JPH05240252A - Heavy-duty multilayered lead bronze bearing - Google Patents

Heavy-duty multilayered lead bronze bearing

Info

Publication number
JPH05240252A
JPH05240252A JP4367992A JP4367992A JPH05240252A JP H05240252 A JPH05240252 A JP H05240252A JP 4367992 A JP4367992 A JP 4367992A JP 4367992 A JP4367992 A JP 4367992A JP H05240252 A JPH05240252 A JP H05240252A
Authority
JP
Japan
Prior art keywords
layer
lead
alloy
bearing
bronze bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4367992A
Other languages
Japanese (ja)
Other versions
JPH0819945B2 (en
Inventor
Tadashi Tanaka
正 田中
Masaaki Sakamoto
雅昭 坂本
Koichi Yamamoto
康一 山本
Yoshikazu Fujisawa
義和 藤沢
Makoto Tsuji
誠 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Daido Metal Co Ltd
Original Assignee
Honda Motor Co Ltd
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Daido Metal Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP4367992A priority Critical patent/JPH0819945B2/en
Publication of JPH05240252A publication Critical patent/JPH05240252A/en
Publication of JPH0819945B2 publication Critical patent/JPH0819945B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve fatigue resistance by using a specified sintered material as the lead bronze bearing alloy layer of a plain bearing of three-layer structure consisting of a steel back plate, the lead bronze bearing alloy layer, and a lead alloy overlay, and specifying the refining ratio and Vickers hardness of the Pb phase dispersed in the layer section tissue. CONSTITUTION:As the lead bronze bearing alloy layer of a plain bearing of three-layer structure consisting of a steel back plate, the lead bronze bearing alloy layer and a lead alloy overlay, the sintered material of a preliminarily allowed powder consisting of 5-9wt.% of Sn, 15-25wt.% of Pb, and the remainder Cu is used. The dimension of Pb particles dispersed in the Cu-Sn matrix of its layer section tissue is set to 0.1% or less in Pb phase refining ratio represented by an equation I when the whole area is 0.1mm<2>, and its Vickers hardness is set to 100 or more. Sn is alloyed with Cu to enhance the strength of the matrix, Pb has lubricating effect, and the alloy layer strength is more improved as the Pb phase refining ratio is more finely dispersed. Thus, load resistance and fatigue resistance are improved, and the bearing can be utilized for a high output engine. Pb particle total area x 100.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、すべり軸受に関するも
のであり、特に近年の自動車エンジンの高出力化により
苛酷な条件下にて使用される軸受の耐疲労性向上を目的
とした多層鉛青銅軸受材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plain bearing, and more particularly, to a multi-layer lead bronze for the purpose of improving fatigue resistance of a bearing used under severe conditions due to the recent high output of automobile engines. The present invention relates to bearing materials.

【0002】[0002]

【従来の技術】従来、自動車エンジンの回転軸を受ける
メイン軸受またはコンロッド軸受として、高速あるいは
高荷重条件下においては鋼裏金、銅鉛あるいは鉛青銅軸
受合金層、および鉛合金オーバーレイの三層から構成さ
れる材料が使用されている。代表的な軸受合金として
は、Cu−23〜27wt%Pbや、また耐食性や耐疲
労性向上の目的でこれらに少量のSnを添加したCu−
21〜25%Pb−1〜4%Snなどがあり、これらの
合金が鋼裏金上に焼結や鋳造により厚さ0.2〜0.4
mmにてラインニングされている。また軸受表面のなじみ
性や耐食性を補うために、Pb−Sn−Cu系、Pb−
Sn−In系などの鉛合金オーバーレイが厚さ10〜3
0μmにて軸受合金にめっきされている。この鉛合金オ
ーバーレイ中のSnやInが下地の軸受合金中へ拡散移
動していくことを阻止するため、鉛合金オーバーレイと
軸受合金の間にNiなどのめっき層を設けることもあ
る。さらに軸受の最表面には防錆の目的でSnなどの極
薄いめっき層が施されている場合もある。
2. Description of the Related Art Conventionally, as a main bearing or a connecting rod bearing for receiving a rotating shaft of an automobile engine, it is composed of three layers of steel back metal, copper lead or lead bronze bearing alloy layer, and lead alloy overlay under high speed or high load conditions. Materials are used. Typical bearing alloys are Cu-23 to 27 wt% Pb, and Cu-containing a small amount of Sn for the purpose of improving corrosion resistance and fatigue resistance.
21-25% Pb-1-4% Sn, etc., and these alloys have a thickness of 0.2-0.4 by sintering or casting on a steel backing.
It is lined up in mm. In addition, in order to supplement the conformability and corrosion resistance of the bearing surface, Pb-Sn-Cu system, Pb-
The thickness of the lead alloy overlay such as Sn-In is 10 to 3
The bearing alloy is plated at 0 μm. In order to prevent Sn and In in the lead alloy overlay from diffusing into the underlying bearing alloy, a plating layer such as Ni may be provided between the lead alloy overlay and the bearing alloy. Further, the outermost surface of the bearing may be coated with an extremely thin plating layer such as Sn for the purpose of rust prevention.

【0003】[0003]

【発明が解決しようとする課題】自動車エンジンの高性
能化の一環として、高回転化、DOHC化、多バルブ化
などにより高出力化が進められている。そのためエンジ
ン軸受にかかる負荷はますます増大し、また小型化軽量
化のために軸受内径および幅を小さくすることも加わ
り、より一層の高面圧が軸受に負荷されるようになって
きた。したがって従来の多層銅鉛あるいは鉛青銅軸受に
対しても負荷能力の向上が求められ、軸受の疲労強度が
高いことが必要なことから従来より高強度な軸受材料が
必要となっている。本発明の目的は、このような高出力
化エンジンに使用できる耐疲労性に優れた軸受材料を提
供することにある。
As part of improving the performance of automobile engines, higher output is being promoted by increasing the rotation speed, increasing the DOHC, and increasing the number of valves. Therefore, the load applied to the engine bearing is further increased, and the inner diameter and width of the bearing are reduced in order to reduce the size and weight of the bearing, and a higher surface pressure is being applied to the bearing. Therefore, the conventional multi-layered copper-lead or lead-bronze bearing is required to have improved load capacity, and the fatigue strength of the bearing is required to be high. An object of the present invention is to provide a bearing material having excellent fatigue resistance that can be used in such a high-power engine.

【0004】[0004]

【課題を解決するための手段】本発明は、上記目的を達
成させるため鋼裏金、鉛青銅軸受合金層および鉛合金オ
ーバーレイ三層構造からなるすべり軸受において、鉛青
銅軸受合金層がSn5〜9wt%、Pb15〜25wt
%、残部Cuの成分に予め合金化された粉末の焼結材料
からなり、さらに鉛青銅軸受合金層断面組織のCu−S
nマトリックス相中に分散するPb粒の大きさが
In order to achieve the above object, the present invention provides a sliding bearing comprising a steel back metal, a lead bronze bearing alloy layer and a lead alloy overlay three-layer structure, in which the lead bronze bearing alloy layer is Sn 5 to 9 wt%. , Pb 15-25 wt
%, The balance is Cu, which is made of a sintered material of powder which is alloyed in advance with the composition of Cu, and further has a cross-sectional structure of a lead bronze bearing alloy layer of Cu-S.
The size of Pb particles dispersed in the n matrix phase is

【式2】 の式で表されるPb相微細化率に於いて、全体の面積を
0.1mm2 とした時に0.1%以下であり、その鉛青銅
軸受合金のビッカース硬さが100以上であることによ
り達成される。この場合に、焼結材料製造時の焼結温度
が低いほどPb粒がより微細化するため、鉛青銅軸受合
金層と鋼裏金との境界に厚さ10μm以下の銅または銅
合金めっき層を施し、低い焼結温度においても両層の接
着力を確保することにより、Pb粒の微細化率を0.0
5%以下にすることも可能である。 また、鉛合金オー
バーレイ中の成分の一部が鉛青銅軸受合金層中に拡散す
ることを抑制するために、両層の境界に厚さ5μm以下
のNi,Co,Agまたはこれらの合金のめっき層が施
されることが望ましい。さらに軸受最表面の防錆処理と
して、鉛合金オーバーレイおよび鋼裏金の表面に厚さ3
μm以下のSn,Pbまたはこれらの合金のめっき層を
施すことが望ましい。
[Formula 2] In the Pb phase refinement ratio represented by the formula, it is 0.1% or less when the entire area is 0.1 mm 2, and the Vickers hardness of the lead bronze bearing alloy is 100 or more. To be achieved. In this case, since the Pb grains become finer as the sintering temperature during the production of the sintered material is lower, a copper or copper alloy plating layer having a thickness of 10 μm or less is applied to the boundary between the lead bronze bearing alloy layer and the steel backing. By ensuring the adhesive force between both layers even at a low sintering temperature, the fineness of Pb grains can be reduced to 0.0
It is also possible to set it to 5% or less. Further, in order to prevent a part of the components in the lead alloy overlay from diffusing into the lead bronze bearing alloy layer, a Ni, Co, Ag or a plating layer of these alloys having a thickness of 5 μm or less is formed at the boundary between both layers. Is preferably applied. In addition, as a rustproofing treatment for the outermost surface of the bearing, the lead alloy overlay and the steel backing have a thickness of 3
It is desirable to apply a plated layer of Sn, Pb or an alloy thereof having a thickness of less than μm.

【0005】[0005]

【作用】図1は、各組成の銅鉛または鉛青銅合金層のP
b相微細化率と引張強さとの関係を示しているが、本発
明組成Aは従来組成B〜Dと比較すると、引張強さが全
体的に高く、またPbを微細化することによってより高
強度となることがわかる。即ち本発明の多層軸受材料
は、従来の銅鉛または鉛青銅軸受合金層に比較して、成
分中のPbとSnの適性量添加により、また組織中に分
散するPb粒を微細にすることにより軸受合金層の硬さ
と強度を大幅に向上させて軸受としての優れた負荷能力
を有させたものである。次に本発明の特許請求範囲を限
定した理由とその作用、効果について述べる。 (1) Sn:5〜9wt% SnはCuと合金化してマトリックスの強度を高める。
5%未満では合金の強度が不足し、9%を越えると合金
層が硬くなりすぎて軸受としてのなじみ特性が劣る。 (2) Pb:15〜25wt% Pbは軟質成分として潤滑性効果を有し、また親油性の
良好な成分である。15%未満ではその効果が充分でな
く、25%を越えると合金層の強度が低下し、また組織
中のPbの微細化が困難となる。 (3) Pb相微細化率:Cu−Snマトリックス中に分散
するPb粒の微細化程度は合金層の強度に影響を与え、
微細に分散しているほど合金層強度が向上する。前記請
求項1で示された計算式によるPb微細化率に於いて
0.1%を越えると合金強度が低下し耐疲労性に劣る。
このPb粒の微細化は、予め粉末の製造時に合金化され
た粉末を適用し、さらに焼結時の温度が750〜850
℃の範囲内で行い、また焼結時間を制御することによっ
てPb相微細化率0.1%以下が達成される。また、こ
の場合前述の理由により、鉛青銅軸受合金層と鋼裏金と
の境界に厚さ10μm以下の銅または銅合金めっき層を
施し、低い温度にて焼結することによってPb相微細化
率を0.05%以下にすることもできる。 (4) ビッカース硬さ:軸受合金層の硬さは軸受特性の負
荷能力に大きな影響を与える。高荷重下での適用に於い
て、硬さが100以上でないと耐疲労性が充分確保され
ない。なお、硬さは上記Pb相微細化率を0.1%以下
に制御することによって100以上が達成される。
[Function] FIG. 1 shows the P of the copper lead or lead bronze alloy layer of each composition.
The relationship between the b-phase refinement ratio and the tensile strength is shown, but the composition A of the present invention has a higher overall tensile strength as compared with the conventional compositions B to D, and is higher by refining Pb. It turns out that it becomes strong. That is, the multi-layer bearing material of the present invention is obtained by adding an appropriate amount of Pb and Sn in the components and by making the Pb particles dispersed in the structure finer, as compared with the conventional copper lead or lead bronze bearing alloy layer. The bearing alloy layer has a significantly improved hardness and strength, and has an excellent load capacity as a bearing. Next, the reason for limiting the scope of the claims of the present invention, and its operation and effect will be described. (1) Sn: 5 to 9 wt% Sn alloys with Cu to enhance the strength of the matrix.
If it is less than 5%, the strength of the alloy will be insufficient, and if it exceeds 9%, the alloy layer will be too hard and the conformability as a bearing will be poor. (2) Pb: 15 to 25 wt% Pb has a lubricating effect as a soft component and is a component with good lipophilicity. If it is less than 15%, the effect is not sufficient, and if it exceeds 25%, the strength of the alloy layer decreases, and it becomes difficult to refine Pb in the structure. (3) Pb phase refinement rate: The degree of refinement of Pb particles dispersed in the Cu-Sn matrix affects the strength of the alloy layer,
The finer the dispersion, the higher the strength of the alloy layer. If the Pb refinement rate according to the calculation formula shown in claim 1 exceeds 0.1%, the alloy strength is lowered and the fatigue resistance is deteriorated.
For the refinement of the Pb grains, the powder which has been alloyed at the time of manufacturing the powder is applied, and the temperature at the time of sintering is 750 to 850.
The Pb phase refinement rate of 0.1% or less is achieved by controlling the sintering time within the range of ° C. Further, in this case, for the reason described above, a copper or copper alloy plating layer having a thickness of 10 μm or less is applied to the boundary between the lead bronze bearing alloy layer and the steel back metal, and the Pb phase refinement rate is increased by sintering at a low temperature. It can be 0.05% or less. (4) Vickers hardness: The hardness of the bearing alloy layer has a great influence on the load capacity of the bearing characteristics. When applied under a high load, the fatigue resistance cannot be sufficiently secured unless the hardness is 100 or more. The hardness is 100 or more by controlling the Pb phase refining rate to 0.1% or less.

【0006】[0006]

【実施例】以下、本発明を実施例によりさらに具体的に
説明する。鋼板上、あるいは予め表面に銅めっきが施さ
れた鋼板上に、表1に示される試料No. 1〜No. 8の各
成分に予め合金化された粉末を散布し、それらを水素雰
囲気炉中にて10〜30分間一次焼結を行った。この時
の焼結温度としてNo. 1およびNo. 2は850℃、No.
3およびNo. 4は790℃、No. 5ないしNo. 8は89
0℃を適用した。次に、一次焼結によって得られた複合
体を圧延機のロール間に通し焼結合金層の緻密化圧延を
行い、さらに二次焼結を施した。各二次焼結条件として
は前記各一次焼結と同じとした。その後再度圧延機にこ
の焼結複合体を通して焼結合金層の密度を高めるととも
に所定の肉厚に圧延を行った。得られた焼結複合体を通
して焼結合金層の密度を高めるとともに所定の肉厚に圧
延を行った。得られた焼結複合体の寸法は全肉厚2.1
mm、焼結接着された鉛青銅軸受合金層の厚さ0.4mm、
幅150mmであった。表1に、得られた本発明品(試料
No. 1〜No. 4)および比較品(試料No. 5〜No. 8)
の軸受合金層の成分、銅めっき層の有り無し、Pb相微
細化率およびビッカース硬さを示す。しかる後に、得ら
れた試料No. 1〜No. 8の焼結複合体に対して、プレ
ス、機械加工により半円形の軸受形状体を作製し、これ
らの鉛青銅軸受合金の表面に1〜2μm厚さのNiをワ
ット浴を用いて電気めっきし、その後その表面にオーバ
ーレイ層として20μm厚さのPb−Sn8%−Cu2
%(wt)の鉛合金を硼弗化浴を用いて電気めっきをし
た。以上によって得られた試料No. 1〜No. 8の多層鉛
青銅軸受に対して動荷重軸受疲労試験機を用いて、軸受
としての耐疲労特性比較を行った。表2にその試験条件
を示す。各試験荷重下で20時間の連続運転を行い、各
試料の疲労しない最高面圧で表した試験結果を表3によ
り示す。表3から、本発明は比較品に比べてより高面圧
まで疲労しないことが分かる。
EXAMPLES The present invention will be described in more detail below with reference to examples. Powders pre-alloyed with the respective components of sample No. 1 to No. 8 shown in Table 1 were sprayed on a steel plate or on a steel plate whose surface was previously plated with copper, and these were placed in a hydrogen atmosphere furnace. Primary sintering was carried out for 10 to 30 minutes. The sintering temperature at this time was 850 ° C for No. 1 and No. 2, and No.
790 ° C for No. 3 and No. 4 and 89 for No. 5 to No. 8
0 ° C was applied. Next, the composite obtained by the primary sintering was passed between rolls of a rolling mill to densify and roll the sintered alloy layer, and then secondary sintering was performed. The secondary sintering conditions were the same as those for the primary sintering. Then, the sintered composite was passed through a rolling mill again to increase the density of the sintered alloy layer and rolled to a predetermined thickness. Through the obtained sintered composite, the density of the sintered alloy layer was increased, and rolling was performed to a predetermined wall thickness. The size of the obtained sintered composite has a total wall thickness of 2.1.
mm, thickness of lead bronze bearing alloy layer bonded by sintering 0.4 mm,
The width was 150 mm. Table 1 shows the obtained product of the present invention (sample
No. 1 to No. 4) and comparative products (Sample No. 5 to No. 8)
Of the bearing alloy layer, presence / absence of copper plating layer, Pb phase refinement ratio and Vickers hardness. Then, semi-circular bearing shape bodies were produced by pressing and machining the obtained sintered composite bodies of Samples No. 1 to No. 8 and the surface of these lead bronze bearing alloys had a thickness of 1 to 2 μm. A thickness of Ni was electroplated using a Watts bath and then a 20 μm thick layer of Pb-Sn8% -Cu2 as an overlay layer on its surface.
% (Wt) lead alloy was electroplated using a borofluoride bath. With respect to the multilayer lead bronze bearings of Samples No. 1 to No. 8 obtained as described above, the fatigue resistance characteristics of the bearings were compared using a dynamic load bearing fatigue tester. Table 2 shows the test conditions. Table 3 shows the test results expressed by the maximum surface pressure without fatigue of each sample after 20 hours of continuous operation under each test load. From Table 3, it can be seen that the present invention does not fatigue up to a higher surface pressure than the comparative product.

【0007】[0007]

【発明の効果】以上説明したように、本発明品は軸受合
金層中に適正量のPbおよびSnを添加したことと、合
金層組織中のPb粒を極めて微細に分散させたことによ
って、従来の同種多層銅鉛または鉛青銅軸受よりも耐荷
重性、特に耐疲労性が非常に優れ、今後の高出力化エン
ジン用の軸受として大いに期待される。
As described above, according to the present invention, by adding an appropriate amount of Pb and Sn to the bearing alloy layer and dispersing the Pb grains in the alloy layer structure extremely finely, It has much higher load resistance, especially fatigue resistance, than the same type of multi-layered copper lead or lead bronze bearing, and is expected to be a great bearing for future high-power engines.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【表2】 [Table 2]

【0010】[0010]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of drawings]

【図1】Pb相微細化率と引張強さの関係を示すもので
ある。
FIG. 1 shows the relationship between the Pb phase refinement rate and the tensile strength.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤沢 義和 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 辻 誠 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshikazu Fujisawa 1-4-1 Chuo, Wako-shi, Saitama, Honda R & D Co., Ltd. (72) Inventor Makoto Tsuji 1-1-4 Chuo, Wako-shi, Saitama Stock Company Honda Technical Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋼裏金、鉛青銅軸受合金層および鉛合金
オーバーレイの三層構造からなるすべり軸受において、
前記鉛青銅軸受合金層がSn5〜9wt%、Pb15〜
25wt%、残部Cuの成分に予め合金化された粉末の
焼結材料からなり、さらに鉛青銅軸受合金層断面組織の
Cu−Snマトリックス中に分散するPb粒の大きさ
が、 【式1】 の式で表されるPb相微細化率に於いて、全体の面積を
0.1mm2 とした時に0.1%以下であり、この鉛青銅
軸受合金のビッカース硬さが100以上であることを特
徴とする高荷重用多層鉛青銅軸受。
1. A sliding bearing having a three-layer structure of a steel back metal, a lead bronze bearing alloy layer, and a lead alloy overlay,
The lead bronze bearing alloy layer is Sn5-9 wt%, Pb15-
The particle size of Pb dispersed in the Cu-Sn matrix of the cross-sectional structure of the lead bronze bearing alloy layer is as follows: In the Pb phase refining rate represented by the formula, it is 0.1% or less when the entire area is 0.1 mm 2, and the Vickers hardness of this lead bronze bearing alloy is 100 or more. Characteristic multi-layer lead bronze bearing for high loads.
【請求項2】 前記請求項1記載において、鉛青銅軸受
合金層と鋼合金との境界に厚さ10μm以下の銅または
銅合金めっき層を施し、鉛青銅軸受合金層断面組織のC
u−Snマトリックス中に分散するPb粒の大きさが、
前記Pb相微細化率に於いて、全体の面積を0.1mm2
とした時に0.05%以下であることを特徴とする高荷
重用多層鉛青銅軸受。
2. The lead bronze bearing alloy layer according to claim 1, wherein a copper or copper alloy plating layer having a thickness of 10 μm or less is applied to a boundary between the lead bronze bearing alloy layer and the steel alloy, and
The size of Pb particles dispersed in the u-Sn matrix is
At the Pb phase refinement rate, the total area is 0.1 mm 2
The multi-layer lead bronze bearing for high loads is characterized in that it is 0.05% or less.
【請求項3】 前記請求項1および請求項2記載におい
て、鉛青銅軸受合金層と鉛合金オーバーレイとの境界に
厚さ5μm以下のNi,Co,Agまたはこれらの合金
のめっき層が施されていることを特徴とする高荷重用多
層鉛青銅軸受。
3. The lead-bronze bearing alloy layer and the lead alloy overlay according to claim 1 or 2, wherein a plating layer of Ni, Co, Ag or an alloy thereof having a thickness of 5 μm or less is applied. A multi-layer lead bronze bearing for high loads characterized by
【請求項4】 前記請求項1から請求項3記載におい
て、鉛合金オーバーレイおよび鋼裏金の最表面に厚さ3
μm以下のSn,Pbまたはこれらの合金のめっき層が
施されていることを特徴とする高荷重用多層鉛青銅軸
受。
4. The lead alloy overlay and the steel backing according to any one of claims 1 to 3, having a thickness of 3 at the outermost surface.
A multilayer lead bronze bearing for high loads, characterized in that a plated layer of Sn, Pb or an alloy thereof having a thickness of not more than μm is applied.
JP4367992A 1992-02-28 1992-02-28 Multi-layer lead bronze bearing for high loads Expired - Lifetime JPH0819945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4367992A JPH0819945B2 (en) 1992-02-28 1992-02-28 Multi-layer lead bronze bearing for high loads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4367992A JPH0819945B2 (en) 1992-02-28 1992-02-28 Multi-layer lead bronze bearing for high loads

Publications (2)

Publication Number Publication Date
JPH05240252A true JPH05240252A (en) 1993-09-17
JPH0819945B2 JPH0819945B2 (en) 1996-03-04

Family

ID=12670529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4367992A Expired - Lifetime JPH0819945B2 (en) 1992-02-28 1992-02-28 Multi-layer lead bronze bearing for high loads

Country Status (1)

Country Link
JP (1) JPH0819945B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455458B2 (en) * 2002-07-13 2008-11-25 Mahle Engine Systems Ltd. Bearings

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4476634B2 (en) 2004-01-15 2010-06-09 大豊工業株式会社 Pb-free copper alloy sliding material
JP4410612B2 (en) 2004-06-10 2010-02-03 大豊工業株式会社 Pb-free bearing for fuel injection pump
JP5328353B2 (en) 2006-08-05 2013-10-30 大豊工業株式会社 Pb-free copper alloy sliding material and manufacturing method thereof
CN102728839B (en) 2007-05-15 2014-09-17 大丰工业株式会社 Method of manufacturing Pb-free copper-alloy sliding material
EP2239345B1 (en) 2008-01-23 2014-11-26 Taiho Kogyo Co., Ltd Process for production of sintered copper alloy sliding material and sintered copper alloy sliding material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455458B2 (en) * 2002-07-13 2008-11-25 Mahle Engine Systems Ltd. Bearings

Also Published As

Publication number Publication date
JPH0819945B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
US5445896A (en) Sliding bearing material including overlay having excellent anti-seizure property
EP1434665B1 (en) Lead-free bearing
EP2185303B9 (en) Wear resistant lead free alloy bushing and method of making
JP4424810B2 (en) Sintered material
JP3839740B2 (en) Sliding material
US5346668A (en) Copper based alloy for wear resistant sliding layer and sliding member
JPH0694036A (en) Multilayer slide bearing excellent in fretting resistant characteristic
JPH11217637A (en) Sliding material, sliding member and its production
JPH01225749A (en) Sintered material for oilless bearing and production thereof
GB2270722A (en) Bearings.
US5413875A (en) Copper alloy sliding bearing with high-strength back metal
JP2532790B2 (en) Copper-lead alloy bearing with overlay
JPH0684528B2 (en) Graphite-containing lead bronze multilayer sliding material and method for producing the same
JP2847097B2 (en) Laminated material for sliding bearing members having an anti-friction layer, which is a bearing material of aluminum base
US5298336A (en) Multilayer composite sliding material having excellent seizure resistance property
JP2918292B2 (en) Sliding material
US5665480A (en) Copper-lead alloy bearing
JPH05240252A (en) Heavy-duty multilayered lead bronze bearing
JPH0247232A (en) Aluminum bearing alloy
JP2838032B2 (en) High load sliding bearing material and method of manufacturing the same
JPH04259345A (en) Bearing metal for large-sized engine
JP2535105B2 (en) Sliding bearing with composite plating film
JP3042539B2 (en) Sliding material
JP3754353B2 (en) Sliding member with composite plating film
JPS5844140B2 (en) Composite sliding material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090304

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090304

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20110304

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20120304

EXPY Cancellation because of completion of term