。ま
た、逆に負荷(圧力)が小さくなつた場合は、逆
の動作となり、同様に、高速走行速度は元の状態
に戻る。 Therefore, when the load is changed by shaking the car while traveling at a constant high speed, assuming that the load (pressure) increases at this time, the flow rate passing through the flow rate control valve 5 will decrease. becomes larger,
The traveling speed of the car increases, and the flow rate measurement valve 2
The opening degree of 2 becomes larger. As a result, the aperture hole 24b
area becomes smaller, and the relationship Q 11 <Q 9 +Q 10 is established, and the inflow amount becomes larger than the outflow amount, so the difference flows into the back chamber 12 of the flow rate control valve 5 and changes the opening degree of the flow rate control valve 5. Move in the closing direction. For this reason,
The flow rate passing through the flow rate control valve 5 is suppressed, and the running speed of the car is suppressed, returning to a constant high speed running speed. When the high-speed running speed returns to the original state, the opening degree of the flow rate measuring valve 22 also returns to its original position, resulting in a stable state. On the other hand, when the load (pressure) decreases, the operation is reversed and the high-speed running speed returns to the original state.
また、流量制御弁5の移動速度はQ12の減少に
伴つて漸次変化し、第2図Aに示す従来のものと
同様なオリフイス形状で、上記移動速度が変速
し、第2図Cに示す加速波形が得られ、加速終了
時の加速度波形が滑らかに制御される。なお、第
2図Bは従来の流量制御弁の移動速度が等速の場
合の加速度波形を示す。 Further, the moving speed of the flow rate control valve 5 changes gradually as Q 12 decreases, and the moving speed changes as shown in FIG. 2C with an orifice shape similar to the conventional one shown in FIG. 2A. An acceleration waveform is obtained, and the acceleration waveform at the end of acceleration is smoothly controlled. Note that FIG. 2B shows an acceleration waveform when the moving speed of the conventional flow control valve is constant.
以下、減速、停止動作は、上述した従来のもの
と同様である。 Hereinafter, the deceleration and stopping operations are the same as those of the prior art described above.
この実施例では、従来のものは流量制御弁の移
動速度が一定速度であるために乗心地を決定する
加減速度がオリフイスの面積変化率によつて決ま
り良好な加減速度特性を得るには上記オリフイス
が複雑な形状になることと、制御流量と圧力に多
くの種類を必要とし高価なるのを、流量制御弁の
移動速度が変速することにより、安価で良好な加
減速度特性が得られる。 In this embodiment, in the conventional type, the movement speed of the flow control valve is constant, so the acceleration/deceleration that determines riding comfort is determined by the area change rate of the orifice, and in order to obtain good acceleration/deceleration characteristics, the above-mentioned orifice The valve has a complicated shape and requires many types of controlled flow rates and pressures, making it expensive. However, by changing the moving speed of the flow rate control valve, good acceleration/deceleration characteristics can be obtained at low cost.
上述した実施例では、スロー速調整ねじ部を従
来のものと同様な流量制御弁5の動きによつて動
作するものにしたが、この発明は、スロー速調整
ねじ部を流量計測弁の動きによつて動作するよう
にしてもよい。 In the embodiment described above, the slow speed adjusting screw part was operated by the movement of the flow rate control valve 5 similar to the conventional one, but in the present invention, the slow speed adjusting screw part is operated by the movement of the flow rate measuring valve. It may also be made to operate by tilting it.
第3図、第4図はスロー速調整ねじ部の動作を
流量計測弁の動きで動作させるようにしたこの発
明の他の実施例を示す。 FIGS. 3 and 4 show another embodiment of the present invention in which the slow speed adjusting screw portion is operated by the movement of a flow rate measuring valve.
第3図、第4図中、第1図と同一符号は相当部
分を示し、第4図中、26は左、右に配設したス
ロー速調整ねじ8、絞り弁24の絞り調整ねじ2
4aに嵌められて絞り穴8d,24bを絞るため
の切欠部8e,24eが左右端部に設けられた
軸、27,28は適当な弾性を有するシール材、
第3図中、29は軸26から突出したレバー、3
0は流量計測弁22の動作をレバー29に伝達す
るためのリンクである。8f,24fはスロー速
調整ねじ8、絞り調整ねじ24aをセツト位置に
保持するための保持金具、8g,24gは保持金
具8f,24fを締付ける取付ねじである。第3
図のパイロツト流路17g,17h,17iは、
第4図のパイロツト流路17j,17k,17l
にそれぞれ連通されている。なお、第3図、第4
図に示す実施例の上述した以外の構成は第1図に
示す実施例と同様である。 In FIGS. 3 and 4, the same reference numerals as in FIG. 1 indicate corresponding parts, and in FIG.
4a to narrow the throttle holes 8d and 24b, the shaft has cutouts 8e and 24e on the left and right ends; 27 and 28 are sealing materials having appropriate elasticity;
In FIG. 3, 29 is a lever protruding from the shaft 26;
0 is a link for transmitting the operation of the flow rate measuring valve 22 to the lever 29. 8f and 24f are holding fittings for holding the slow speed adjusting screw 8 and the aperture adjusting screw 24a at set positions, and 8g and 24g are mounting screws for tightening the holding fittings 8f and 24f. Third
The pilot channels 17g, 17h, 17i in the figure are
Pilot channels 17j, 17k, 17l in Fig. 4
are connected to each other. In addition, Figures 3 and 4
The configuration of the embodiment shown in the figure other than that described above is the same as that of the embodiment shown in FIG.
第3図、第4図に示す実施例では、流量計測弁
22の動作がリンク30、レバー29を主要部材
とするリンク機構によつて直線運動から回転運動
に変換すると共に縮少して軸26に伝達され、軸
26の回動によつて絞り穴8d,24bの開口面
積が変えられるため、より滑らかな制御ができ、
またスロー速調整も流量計測弁22の開度によつ
て決定されるので負荷による影響を受けず、良好
な運転特性が得られる。なお、この実施例の上述
した以外の動作および作用は第1図に示すものと
同様である。 In the embodiment shown in FIGS. 3 and 4, the operation of the flow rate measuring valve 22 is converted from a linear motion to a rotational motion by a link mechanism including a link 30 and a lever 29 as main members, and is contracted and rotated toward a shaft 26. Since the opening areas of the aperture holes 8d and 24b are changed by the rotation of the shaft 26, smoother control is possible.
Furthermore, since the slow speed adjustment is determined by the opening degree of the flow rate measuring valve 22, it is not affected by the load and good operating characteristics can be obtained. The operations and effects of this embodiment other than those described above are the same as those shown in FIG.
以上説明したとおり、この発明は、主管路の流
量を計測する流量計測弁と、これに対応して動作
してパイロツト流量を制御する絞り弁とを備え、
乗かごの負荷の変動に対応して流量制御弁の開度
を変化させ、乗かごの負荷量に関係なく所定の下
降速度が得られるので、運転効率のよい油圧エレ
ベータの流量制御装置を提供できるという効果が
ある。
As explained above, the present invention includes a flow rate measurement valve that measures the flow rate of the main pipe, and a throttle valve that operates in accordance with the flow rate measurement valve to control the pilot flow rate.
The opening degree of the flow control valve is changed in response to changes in the car load, and a predetermined descending speed can be obtained regardless of the car load, making it possible to provide a hydraulic elevator flow control device with high operating efficiency. There is an effect.
第1図はこの発明の一実施例による油圧エレベ
ータの下降用流量制御装置を示す展開断面図、第
2図Aは流量制御弁のオリフイス形状を示す図、
第2図BおよびCは従来の装置およびこの発明の
装置の加速度波形を示す図、第3図はこの発明の
他の実施例による下降用流量制御装置を示す展開
断面図、第4図は同絞り弁部の断面図、第5図は
従来の油圧エレベータの下降用流量制御装置を示
す展開断面図である。
1……油圧ジヤツキ、2……乗かご、5……流
量制御弁、8……スロー速調整ねじ、9,10,
11……可変調整ねじ、12……背室、13,1
4……電磁弁、15……流入穴、16……流出
穴、17……パイロツト流路、18,19……主
管路、20……タンク、22……流量計測弁、2
4……絞り弁、24a……絞り調整ねじ、25…
…主通路。なお、図中同一符号は同一または相当
部分を示す。
FIG. 1 is a developed sectional view showing a descending flow rate control device for a hydraulic elevator according to an embodiment of the present invention, FIG. 2A is a view showing the orifice shape of a flow rate control valve,
2B and C are diagrams showing acceleration waveforms of the conventional device and the device of the present invention, FIG. 3 is a developed sectional view showing a descending flow rate control device according to another embodiment of the present invention, and FIG. 4 is the same. A cross-sectional view of the throttle valve portion, and FIG. 5 is a developed cross-sectional view showing a conventional descending flow rate control device for a hydraulic elevator. 1... Hydraulic jack, 2... Car, 5... Flow rate control valve, 8... Slow speed adjustment screw, 9, 10,
11...Variable adjustment screw, 12...Back chamber, 13,1
4...Solenoid valve, 15...Inflow hole, 16...Outflow hole, 17...Pilot channel, 18, 19...Main pipe line, 20...Tank, 22...Flow rate measurement valve, 2
4... Throttle valve, 24a... Throttle adjustment screw, 25...
...Main passage. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
圧ジヤツキに圧油を供給排出する主管路と、前記
主管路に配設した流量制御弁とを有し、前記主管
路の圧油の流量を流通制御して前記油圧ジヤツキ
の動作を制御する油圧エレベータの流量制御装置
において、 前記主管路中に圧油の流量に応じて開度が変化
する流量計測弁を設け、この流量計測弁の動作に
よつて開度が変化する絞り弁を前記流量制御弁の
パイロツト流路に設け、前記絞り弁によるパイロ
ツト流量の制御で流量制御弁の全開開度を決定す
るようにしたことを特徴とする油圧エレベータの
流量制御装置。 2 前記流量制御弁は、油圧エレベータの下降用
流量制御弁であつて、全開開度をパイロツト流量
の流入量と流出量とのバランスによつて制御する
ようにした特許請求の範囲第1項に記載の油圧エ
レベータの流量制御装置。 3 前記流量制御弁は、絞り弁の絞り穴の面積変
化によつて変位速度が変化するようにした特許請
求の範囲第1項または第2項に記載の油圧エレベ
ータの流量制御装置。[Scope of Claims] 1. A hydraulic jack to which a car is attached, a main pipe line for supplying and discharging pressure oil to the hydraulic jack, and a flow control valve disposed in the main pipe line, wherein the pressure of the main pipe line is In a flow rate control device for a hydraulic elevator that controls the flow rate of oil to control the operation of the hydraulic jack, a flow rate measuring valve whose opening degree changes depending on the flow rate of pressure oil is provided in the main pipe, and this flow rate measurement valve is provided in the main pipe. A throttle valve whose opening degree changes depending on the operation of the valve is provided in the pilot flow path of the flow control valve, and the full opening degree of the flow control valve is determined by controlling the pilot flow rate by the throttle valve. Flow control device for hydraulic elevators. 2. The flow control valve is a flow control valve for lowering a hydraulic elevator, and the degree of full opening is controlled by the balance between the inflow and outflow of the pilot flow. Flow control device for a hydraulic elevator as described. 3. The flow rate control device for a hydraulic elevator according to claim 1 or 2, wherein the flow rate control valve has a displacement speed that changes depending on a change in area of a throttle hole of the throttle valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60019531A JPS61180002A (en) | 1985-02-04 | 1985-02-04 | Flow-rate control equipment for hydraulic elevator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60019531A JPS61180002A (en) | 1985-02-04 | 1985-02-04 | Flow-rate control equipment for hydraulic elevator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61180002A JPS61180002A (en) | 1986-08-12 |
JPH0524069B2 true JPH0524069B2 (en) | 1993-04-06 |
Family
ID=12001915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60019531A Granted JPS61180002A (en) | 1985-02-04 | 1985-02-04 | Flow-rate control equipment for hydraulic elevator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61180002A (en) |
-
1985
- 1985-02-04 JP JP60019531A patent/JPS61180002A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61180002A (en) | 1986-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3285302B2 (en) | Attenuator | |
JP3182398B2 (en) | Guide electromagnetic control valve and hydraulic control device using the same | |
JPH0356334B2 (en) | ||
JPH0660700B2 (en) | Closed loop proportional solenoid valve for hydraulic control | |
US3977497A (en) | Hydraulic elevator drive system | |
JPH0134814B2 (en) | ||
JPH0615881B2 (en) | Liquid pressure controller | |
JPH0718446B2 (en) | Fluid safety brake valve device | |
JP2691741B2 (en) | Electromagnetically operable valve device | |
JPS6288785A (en) | Drive controller for hydraulic type elevator | |
JPH0524069B2 (en) | ||
JP4658274B2 (en) | Control valve | |
CA2032439C (en) | Control valve for a hydraulic elevator | |
JPH109327A (en) | Damping force regulating type hydraulic shock absorber | |
US3020892A (en) | Constant flow valve assembly | |
US3707166A (en) | Unit valve for hydraulic elevator control | |
US5156080A (en) | Control valve for a hydraulic elevator | |
EP0539438A1 (en) | A damper unit. | |
JPH0645682Y2 (en) | Cylinder control device | |
JPH0353289Y2 (en) | ||
JPH0244140Y2 (en) | ||
US2980073A (en) | Fluid control means | |
JPH03239830A (en) | Damping force adjusting valve | |
JPS6150185B2 (en) | ||
JPH0623446Y2 (en) | Hydraulic shock absorber |