JPH0523962B2 - - Google Patents

Info

Publication number
JPH0523962B2
JPH0523962B2 JP58130433A JP13043383A JPH0523962B2 JP H0523962 B2 JPH0523962 B2 JP H0523962B2 JP 58130433 A JP58130433 A JP 58130433A JP 13043383 A JP13043383 A JP 13043383A JP H0523962 B2 JPH0523962 B2 JP H0523962B2
Authority
JP
Japan
Prior art keywords
load
sum
air
rear axle
roll stiffness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58130433A
Other languages
Japanese (ja)
Other versions
JPS6022511A (en
Inventor
Akifumi Matsushita
Akihiro Hosoya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP13043383A priority Critical patent/JPS6022511A/en
Publication of JPS6022511A publication Critical patent/JPS6022511A/en
Publication of JPH0523962B2 publication Critical patent/JPH0523962B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は車両のハイドロニユーマチツク懸架装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydroneumatic suspension system for a vehicle.

[従来の技術] この種の懸架装置は、空気ばねの特性と車高調
整装置の働きとにより、車体の荷重条件とは無関
係に柔らかな乗り心地が得られるように設定され
ている。しかし、旋回走行時は車体に作用するロ
ールモーメントにより車体が側方へ大きく傾き、
操縦の安定性が損われるという問題がある。
[Prior Art] This type of suspension system is designed to provide a soft ride regardless of the load conditions of the vehicle body, due to the characteristics of the air spring and the function of the vehicle height adjustment device. However, when turning, the vehicle body tilts significantly to the side due to the roll moment acting on the vehicle body.
There is a problem that the stability of maneuvering is impaired.

旋回走行時の車体のロール(傾き)を抑えるた
めに、左右の車輪の間に設けたトーシヨンスタビ
ライザにより、左右の車輪の高さ(車輪と車体と
の間隔)を平衡させるようにしているが、トーシ
ヨンスタビライザだけでは、車両の走行条件に適
した空気ばねのばね定数を調整することはでき
ず、凹凸の激しい道路の走行時は、左右の車輪が
交互に浮き沈みし、かえつて乗り心地が損われ
る。また、車体荷重が増加すると、トーシヨンス
タビライザはあまり効かなくなる。
In order to suppress the roll (tilting) of the vehicle body when turning, a torsion stabilizer is installed between the left and right wheels to balance the heights of the left and right wheels (the distance between the wheels and the vehicle body). However, the torsion stabilizer alone cannot adjust the spring constant of the air springs to suit the vehicle's driving conditions, and when driving on a bumpy road, the left and right wheels alternately rise and fall, which can actually reduce the ride comfort. be damaged. Furthermore, when the vehicle body load increases, the torsion stabilizer becomes less effective.

特開昭53−26021号公報に開示される懸架装置
では、車体に作用する横加速度や左右の各車輪と
車体との間の間隔変化(ホイールトラベル)を検
出して、車輪と車体との間隔を一定に保つように
油圧回路を制御してはいるが、油圧回路を制御す
る制御系が複雑であり、制御に時間遅れがあるた
めに十分な効果が得られるに至つていない。
The suspension system disclosed in Japanese Patent Application Laid-open No. 53-26021 detects the lateral acceleration acting on the vehicle body and changes in the distance between the left and right wheels and the vehicle body (wheel travel), and determines the distance between the wheels and the vehicle body. Although the hydraulic circuit is controlled to maintain a constant value, the control system for controlling the hydraulic circuit is complex and there is a time delay in control, so sufficient effects have not been achieved.

[発明が解決しようとする問題点] 本発明の目的は上述の問題に鑑み、旋回走行
時、車体のロールを一定限度に抑えるように空気
ばねのばね特性を調整し、舵取操作に対して安定
した車体の応答特性を得る、ハイドロニユーマチ
ツク懸架装置を提供することにある。
[Problems to be Solved by the Invention] In view of the above-mentioned problems, the purpose of the present invention is to adjust the spring characteristics of the air spring so as to suppress the roll of the vehicle body to a certain limit during turning, and An object of the present invention is to provide a hydroneumatic suspension system that provides stable response characteristics of a vehicle body.

[問題点を解決するための手段] 上記目的を達成するために、本発明の構成は車
両の旋回走行時各車輪の空気ばねと一体をなす懸
架装置の油室の油圧を検出する荷重センサから、
電子制御装置により前軸荷重と後軸荷重を求め、
次いで前・後軸荷重の和と前・後軸の荷重比を求
め、制御マツプから前・後軸荷重の和に対応する
前・後軸のロール剛性の和と、前・後軸の荷重比
に対応する前・後軸のロール剛性比を求め、次い
で前・後軸のロール剛性の和と前・後軸のロール
剛性比から各車輪の懸架装置の空気ばねの目標空
気圧を求め、該目標空気圧を得るように各懸架装
置の空気ばねと空気槽の間に挿入接続した電磁圧
力調整弁を駆動するものである。
[Means for Solving the Problems] In order to achieve the above object, the configuration of the present invention includes a load sensor that detects the oil pressure in the oil chamber of the suspension device that is integrated with the air spring of each wheel when the vehicle is turning. ,
The electronic control device determines the front axle load and rear axle load,
Next, calculate the sum of the front and rear axle loads and the load ratio of the front and rear axles, and calculate from the control map the sum of the roll stiffness of the front and rear axles corresponding to the sum of the front and rear axle loads and the load ratio of the front and rear axles. Find the roll stiffness ratio of the front and rear axles corresponding to It drives an electromagnetic pressure regulating valve inserted and connected between the air spring and the air tank of each suspension system to obtain air pressure.

[作用] 旋回走行時、各車輪の懸架装置の油圧シリンダ
の油圧から各車輪の荷重を検出し、制御マツプか
ら前・後軸荷重の和と前・後荷重比にそれぞれ対
応する、前・後軸のロール剛性の和と前・後軸の
ロール剛性比を求め、前・後軸のロール剛性の和
と前・後軸のロール剛性比から目標とする前軸の
ロール剛性と後軸のロール剛性をそれぞれ求め
る。そして、目標とする前軸のロール剛性と後軸
のロール剛性を得るように、各車輪の空気ばねの
空気圧を調整する。
[Function] When turning, the load on each wheel is detected from the hydraulic pressure of the hydraulic cylinder of the suspension system of each wheel, and from the control map, the front and rear axle loads are calculated based on the sum of the front and rear axle loads and the front and rear load ratio, respectively. Find the sum of the roll stiffness of the axles and the roll stiffness ratio of the front and rear axles, and then determine the target roll stiffness of the front axle and roll of the rear axle from the sum of the roll stiffness of the front and rear axles and the roll stiffness ratio of the front and rear axles. Find the stiffness of each. Then, the air pressure of the air springs of each wheel is adjusted so as to obtain the target roll stiffness of the front axle and the roll stiffness of the rear axle.

具体的には、空気ばねと空気槽との間に介装し
た電磁圧力調整弁を、荷重、旋回走行などの条件
に基づく電子制御装置の出力により駆動し、空気
ばねの空気圧を加減する。空気ばねの空気圧と車
体のロール剛性とはほぼ比例関係にあり、空気ば
ねとしての乗り心地の特性を損うことなく、車体
の過大なロールを抑止できる。
Specifically, an electromagnetic pressure regulating valve interposed between the air spring and the air tank is driven by the output of an electronic control device based on conditions such as load and turning travel to adjust the air pressure of the air spring. There is a nearly proportional relationship between the air pressure of the air spring and the roll stiffness of the vehicle body, and it is possible to prevent excessive roll of the vehicle body without impairing the ride comfort characteristics of the air spring.

[発明の実施例] 第1図に示すように、ハイドロニユーマチツク
懸架装置1はシリンダ7にピストン8を嵌装して
なる油圧シリンダと、容器の内部をダイヤフラム
3により空気室11と油室9とに区画してなる空
気ばねとを備えており、空気ばねの油室9と油圧
シリンダの油室は一体に構成される。
[Embodiments of the Invention] As shown in FIG. 1, a hydropneumatic suspension system 1 includes a hydraulic cylinder having a piston 8 fitted into a cylinder 7, and an air chamber 11 and an oil chamber connected to the inside of the container by a diaphragm 3. The oil chamber 9 of the air spring and the oil chamber of the hydraulic cylinder are integrally constructed.

ピストン8に結合したロツド10はコントロー
ルアーム13に連結される。コントロールアーム
13は基端部を車体20に、支軸28により揺動
可能に支持される一方、先端部は公知のナツクル
を介して車輪6を支持している。油室9は導管2
1により油圧調整装置19へ接続され、導管21
の油圧から荷重センサ18により各車輪の受け持
つ車体荷重が検出される。
A rod 10 connected to the piston 8 is connected to a control arm 13. The control arm 13 has its base end supported by the vehicle body 20 so as to be swingable by a support shaft 28, while its distal end supports the wheel 6 via a known knuckle. Oil chamber 9 is conduit 2
1 to a hydraulic regulator 19 and a conduit 21
The vehicle body load that each wheel is responsible for is detected by the load sensor 18 from the oil pressure.

空気室11の容積を変更してばね定数を調整す
るために、空気室11は電磁圧力調整弁14を介
して空気槽2に接続される。電磁圧力調整弁14
は荷重センサ18の信号を入力とする電子制御装
置30の出力信号により開閉されるように構成さ
れる。第1図には車両の前輪の懸架装置だけにつ
いて示したが、後輪の懸架装置についても同様に
構成され、共通の電子制御装置30により電磁圧
力調整弁14を制御される。
In order to change the volume of the air chamber 11 and adjust the spring constant, the air chamber 11 is connected to the air tank 2 via an electromagnetic pressure regulating valve 14. Electromagnetic pressure regulating valve 14
is configured to be opened and closed by the output signal of the electronic control unit 30 which receives the signal of the load sensor 18 as input. Although only the suspension system for the front wheels of the vehicle is shown in FIG. 1, the suspension system for the rear wheels is similarly configured, and the electromagnetic pressure regulating valve 14 is controlled by a common electronic control unit 30.

電子制御装置30は例えばマイクロコンピユー
タにより構成される。マイクロコンピユータはマ
イクロプロセツサ32とメモリ33とインタフエ
ース31とから構成され、インタフエース31に
はハンドルの切り角を検出する舵角センサ(図示
せず)の信号、前軸の荷重センサ18の信号と後
軸の荷重センサの信号がそれぞれAD変換器35
によりデジタル信号として入力される。
The electronic control device 30 is composed of, for example, a microcomputer. The microcomputer is composed of a microprocessor 32, a memory 33, and an interface 31. The interface 31 receives signals from a steering angle sensor (not shown) that detects the turning angle of the steering wheel, and signals from the front axle load sensor 18. and the rear axle load sensor signals are respectively sent to the AD converter 35.
is input as a digital signal.

メモリ33のROMは第2,3図に示すような
制御マツプを記憶している。すなわち、車体の全
軸荷重の変化に拘わらず常に一定のロール剛性を
得るために、第2図に線41で示すように、車体
の全軸荷重(前・後軸荷重の和)WF+WRに対応
する前・後軸のロール剛性の和φF+φRを予め設
定した制御マツプを記憶している。
The ROM of the memory 33 stores control maps as shown in FIGS. In other words, in order to always obtain constant roll rigidity regardless of changes in the total axle load of the vehicle body, the total axle load of the vehicle body (sum of front and rear axle loads) W F +W is shown as line 41 in Fig. 2. A control map is stored in which the sum of the roll rigidities of the front and rear shafts φ FR corresponding to R is set in advance.

また、前軸と後軸の各荷重の変化に拘わらず常
に一定のロール剛性を得るために、第3図に線4
2で示すように、前・後軸の荷重比WF/WRに対
応する前・後軸のロール剛性比φF/φRを予め設
定した制御マツプを記憶している。
In addition, in order to always obtain constant roll rigidity regardless of changes in the loads on the front and rear axles, line 4 is shown in Figure 3.
As shown in 2, a control map is stored in which the roll stiffness ratio φ FR of the front and rear axles corresponding to the load ratio W F /W R of the front and rear axles is set in advance.

第4図に示すように、ロール剛性は空気ばねの
ばね定数により決まり、ばね定数は空気圧に比例
する。電磁圧力制御弁14を制御して空気ばねの
ばね定数を変えることによりロール剛性を変える
ことができる。
As shown in FIG. 4, the roll stiffness is determined by the spring constant of the air spring, and the spring constant is proportional to the air pressure. The roll stiffness can be changed by controlling the electromagnetic pressure control valve 14 to change the spring constant of the air spring.

第5図は電子制御装置30の制御プログラムを
表す流れ図である。同図において、p10〜p1
9はプログラムのステツプを表す。機関の始動と
同時に制御プログラムはp10とされ、p11で
舵角センサからの信号によりハンドルの切り角を
読み取る。
FIG. 5 is a flowchart showing the control program of the electronic control unit 30. In the same figure, p10 to p1
9 represents a step of the program. At the same time as the engine is started, the control program is set to p10, and at p11, the turning angle of the steering wheel is read based on the signal from the steering angle sensor.

p12でハンドルの切り角が規定値(例えば
20°程度)よりも大きいか否かを判別し、切り角
が規定値以下の場合はp19へ進み、所定時間ご
とにp10へ戻り、同じ制御プログラムを繰り返
す。
In p12, set the steering angle to the specified value (for example,
If the cutting angle is less than the specified value, the process proceeds to p19, returns to p10 at predetermined time intervals, and repeats the same control program.

p12でハンドルの切り角が所定値よりも大き
い場合は、p13で前軸荷重WFを読み取り、p
14で後軸荷重WFを読み取る。p15で前軸荷
重WFと後軸荷重WRとから車体の全軸荷重を求め
る。p16で前軸荷重WFと後軸荷重WRの荷重比
を求める。
If the turning angle of the steering wheel is larger than the specified value in p12, read the front axle load W F in p13, and
14, read the rear axle load W F. In p15, calculate the total axle load of the vehicle body from the front axle load W F and the rear axle load W R. In p16, find the load ratio between the front axle load W F and the rear axle load W R.

p17で車体の全軸荷重に対応する前・後軸の
ロール剛性の和を第2図に示す制御マツプから求
め、また前・後軸の荷重比に対応する前・後軸の
ロール剛性比を第3図に示す制御マツプから求め
る。前・後軸のロール剛性の和と前・後軸のロー
ル剛性比とから、前軸のロール剛性φFと後軸の
ロール剛性φRを求める。すなわち、 φF+φR=C1 φF/φR=C2とすれば、 φF=C1/(1+C2) φR=C1・C2/(1+C2)となり、 第4図に示すように各ロール剛性φF、φRに対
応した空気ばねの空気室11の空気圧を求める。
p18で空気ばねの空気室11の空気圧が上述の
式を満足するように、電磁圧力制御弁14の開度
を制御し、p19で終わり、以下同様の制御プロ
グラムを所定時間ごとに繰り返す。
In p17, find the sum of the roll stiffness of the front and rear axles corresponding to the total axle load of the vehicle body from the control map shown in Figure 2, and also find the roll stiffness ratio of the front and rear axles corresponding to the load ratio of the front and rear axles. It is determined from the control map shown in FIG. From the sum of the roll rigidities of the front and rear axles and the roll rigidity ratio of the front and rear axles, determine the roll rigidity φ F of the front axle and the roll rigidity φ R of the rear axle. That is, if φ FR = C1 φ FR = C2, then φ F = C1/(1+C2) φ R = C1・C2/(1+C2), and as shown in Figure 4, each roll stiffness φ Find the air pressure in the air chamber 11 of the air spring corresponding to F and φR .
At p18, the opening degree of the electromagnetic pressure control valve 14 is controlled so that the air pressure in the air chamber 11 of the air spring satisfies the above-mentioned formula, and the program ends at p19, and the same control program is repeated every predetermined time.

[発明の効果] 本発明は上述のように、車両の旋回走行時各車
輪の空気ばねと一体をなす懸架装置の油室の油圧
を検出する荷重センサから、電子制御装置により
前軸荷重と後軸荷重を求め、次いで前・後軸荷重
の和と前・後軸の荷重比を求め、制御マツプから
前・後軸荷重の和に対応する前・後軸のロール剛
性の和と、前・後軸の荷重比に対応する前・後軸
のロール剛性比を求め、次いで前・後軸のロール
剛性の和と前・後軸のロール剛性比から各車輪の
懸架装置の空気ばねの目標空気圧を求め、該目標
空気圧を得るように各懸架装置の空気ばねと空気
槽の間に挿入接続した電磁圧力調整弁を駆動する
ものであるから、次のような効果を奏する。
[Effects of the Invention] As described above, the present invention uses a load sensor that detects the oil pressure in the oil chamber of the suspension system, which is integrated with the air springs of each wheel, when the vehicle is turning, to calculate the front axle load and the rear axle load using an electronic control device. Determine the axle load, then determine the sum of the front and rear axle loads and the load ratio of the front and rear axles, and calculate from the control map the sum of the roll stiffness of the front and rear axles corresponding to the sum of the front and rear axle loads, and the front and rear axle roll stiffnesses that correspond to the sum of the front and rear axle loads. Find the roll stiffness ratio of the front and rear axles corresponding to the load ratio of the rear axle, and then calculate the target air pressure of the air spring of each wheel's suspension system from the sum of the roll stiffness of the front and rear axles and the roll stiffness ratio of the front and rear axles. Since the system calculates the target air pressure and drives the electromagnetic pressure regulating valve inserted and connected between the air spring and the air tank of each suspension system to obtain the target air pressure, the following effects are achieved.

(a) 各車輪の荷重センサの信号から空気ばねのば
ね定数を演算できるので、構成が非常に簡単で
あり、通常の走行では空気ばねのもつ柔かな乗
り心地が得られ、車線変更や旋回走行時には、
積荷の前軸と後軸の負担割合に応じて前軸と後
軸の最適なロール剛性が得られ、車体のロール
が抑えられる。
(a) The spring constant of the air spring can be calculated from the signal of the load sensor of each wheel, so the configuration is very simple, and the soft ride quality of the air spring can be obtained during normal driving, and when changing lanes and turning. in some cases,
The optimal roll stiffness of the front and rear axles is achieved depending on the load burden on the front and rear axles, suppressing vehicle body roll.

(b) 乗員や積荷の変化により各車輪の受け持つ荷
重が変化しても、各空気ばねのばね定数が各車
輪の荷重変化に見合つた値に調整され、車体の
ロールが一定限度に抑えられるので、安定した
操縦性能が得られる。
(b) Even if the load on each wheel changes due to changes in occupants or cargo, the spring constant of each air spring is adjusted to a value commensurate with the change in load on each wheel, and the roll of the vehicle body is suppressed to a certain limit. , stable maneuverability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るハイドロニユーマチツク
懸架装置の構成を示す正面図、第2図、第3図お
よび第4図は同電子制御装置のメモリに記憶され
る制御マツプを表す線図、第5図は同電子制御装
置の制御プログラムを表す流れ図である。 2……空気槽、6……車輪、7……シリンダ、
8……ピストン、9……油室、11……空気室、
13……コントロールアーム、14……電磁圧力
制御弁、18……荷重センサ、19……油圧調整
装置、30……電子制御装置。
FIG. 1 is a front view showing the configuration of a hydroneumatic suspension system according to the present invention; FIGS. 2, 3, and 4 are diagrams showing control maps stored in the memory of the electronic control device; FIG. 5 is a flowchart showing the control program of the electronic control device. 2...Air tank, 6...Wheel, 7...Cylinder,
8... Piston, 9... Oil chamber, 11... Air chamber,
13... Control arm, 14... Electromagnetic pressure control valve, 18... Load sensor, 19... Hydraulic pressure adjustment device, 30... Electronic control device.

Claims (1)

【特許請求の範囲】[Claims] 1 車両の旋回走行時各車輪の空気ばねと一体を
なす懸架装置の油室の油圧を検出する荷重センサ
から、電子制御装置により前軸荷重と後軸荷重を
求め、次いで前・後軸荷重の和と前・後軸の荷重
比を求め、制御マツプから前・後軸荷重の和に対
応する前・後軸のロール剛性の和と、前・後軸の
荷重比に対応する前・後軸のロール剛性比を求
め、次いで前・後軸のロール剛性の和と前・後軸
のロール剛性比から各車輪の懸架装置の空気ばね
の目標空気圧を求め、該目標空気圧を得るように
各懸架装置の空気ばねと空気槽の間に挿入接続し
た電磁圧力調整弁を駆動することを特徴とする、
ハイドロニユーマチツク懸架装置。
1 When the vehicle is turning, the front axle load and rear axle load are determined by the electronic control device from the load sensor that detects the oil pressure in the oil chamber of the suspension system that is integrated with the air springs of each wheel, and then the front and rear axle loads are calculated. Calculate the sum and the load ratio of the front and rear axles, and from the control map calculate the sum of the roll stiffness of the front and rear axles corresponding to the sum of the front and rear axle loads, and the front and rear axle load ratios corresponding to the front and rear axle load ratios. Next, from the sum of the roll stiffness of the front and rear axles and the roll stiffness ratio of the front and rear axles, the target air pressure of the air spring of each wheel suspension system is determined, and each suspension is adjusted to obtain the target air pressure. It is characterized by driving an electromagnetic pressure regulating valve inserted and connected between the air spring and the air tank of the device,
Hydroneumatic suspension system.
JP13043383A 1983-07-18 1983-07-18 Hydropneumatic suspension Granted JPS6022511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13043383A JPS6022511A (en) 1983-07-18 1983-07-18 Hydropneumatic suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13043383A JPS6022511A (en) 1983-07-18 1983-07-18 Hydropneumatic suspension

Publications (2)

Publication Number Publication Date
JPS6022511A JPS6022511A (en) 1985-02-05
JPH0523962B2 true JPH0523962B2 (en) 1993-04-06

Family

ID=15034118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13043383A Granted JPS6022511A (en) 1983-07-18 1983-07-18 Hydropneumatic suspension

Country Status (1)

Country Link
JP (1) JPS6022511A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201707A (en) * 1981-06-05 1982-12-10 Nec Corp Shock absorber
JPS58206409A (en) * 1982-05-26 1983-12-01 Nissan Motor Co Ltd High regulator for car
JPS5973309A (en) * 1982-10-18 1984-04-25 Mazda Motor Corp Suspension of car

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863440U (en) * 1981-10-23 1983-04-28 カヤバ工業株式会社 hydraulic shock absorber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201707A (en) * 1981-06-05 1982-12-10 Nec Corp Shock absorber
JPS58206409A (en) * 1982-05-26 1983-12-01 Nissan Motor Co Ltd High regulator for car
JPS5973309A (en) * 1982-10-18 1984-04-25 Mazda Motor Corp Suspension of car

Also Published As

Publication number Publication date
JPS6022511A (en) 1985-02-05

Similar Documents

Publication Publication Date Title
EP0556055B1 (en) Suspension system for a motor vehicle
US5228719A (en) Automotive active suspension system for anti-rolling control
JP2944148B2 (en) Vehicle suspension device
JPS6238402Y2 (en)
JPH0523962B2 (en)
JP2874427B2 (en) Active suspension system for vehicles
JPH0585135A (en) Suspension device for vehicle
JPH07117436A (en) Suspension control device
JP2600470B2 (en) Suspension rigidity control device
JP2946758B2 (en) Active suspension
JP2874425B2 (en) Active suspension system for vehicles
JPH0474207B2 (en)
JP3149435B2 (en) Suspension rigidity control device
JPS5953220A (en) Hydropneumatic suspender
JP2605295Y2 (en) Rear wheel suspension control device
JP2888950B2 (en) Electronically controlled hydraulic suspension
JPH0684126B2 (en) Stabilizer control device
JPH07117438A (en) Vehicle characteristic control device of four-wheel steering vehicle
JPH0671847B2 (en) Active suspension for vehicles
JPH01101215A (en) Stabilizer controller
JPH0530672B2 (en)
JPH07117440A (en) Vehicle characteristic control device of four-wheel steering vehicle
JPH02151515A (en) Active suspension for vehicle
JPS63258207A (en) Active type suspension
JPH03139409A (en) Suspension device for vehicle