JPH0523975Y2 - - Google Patents

Info

Publication number
JPH0523975Y2
JPH0523975Y2 JP4637987U JP4637987U JPH0523975Y2 JP H0523975 Y2 JPH0523975 Y2 JP H0523975Y2 JP 4637987 U JP4637987 U JP 4637987U JP 4637987 U JP4637987 U JP 4637987U JP H0523975 Y2 JPH0523975 Y2 JP H0523975Y2
Authority
JP
Japan
Prior art keywords
cooling
cooler
pipe
cooling pipe
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4637987U
Other languages
Japanese (ja)
Other versions
JPS63154793U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4637987U priority Critical patent/JPH0523975Y2/ja
Publication of JPS63154793U publication Critical patent/JPS63154793U/ja
Application granted granted Critical
Publication of JPH0523975Y2 publication Critical patent/JPH0523975Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、排水ポンプ機場におけるエンジン、
減速機あるいは自家発電装置に使用する冷却水の
冷却器に関するものである。
[Detailed description of the invention] (Industrial application field) This invention is an engine in a drainage pump station,
This relates to a cooling water cooler used for a reduction gear or a private power generator.

(従来の技術) 従来、排水ポンプ機場のエンジン、減速機は、
第4図〜第6図に示すように、排水ポンプ1の吐
出管2の間に冷却器3を設け、吐出管2を通過す
る排水によつてその冷却水を冷却するようにして
いる。そして、前記冷却器3は、ケーシング4内
に直線状の冷却管5を前記吐出管2と平行に、か
つ、同心円上に複数本配置するとともに、冷却管
6の両端を冷却水供給口8と冷却水排水口9とを
別個に備えた仕切室7に接続し、冷却水を排水に
より冷却する。
(Conventional technology) Conventionally, the engines and reducers at drainage pump stations were
As shown in FIGS. 4 to 6, a cooler 3 is provided between the discharge pipes 2 of the drainage pump 1, and the cooling water is cooled by the waste water passing through the discharge pipes 2. The cooler 3 has a plurality of linear cooling pipes 5 arranged in a casing 4 parallel to the discharge pipe 2 and concentrically, and both ends of the cooling pipe 6 are connected to a cooling water supply port 8. The cooling water outlet 9 is connected to a separate partition chamber 7, and the cooling water is cooled by drainage.

そして、一般に、この種の冷却器3は、冷却管
5の中心を通るピツチ円の直径Cを吐出管2の内
径Dよりも大きくし、冷却管5を吐出管2の内径
Dよりも外周に設けてある(例えば、特開昭59−
56087号公報あるいは実開昭59−144368号公報)。
In general, in this type of cooler 3, the diameter C of the pitch circle passing through the center of the cooling pipe 5 is made larger than the inner diameter D of the discharge pipe 2, and the cooling pipe 5 is arranged on the outer periphery than the inner diameter D of the discharge pipe 2. (For example, JP-A-59-
56087 or Utility Model Application Publication No. 59-144368).

これは、排水ポンプ1からの排水中に含まれた
布、ビニール等のゴミが冷却管5に引つ掛かつた
り、木切れ等の衝突により冷却管5が損傷するの
を避けることの他に、冷却器3によつて排水の主
流に与える圧損を極力小さくするということを目
的としていた。
This is to prevent garbage such as cloth and vinyl contained in the drainage from the drainage pump 1 from getting caught in the cooling pipe 5, and to prevent damage to the cooling pipe 5 due to collisions with pieces of wood, etc. The purpose was to minimize the pressure loss caused by the cooler 3 to the main stream of waste water.

すなわち、一般に、洪水や高潮対策に使用され
る排水ポンプ1の全揚程は、数mから十数mの範
囲で規格化されており(例えば、建設機械化協会
の揚排水ポンプ設備技術基準)、冷却器3による
圧損が過大であると、この規格に適合できなくな
る恐れがあること、及び圧損の増加が直ちにポン
プ駆動力の増加につながり、不経済となるためで
ある。
In other words, the total head of the drainage pump 1 used for flood and storm surge countermeasures is generally standardized in the range of several meters to more than ten meters (for example, the Technical Standards for Lifting and Drainage Pump Equipment of the Japan Construction Mechanization Association), and the This is because if the pressure drop caused by the device 3 is excessive, there is a risk that it will not be able to comply with this standard, and an increase in the pressure drop will immediately lead to an increase in the pump driving force, which will be uneconomical.

(考案が解決しようとする問題点) ところで、前記従来の冷却器では、冷却管5を
収めたケーシング4の内径も吐出管2の内径Dよ
り大きくなる。このため、ポンプ運転中にポンプ
吸込口から侵入した空気が冷却器3のケーシング
4の頂部に溜まり、この空気部分に冷却管5の一
部が露出し、それにより冷却器3の冷却能力が低
下するという問題点があつた。
(Problems to be Solved by the Invention) In the conventional cooler, the inner diameter of the casing 4 housing the cooling pipe 5 is also larger than the inner diameter D of the discharge pipe 2. For this reason, air entering from the pump suction port during pump operation accumulates at the top of the casing 4 of the cooler 3, and a portion of the cooling pipe 5 is exposed to this air portion, thereby reducing the cooling capacity of the cooler 3. There was a problem with that.

また、通常、このような排水ポンプ1は、運転
中サイホンを形成し、その頂部の圧力は大気圧以
下の負圧となることが多いため、冷却器3のケー
シング4の頂部に溜まつた空気を排気するために
は、別に真空ポンプ等の設備を必要とした。
In addition, normally, such a drainage pump 1 forms a siphon during operation, and the pressure at the top of the siphon is often a negative pressure below atmospheric pressure, so the air accumulated at the top of the casing 4 of the cooler 3 In order to evacuate the air, separate equipment such as a vacuum pump was required.

さらに、冷却管5は主流の外周で主流が直接衝
突しない位置に設けられていたが、冷却管5が主
流から離れる程、冷却効果は低下する傾向にあ
る。
Furthermore, although the cooling pipe 5 was provided at a position on the outer periphery of the main flow where the main flow does not directly collide with it, the cooling effect tends to decrease as the cooling pipe 5 moves away from the main flow.

そこで十分な冷却効果を得るためには、冷却管
5の長さを長くするか、本数を増加して伝熱面積
を増加することが必要となり、この結果ケーシン
グ4(すなわち、冷却器3)が大型化するという
問題点を有していた。
Therefore, in order to obtain a sufficient cooling effect, it is necessary to increase the heat transfer area by increasing the length or number of cooling pipes 5, and as a result, the casing 4 (i.e., the cooler 3) It had the problem of increasing its size.

そして、この種の冷却器3の冷却管5の外表面
での伝熱性能を表す管外熱伝達係数は、管外の平
均流速Vの約0.8乗に比例することが経験的に知
られているが(例えば、日本機械学会論文集No.
833−2)、ケーシング4の径を大きくすること
は、前記の管外平均流速Vを下げ管外熱伝達係数
を下げるため、更に大きな伝熱面積が必要となり
ケーシング4が大型化するという悪循環に陥つて
いたわけである。
It is empirically known that the extra-tube heat transfer coefficient, which represents the heat transfer performance on the outer surface of the cooling tube 5 of this type of cooler 3, is proportional to the average flow velocity V outside the tube to the 0.8th power. (For example, Proceedings of the Japan Society of Mechanical Engineers No.
833-2), increasing the diameter of the casing 4 lowers the average flow velocity V outside the tube and lowers the heat transfer coefficient outside the tube, which creates a vicious cycle in which a larger heat transfer area is required and the casing 4 becomes larger. I had fallen into a trap.

(問題点を解決するための手段) 本考案は、前記問題点を解決するために、前記
形式の冷却器において、冷却管5の中心を通るピ
ツチ円の直径Cを、吐出管2の内径Dより小さ
く、かつ、吐出管2の内径Dから冷却管5の外径
Eを引いた寸法よりも大きく構成したものであ
る。
(Means for Solving the Problems) In order to solve the problems, the present invention provides that in the above type of cooler, the diameter C of the pitch circle passing through the center of the cooling pipe 5 is changed to the inner diameter D of the discharge pipe 2. It is smaller and larger than the inner diameter D of the discharge pipe 2 minus the outer diameter E of the cooling pipe 5.

(実施例) つぎに、本考案に係る冷却器の実施例を第1図
ないし第3図を参照して以下に説明する。
(Example) Next, an example of the cooler according to the present invention will be described below with reference to FIGS. 1 to 3.

第2図は、前記従来の冷却器3において、冷却
管5の中心を通るピツチ円の直径Cを吐出管2の
内径Dよりも冷却管5の外径Eだけ小さくなるよ
うに冷却管5を配置した例であり、また、第3図
は前記ピツチ円直径Cを吐出管内径Dよりもわず
かに小さくした例である。
FIG. 2 shows the conventional cooler 3 in which the cooling pipe 5 is arranged so that the diameter C of the pitch circle passing through the center of the cooling pipe 5 is smaller than the inner diameter D of the discharge pipe 2 by the outer diameter E of the cooling pipe 5. FIG. 3 shows an example in which the pitch circle diameter C is slightly smaller than the discharge pipe inner diameter D.

このように構成すると、ケーシング4の頂部に
空気が溜まつた場合、水面は吐出管2の上端の位
置まで低下するが、前記ケーシング4の頂部付近
の冷却管5の一部表面がわずかに空気中に露出す
る程度である。実際に排水ポンプ1を運転してい
る状態では、水面は水流により不規則に波打つて
おり、冷却管5の空気中への露出はより小さくな
り冷却効果の低下は無視できる程度となる。
With this configuration, when air accumulates at the top of the casing 4, the water level drops to the upper end of the discharge pipe 2, but a portion of the surface of the cooling pipe 5 near the top of the casing 4 is slightly filled with air. The inside is only exposed. When the drain pump 1 is actually in operation, the water surface is irregularly undulating due to the water flow, and the exposure of the cooling pipe 5 to the air becomes smaller, so that the decrease in the cooling effect is negligible.

また、冷却器3のケーシング4の内径を小さく
できるので、管外平均流速Vの低下も小さく、前
記管外熱伝達係数が高められる結果、冷却管5の
長さ、本数を小さくでき冷却器3全体をコンパク
トにまとめることが可能となり、製作コスト、設
置スペースの点で有利となる。
Furthermore, since the inner diameter of the casing 4 of the cooler 3 can be made smaller, the drop in the average flow velocity V outside the tube is also smaller, and as a result of the above-mentioned extra-tube heat transfer coefficient being increased, the length and number of cooling tubes 5 can be made smaller. The entire structure can be made compact, which is advantageous in terms of production costs and installation space.

一方、冷却器3が主流に与える圧損について
は、冷却管5の集合部である仕切室7の内径を
d、吐出管2の内径をDとしてweisbachの管内
オリフイスの実験式を適用して近似的に求めるこ
とができ、次のように表される。
On the other hand, the pressure drop that the cooler 3 gives to the main stream can be approximated by applying Weisbach's experimental formula for an orifice in a pipe, where d is the inner diameter of the partition chamber 7 where the cooling pipes 5 gather, and D is the inner diameter of the discharge pipe 2. can be calculated and expressed as follows.

HL=KVo2/2G ここで、HL:仕切室1個が排水主流に与える
圧損、 K:抵抗係数、 Vo:吐出管部における平均流速、 G:重力加速度、 を示す。
HL=KVo 2 /2G Here, HL: Pressure drop that one partition gives to the main stream of waste water, K: Resistance coefficient, Vo: Average flow velocity in the discharge pipe section, G: Gravitational acceleration.

すなわち、冷却管5の外径Eを適当に選べば、
前記仕切室7の内径dを0.9D以上にすることは
可能であり、この結果、weisbachの実験より抵
抗係数Kの値は0.3以下となり、冷却器3全体の
圧損は、従来構造のものに比べて2倍以内と十分
小さく抑えることができる。
That is, if the outer diameter E of the cooling pipe 5 is appropriately selected,
It is possible to make the inner diameter d of the partition chamber 7 0.9D or more, and as a result, the value of the resistance coefficient K becomes 0.3 or less according to Weisbach's experiment, and the pressure drop of the entire cooler 3 is lower than that of the conventional structure. This can be kept sufficiently small to within twice the amount.

また、冷却管5は両端を固定している仕切室
7,7に挟まれ、主流が直接衝突しない位置にお
かれているため、木切れ等の衝突による損傷の危
険は小さく、かつ、管外流速が速いので、布やビ
ニール等のゴミが冷却管5にからみつく可能性も
小さく、これらの点で従来構造に劣ることはな
い。
In addition, the cooling pipe 5 is sandwiched between the partitions 7, which have both ends fixed, and is placed in a position where the main flow does not collide directly with the cooling pipe, so there is little risk of damage from collisions with wood chips, etc. Since the flow velocity is high, there is little possibility that dust such as cloth or vinyl gets entangled in the cooling pipe 5, and in these respects it is not inferior to the conventional structure.

(考案の効果) 以上の説明で明らかなように、本考案によれ
ば、冷却管の中心を通るピツチ円直径Cが、吐出
管の内径Dよりわずかに小さくなるように冷却管
を配置することにより、冷却器のケーシングの頂
部に空気が溜まつた状態でも、冷却管の空気中へ
の露出による冷却効果の低下は無視できる程度に
抑えられ、またケーシングの内径が小さくできる
ことから、従来構造に比べて冷却管の管外平均流
速Vの低下は小さく、管外熱伝達係数が高められ
る結果、冷却管の長さ、本数を小さくでき、冷却
器全体をコンパクトにまとめることが可能とな
る。
(Effect of the invention) As is clear from the above explanation, according to the invention, the cooling pipe can be arranged so that the pitch circle diameter C passing through the center of the cooling pipe is slightly smaller than the inner diameter D of the discharge pipe. Even if air accumulates at the top of the cooler casing, the reduction in cooling effectiveness due to the exposure of the cooling pipe to the air is suppressed to a negligible level, and the inner diameter of the casing can be made smaller, making it possible to replace the conventional structure. In comparison, the decrease in the average flow velocity V outside the cooling pipe is small, and the heat transfer coefficient outside the pipe is increased. As a result, the length and number of cooling pipes can be reduced, and the entire cooler can be made compact.

従つて、製作コスト、設置スペースの点で有利
となる。
Therefore, it is advantageous in terms of manufacturing cost and installation space.

一方、従来の構造の特徴であつた主流に与える
圧損が小さい点については、本考案による構造の
場合の圧損は、従来構造のものに比べ2倍以内と
十分小さく抑えられる。また、冷却管へのゴミの
からみつきや、木切等の衝突に対しても従来構造
と同等の耐久性を有する。
On the other hand, with respect to the small pressure loss imparted to the main stream, which was a feature of the conventional structure, the pressure loss in the structure according to the present invention is sufficiently suppressed to within twice that of the conventional structure. It also has the same durability as conventional structures against dust getting entangled in the cooling pipes and collisions with woodcutters, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案にかかる冷却器の断面図、第2
図および第3図は第1、第2実施例の第1図にお
けるA−A線断面図、第4図は本考案における冷
却器の適用例を示す図、第5図は従来の冷却器の
断面図で、第6図は第5図のB−B線断面図であ
る。 1……排水ポンプ、2……吐出管、3……冷却
器、4……ケーシング、5……冷却管、7……仕
切室。
Fig. 1 is a sectional view of the cooler according to the present invention, Fig. 2 is a sectional view of the cooler according to the present invention;
3 and 3 are cross-sectional views taken along the line A-A in FIG. 1 of the first and second embodiments, FIG. 4 is a diagram showing an application example of the cooler of the present invention, and FIG. 5 is a diagram of a conventional cooler. FIG. 6 is a sectional view taken along the line B--B in FIG. 5. 1... Drain pump, 2... Discharge pipe, 3... Cooler, 4... Casing, 5... Cooling pipe, 7... Partition room.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 排水ポンプの吐出管の間に設けたケーシング内
に、直線状の冷却管を前記吐出管と平行に、かつ
同心円上に複数本配置するとともに、冷却管の両
端を仕切室に接続し、仕切室から供給した冷却水
を区画板により冷却管内を蛇行させて揚水により
冷却する冷却器において、前記冷却管の中心を通
るピツチ円の直径Cを、吐出管の内径Dより小さ
く、かつ吐出管の内径Dから冷却管の外径Eを引
いた寸法よりも大きく構成したことを特徴とする
冷却器。
Inside the casing provided between the discharge pipes of the drainage pump, a plurality of straight cooling pipes are arranged parallel to the discharge pipes and concentrically, and both ends of the cooling pipes are connected to the partition chamber. In the cooler, the diameter C of the pitch circle passing through the center of the cooling pipe is smaller than the inner diameter D of the discharge pipe, and the diameter C of the pitch circle passing through the center of the cooling pipe is smaller than the inner diameter D of the discharge pipe. A cooler characterized in that it is configured to be larger than a dimension obtained by subtracting an outer diameter E of a cooling pipe from D.
JP4637987U 1987-03-28 1987-03-28 Expired - Lifetime JPH0523975Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4637987U JPH0523975Y2 (en) 1987-03-28 1987-03-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4637987U JPH0523975Y2 (en) 1987-03-28 1987-03-28

Publications (2)

Publication Number Publication Date
JPS63154793U JPS63154793U (en) 1988-10-11
JPH0523975Y2 true JPH0523975Y2 (en) 1993-06-18

Family

ID=30865987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4637987U Expired - Lifetime JPH0523975Y2 (en) 1987-03-28 1987-03-28

Country Status (1)

Country Link
JP (1) JPH0523975Y2 (en)

Also Published As

Publication number Publication date
JPS63154793U (en) 1988-10-11

Similar Documents

Publication Publication Date Title
CN116358192B (en) High-efficiency flooded shell-and-tube evaporator capable of avoiding wall climbing of refrigerant
CN1695028A (en) Drain water discharge structure for air conditioner
JPH0523975Y2 (en)
US3077716A (en) Air cleaner
CN113183799A (en) Charging pile
CN115306332B (en) Device of side slope stock drilling construction raise dust control
CN209801844U (en) Water chilling unit
CN105864411A (en) Cooling device for transmission case
CN210980279U (en) Data center air conditioner water charging system with rainwater collection and filtration functions
CN209212505U (en) A kind of interior circulating vacuum unit cooling structure
JPH0540722U (en) Drain pan in air conditioner
CN111981661A (en) Pure countercurrent wall-mounted sensible heat exchange fresh air fan
CN214708439U (en) Water cooling device for air-cooled SVG equipment heat dissipation system
CN218125199U (en) Heat dissipation shell for communication terminal
CN214891976U (en) High-efficiency condenser
JPH0230690Y2 (en)
CN215916921U (en) Freezing type drying machine
CN210004633U (en) kinds of evaporation and condensation equipment
CN211886149U (en) Horizontal gas-water separation device
CN213015257U (en) Dehumidifier for epoxy floor construction
CN211041488U (en) Water smoke enhancement mode air-cooled condenser
CN215692791U (en) Environmental pollution administers and uses purifier
CN210321290U (en) Cooling tower with filtering capability
CN2419515Y (en) Air conditioner for reusing exhausted water and air
CN219473847U (en) Double-layer water evaporation cooling air cooler