JPH05239620A - Manufacture of corrosion resistant hard multilayer film - Google Patents
Manufacture of corrosion resistant hard multilayer filmInfo
- Publication number
- JPH05239620A JPH05239620A JP7840692A JP7840692A JPH05239620A JP H05239620 A JPH05239620 A JP H05239620A JP 7840692 A JP7840692 A JP 7840692A JP 7840692 A JP7840692 A JP 7840692A JP H05239620 A JPH05239620 A JP H05239620A
- Authority
- JP
- Japan
- Prior art keywords
- film
- metal
- hard
- coating
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ピンホールが少なく、
とくに耐食性に優れている耐食性硬質多層膜の製造方法
に関するものである。BACKGROUND OF THE INVENTION The present invention has few pinholes,
In particular, the present invention relates to a method for producing a corrosion-resistant hard multilayer film having excellent corrosion resistance.
【0002】[0002]
【従来の技術】一般に、高速度鋼、金型用鋼などの金属
材料に、耐摩耗性及び耐食性を付与するために、金属材
料の表面に耐摩耗性、耐食性を有する被膜を形成する方
法がとられている。形成する方法としては、Cr、Ni
などを緻密化した膜厚の大きい被膜を形成することがで
きるメッキ法、金属の酸化物又は炭化物を主成分とする
硬質化合物を金属材表面に吹付けることによって行なう
溶射法、及び、硬質化合物を緻密に金属材上に製膜する
ことができ、又、高い平滑性を得ることができる気相析
出法などが知られているが、これらのいずれの方法にお
いても、十分な被膜特性、とくに、耐食性を向上させる
ために、被膜中に存在するピンホールを除去することが
必要である。しかして、このピンホール除去のために、
被膜組織を緻密化してピンホール自体を減少させ、又
は、被膜の膜厚を大きくすることによってピンホールが
基材としての金属材料に達しないようにする措置がとら
れている。気相析出法のなかでも、とくに、物理蒸着法
(PVD)は、低温処理が可能であるために、金属材料
の鈍りや寸法変形などをなくすことができる。したがっ
て、このような物理蒸着法により金属材上に硬質被膜を
製膜する方法が普及している。2. Description of the Related Art Generally, in order to impart wear resistance and corrosion resistance to metal materials such as high speed steel and die steel, a method of forming a coating having wear resistance and corrosion resistance on the surface of the metal material is known. It is taken. As a method of forming, Cr, Ni
A plating method capable of forming a dense coating having a large thickness, a thermal spraying method performed by spraying a hard compound containing a metal oxide or carbide as a main component onto the surface of a metal material, and a hard compound. It is known that a vapor phase deposition method or the like that can form a film on a metal material densely and can obtain high smoothness is sufficient. In any of these methods, sufficient film properties, particularly, In order to improve the corrosion resistance, it is necessary to remove the pinholes present in the coating. Then, to remove this pinhole,
Measures are taken to prevent the pinholes from reaching the metal material as the base material by densifying the film structure to reduce the pinholes themselves or by increasing the film thickness of the film. Among the vapor phase deposition methods, the physical vapor deposition method (PVD), in particular, is capable of low-temperature treatment, so that bluntness and dimensional deformation of the metal material can be eliminated. Therefore, a method of forming a hard coating on a metal material by such a physical vapor deposition method has become widespread.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、メッキ
法によって被膜を形成した鋼材は、機械装置などにおい
て激しく振動する箇所、又は、大きな圧力負荷もしくは
衝撃などが加わる箇所の部品として用いられた場合には
硬度的に不十分であるという問題があり、溶射法におい
ては、溶射という方法自体のためにピンホールの発生率
が高い上に、被膜の面粗度が粗くなり、平滑性を要求さ
れる部材として用いることができないという問題があ
る。さらに、物理蒸着法は、硬質被膜を緻密化し、耐摩
耗性を向上することができるが、この方法によっても未
だ被膜中に微細なピンホールが存在して耐食性の点では
十分ではないという問題がある。However, when a steel material having a coating film formed by a plating method is used as a part in a machine or the like where it vibrates violently or where a large pressure load or impact is applied, There is a problem that hardness is insufficient, and in the thermal spraying method, the rate of pinholes is high due to the thermal spraying method itself, and the surface roughness of the coating becomes rough, so that a member requiring smoothness is required. There is a problem that it cannot be used as. Further, the physical vapor deposition method can densify the hard coating and improve the wear resistance, but this method also has the problem that fine pinholes still exist in the coating and are not sufficient in terms of corrosion resistance. is there.
【0004】本発明は物理蒸着法によって、被膜中のピ
ンホールを減少させて耐食性を向上し得る硬質被膜の製
造方法を提供することを目的とするものである。It is an object of the present invention to provide a method for producing a hard coating by physical vapor deposition, which can reduce pinholes in the coating and improve corrosion resistance.
【0005】[0005]
【課題を解決するための手段】本発明者は、前記問題を
解決し、前記目的を達成するために研究を重ね、硬質被
膜の間に好ましくは、硬質被膜製膜に使用した金属と同
種の金属の層を介在させることによって目的を達し得る
ことを見出して本発明を完成するに至った。すなわち、
本発明は、物理蒸着法により金属表面にTi、Zr、H
f、V、Nb、TaまたはCrの窒化物、炭化物または
炭窒化物のうちのいずれか1種類の硬質被膜を形成する
方法において、前記硬質被膜製膜途中において、製膜に
用いられているTi、Zr、Hf、V、Nb、Taまた
はCrのうちの製膜に用いられている金属と同種類の金
属を前記硬質被膜上に真空蒸着し、前記硬質被膜と金属
層との多層構造とし、最下層を前記硬質被膜とする耐食
性硬質多層膜の製造方法である。Means for Solving the Problems The present inventor has conducted extensive research to solve the above problems and achieve the above objects, and preferably, between the hard coatings, preferably the same kind of metal as that used for the hard coating formation. The inventors have completed the present invention by finding that the purpose can be achieved by interposing a metal layer. That is,
The present invention uses Ti, Zr, H on a metal surface by physical vapor deposition.
In a method for forming a hard coating of any one of f, V, Nb, Ta or Cr nitrides, carbides or carbonitrides, Ti used for film formation during the formation of the hard coating. , Zr, Hf, V, Nb, Ta or Cr, the same kind of metal as that used for film formation is vacuum-deposited on the hard coating to form a multilayer structure of the hard coating and the metal layer, A method for producing a corrosion-resistant hard multilayer film, wherein the lowermost layer is the hard coating.
【0006】本発明を適用する金属基材としては、たと
えば、S15Cなどの肌焼鋼、S45Cなどの構造用
鋼、SUP10などのばね鋼、SUJ2などの軸受鋼、
SACM1などの窒化鋼、SKD6などの熱間加工用
鋼、SKD11などの冷間加工用鋼、SKH51などの
高速度工具鋼、SUS301などの耐熱鋼、及び、SU
S410などの耐食耐酸鋼など種々の鋼、超合金、A7
075Pなどのアルミニウム合金などのような金属が挙
げられる。Examples of the metal base material to which the present invention is applied include case-hardening steel such as S15C, structural steel such as S45C, spring steel such as SUP10, and bearing steel such as SUJ2.
Nitrided steel such as SACM1, hot working steel such as SKD6, cold working steel such as SKD11, high speed tool steel such as SKH51, heat resistant steel such as SUS301, and SU
Various steels such as corrosion resistant and acid resistant steels such as S410, super alloys, A7
Examples include metals such as aluminum alloys such as 075P.
【0007】硬質被膜は、Ti、Zr、Hf、V、N
b、TaまたはCrの窒化物、炭化物あるいは炭窒化物
のうちの1種類を選択して形成する。The hard coating is made of Ti, Zr, Hf, V, N
One of b, Ta or Cr nitrides, carbides or carbonitrides is selected and formed.
【0008】硬質被膜間に介在させる金属層としては、
硬質被膜の製膜に用いられているTi、Zr、Hf、
V、Nb、TaまたはCrから選ばれ、製膜に用いられ
ている金属と同種類の金属を用いる。As the metal layer to be interposed between the hard coatings,
Ti, Zr, Hf, which are used for forming hard coatings,
A metal selected from V, Nb, Ta or Cr and used in the film formation is used.
【0009】被膜の最外層は、Ti、Zr、Hf、V、
Nb、TaまたはCrの窒化物、炭化物、炭窒化物のう
ちの製膜に用いられる硬質被膜と同種類の硬質被膜でな
ければならない。The outermost layers of the coating are Ti, Zr, Hf, V,
It must be a hard coating of the same type as the hard coating used for film formation among Nb, Ta or Cr nitrides, carbides and carbonitrides.
【0010】本発明における物理蒸着法は、イオンプレ
ーティング法、スパッタリング法、あるいは、イオン注
入法が適用できる。イオンプレーティング法で用いられ
る金属の蒸発方法としては、抵抗加熱、電子銃加熱、又
は、カソードアーク法のいずれでもよく、蒸発した金属
のイオン化方法は、アーク放電、グロー放電、高周波放
電などのいずれでもよい。As the physical vapor deposition method in the present invention, an ion plating method, a sputtering method, or an ion implantation method can be applied. The metal evaporation method used in the ion plating method may be resistance heating, electron gun heating, or cathode arc method, and the evaporated metal ionization method may be arc discharge, glow discharge, high frequency discharge, or the like. But it's okay.
【0011】反応ガスとしては、窒化物の場合は、窒
素、アンモニア、又は、これらの混合ガスを用い、炭化
物の場合は、入手が容易で経済的なメタン、エチレン、
アセチレン、プロパンなどのような鎖状炭化水素の少な
くとも1種類を用い、炭窒化物の場合は、前記のような
鎖状炭化水素の少なくとも1種類と窒素又はアンモニア
から選ばれたガスを用いる。反応槽内に導入されるとき
の圧力は、0.1〜20Paの範囲であればよい。As the reaction gas, nitrogen, ammonia, or a mixed gas thereof is used in the case of nitride, and methane, ethylene, and
At least one kind of chain hydrocarbon such as acetylene or propane is used, and in the case of carbonitride, at least one kind of chain hydrocarbon as described above and a gas selected from nitrogen or ammonia are used. The pressure when introduced into the reaction tank may be in the range of 0.1 to 20 Pa.
【0012】金属層形成のための蒸発の方法は、金属が
イオン化されていても、イオン化されていなくてもよ
い。ただし、金属がイオン化されている場合には、基板
にバイアス電圧を印加しない方がよい。又、金属層の製
膜中には、窒化物、炭化物、炭窒化物を形成するための
それぞれの反応ガスの供給は停止するようにすることが
好ましい。The evaporation method for forming the metal layer may be such that the metal is ionized or non-ionized. However, when the metal is ionized, it is better not to apply a bias voltage to the substrate. Further, during the film formation of the metal layer, it is preferable to stop the supply of the respective reaction gases for forming the nitride, the carbide and the carbonitride.
【0013】[0013]
【作用】Ti、Zr、Hf、V、Nb、TaまたはCr
の窒化物、炭化物、炭窒化物は、硬質化合物であって、
優れた耐摩耗性材料である。これらの硬質化合物は、物
理蒸着法による製膜条件によって結晶配向性、結晶粒
径、残留応力などが変化する。物理蒸着法の場合、被膜
は結晶配向が強く、したがって製膜完了までの間、製膜
条件が一定のままであると結晶配向方向に膜が生成し易
く、ピンホールを埋める方向には膜は成長し難くなる。
そこで製膜途中で金属を真空蒸着することによって、ピ
ンホールの発生をいちじるしく減少させることができ
る。これは、金属層の存在によって硬質被膜の連続した
成長が阻まれ、新たに核が生成することにより金属面に
達するピンホールが減少するためと考えられる。Function: Ti, Zr, Hf, V, Nb, Ta or Cr
The nitrides, carbides, and carbonitrides of
It is an excellent wear resistant material. The crystal orientation, crystal grain size, residual stress, etc. of these hard compounds change depending on the film forming conditions by the physical vapor deposition method. In the case of physical vapor deposition, the film has a strong crystallographic orientation, so if the film forming conditions remain constant until the film formation is completed, a film is likely to be formed in the crystallographic orientation direction, and the film is not formed in the direction of filling the pinhole. It becomes difficult to grow.
Therefore, by vacuum-depositing a metal during the film formation, the generation of pinholes can be significantly reduced. This is presumably because the presence of the metal layer hinders the continuous growth of the hard coating and the formation of new nuclei reduces the number of pinholes reaching the metal surface.
【0014】金属層形成に際して、バイアス電圧を印加
すると金属層は、柱状晶組織になり、機械的強度が低下
してしまうと同時に耐食性が損われてしまうから、金属
がイオン化されている場合は、基板にバイアス電圧を印
加しない方がよい。又、反応ガスを供給した状態では、
金属とガスとが反応してしまい基板にバイアス電圧が印
加していないために孔の多い膜となり耐食性が低下して
しまうからである。When a bias voltage is applied during the formation of the metal layer, the metal layer becomes a columnar crystal structure, which lowers the mechanical strength and at the same time deteriorates the corrosion resistance. Therefore, when the metal is ionized, It is better not to apply a bias voltage to the substrate. Also, in the state where the reaction gas is supplied,
This is because the metal and the gas react with each other and the bias voltage is not applied to the substrate, so that the film becomes a film having many holes and the corrosion resistance is deteriorated.
【0015】硬質被膜と金属層は、積層数が多いほど耐
食性に対する効果は大きいが、Ti、Zr、Hf、V、
Nb、TaまたはCrの窒化物、炭化物、炭窒化物の被
膜中少なくとも5μmに1層は金属層が必要である。こ
れは、前記硬質被膜の膜厚が5μm以上になるとピンホ
ール減少の効果が小さいからであり、金属層の厚さは被
膜の機械的強度から1μm以下であることが望ましい。The hard coating and the metal layer have a greater effect on the corrosion resistance as the number of laminated layers increases, but Ti, Zr, Hf, V,
At least one metal layer is required for every 5 μm in the Nb, Ta or Cr nitride, carbide or carbonitride coating. This is because the effect of pinhole reduction is small when the film thickness of the hard coating is 5 μm or more, and the thickness of the metal layer is preferably 1 μm or less in view of the mechanical strength of the coating.
【0016】最外層を、前記硬質被膜とするのは、金属
層であると、硬度も低く、摩擦係数が高いために耐摩耗
性が低下してしまうからである。The hard coat is used as the outermost layer because if the metal layer is a metal layer, the hardness is low and the friction coefficient is high, so that the wear resistance is reduced.
【0017】[0017]
【実施例】次に、本発明の実施例を述べる。 実施例 1 真空アーク放電型イオンプレーティング装置を使用し
て、多層被膜を形成する基板として、厚さ1mm、1辺
の長さ100mmの正方形の鋼板(SUS304) を用
い、有機溶剤によって洗浄した後、装置の真空反応槽内
に設置する。窒化物被膜を形成させる金属としてTiを
用い、まず、真空反応槽内の圧力を2×10−3Pa以
下の真空とした後、Tiイオン衝撃により洗浄、加熱を
行ない、TiN被膜の製膜を開始する。このときの反応
条件は、反応ガスとして窒素のみを反応槽内に導入し、
その圧力を4Paとする。又、金属蒸発源であるTiに
は、70Aの電流を流し、Tiターゲットから真空アー
ク放電によりTiイオンを放出させる。一方、鋼材基板
に−300Vのバイアス電圧を印加する。このときの鋼
材基板の温度は340℃である。このような条件で製膜
反応を20分間行なって被膜の膜厚が1.5μmになっ
た時点で窒素ガスの供給を中止し、バイアス電圧を0V
とし、Tiターゲットに流す電流はそのままにしてTi
金属の蒸着を行なった。この処理を5分間行なった後、
再度前記のTiN製膜処理を行なった。このような操作
を70分間繰返して行ない、TiN層とTi層の5層構
造とし、被膜全体の膜厚5μmの製品を得た。EXAMPLES Next, examples of the present invention will be described. Example 1 Using a vacuum arc discharge type ion plating device, a square steel plate (SUS304) having a thickness of 1 mm and a side length of 100 mm was used as a substrate for forming a multilayer coating film, and after washing with an organic solvent, , Installed in the vacuum reaction tank of the device. Using Ti as a metal for forming the nitride film, first, after the pressure in the vacuum reaction chamber was set to a vacuum of 2 × 10 −3 Pa or less, cleaning and heating were performed by Ti ion bombardment to form a TiN film. Start. The reaction condition at this time is to introduce only nitrogen as a reaction gas into the reaction tank,
The pressure is 4 Pa. A current of 70 A is passed through Ti, which is a metal evaporation source, to release Ti ions from the Ti target by vacuum arc discharge. On the other hand, a bias voltage of -300V is applied to the steel substrate. At this time, the temperature of the steel substrate is 340 ° C. The film formation reaction was carried out for 20 minutes under these conditions, and when the film thickness reached 1.5 μm, the supply of nitrogen gas was stopped and the bias voltage was set to 0 V.
And the current flowing through the Ti target remains unchanged.
Metal deposition was performed. After performing this treatment for 5 minutes,
The above TiN film forming process was performed again. By repeating such an operation for 70 minutes, a five-layer structure of a TiN layer and a Ti layer was obtained, and a product having a total film thickness of 5 μm was obtained.
【0018】得られた製品について、耐食性試験を、J
IS H 8663によるフェロキシル試験を行ない、
腐食孔密度により耐食性を評価した。結果を表1に示
す。 比較例 1 製膜中に金属層形成を行なわなかった以外は、実施例1
と同様に処理して膜厚4.5μmの単層被膜を有する製
品を製造し、実施例1と同様にして評価試験を行なっ
た。結果を表1に示す。 実施例 2 金属蒸発源としてCrを用い、CrN被膜とCr金属層
とを形成するように、実施例1と同様に処理して膜厚
5.2μmの製品を製造し、実施例1と同様にして評価
試験を行なった。結果を表1に示す。 比較例 2 製膜中にCr金属層形成を行なわなかった以外は、実施
例2と同様に処理して膜厚5.0μmの単層被膜を有す
る製品を製造し、実施例1と同様にして評価試験を行な
った。結果を表1に示す。 実施例 3 金属蒸発源としてTiを用い、TiC被膜とTi金属層
とを形成するように、反応ガスとしてメタンを使用して
実施例1と同様に処理して膜厚4.7μmの製品を製造
し、実施例1と同様にして評価を行なった。結果を表1
に示す。 比較例 3 製膜中にTi金属層形成を行なわなかった以外は、実施
例3と同様に処理して膜厚4.5μmの単層被膜を有す
る製品を製造し、実施例1と同様にして評価試験を行な
った。結果を表1に示す。 実施例 4 金属蒸発源としてZrを用い、ZrN被膜とZr金属層
とを形成するように、実施例1と同様に処理して膜厚
6.4μmの製品を製造し、実施例1と同様にして評価
試験を行なった。結果を表1に示す。 比較例 4 製膜中にZr金属層形成を行なわなかった以外は、実施
例4と同様に処理して膜厚6.1μmの単層被膜を有す
る製品を製造し、実施例1と同様にして評価試験を行な
った。結果を表1に示す。 実施例 5 金属蒸発源としてHfを用い、HfCN被膜とHf金属
層とを形成するように、反応ガスとしてメタン及び窒素
を使用して実施例1と同様に処理して膜厚5.5μmの
製品を製造し、実施例1と同様にして評価試験を行なっ
た。結果を表1に示す。 比較例 5 製膜中にHf金属層形成を行なわなかった以外は、実施
例5と同様に処理して膜厚4.9μmの単層被膜を有す
る製品を製造し、実施例1と同様にして評価試験を行な
った。結果を表1に示す。 実施例 6 金属蒸発源としてNbを用い、NbC被膜とNb金属層
とを形成するように、実施例3と同様に処理して膜厚
3.7μmの製品を製造し、実施例1と同様にして評価
試験を行なった。結果を表1に示す。 比較例 6 製膜中にNb金属層形成を行なわなかった以外は、実施
例6と同様に処理して膜厚3.5μmの単層被膜を有す
る製品を製造し、実施例1と同様にして評価試験を行な
った。結果を表2に示す。 実施例 7 金属蒸発源としてTaを用い、TaN被膜とTa金属層
とを形成するように、実施例1と同様に処理して膜厚1
0.5μmの製品を製造し、実施例1と同様にして評価
試験を行なった。結果を表2に示す。 比較例 7 製膜中にTa金属膜形成を行なわなかった以外は、実施
例7と同様に処理して膜厚9.5μmの単層被膜を有す
る製品を製造し、実施例1と同様にして評価試験を行な
った。結果を表2に示す。 実施例 8 金属蒸発源としてVを用い、VN被膜とV金属層とを形
成するように、実施例1と同様に処理して膜厚3.8μ
mの製品を製造し、実施例1と同様にして評価試験を行
なった。結果を表2に示す。 比較例 8 製膜中にV金属層形成を行なわなかった以外は、実施例
8と同様に処理して膜厚3.6μmの単層被膜を有する
製品を製造し、実施例1と同様にして評価試験を行なっ
た。結果を表2に示す。A corrosion resistance test was conducted on the obtained product according to J
Conducted a ferroxil test according to ISH 8663,
The corrosion resistance was evaluated by the corrosion hole density. The results are shown in Table 1. Comparative Example 1 Example 1 except that the metal layer was not formed during film formation.
A product having a single-layer coating having a film thickness of 4.5 μm was produced by the same treatment as described in (1), and an evaluation test was conducted in the same manner as in Example 1. The results are shown in Table 1. Example 2 Using Cr as a metal evaporation source, a product with a film thickness of 5.2 μm was manufactured by the same process as in Example 1 so as to form a CrN coating film and a Cr metal layer, and then in the same manner as in Example 1. The evaluation test was performed. The results are shown in Table 1. Comparative Example 2 A product having a single-layer coating having a film thickness of 5.0 μm was produced in the same manner as in Example 2 except that the Cr metal layer was not formed during film formation, and the same procedure as in Example 1 was performed. An evaluation test was conducted. The results are shown in Table 1. Example 3 Using Ti as a metal evaporation source and using methane as a reaction gas so as to form a TiC film and a Ti metal layer, the same process as in Example 1 was performed to manufacture a product having a film thickness of 4.7 μm. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
Shown in. Comparative Example 3 A product having a single-layer coating having a film thickness of 4.5 μm was produced in the same manner as in Example 3 except that the Ti metal layer was not formed during film formation, and in the same manner as in Example 1. An evaluation test was conducted. The results are shown in Table 1. Example 4 Using Zr as a metal evaporation source, a product having a film thickness of 6.4 μm was manufactured in the same manner as in Example 1 so as to form a ZrN coating film and a Zr metal layer, and the same as in Example 1. The evaluation test was performed. The results are shown in Table 1. Comparative Example 4 A product having a single-layer coating with a thickness of 6.1 μm was produced by the same treatment as in Example 4 except that the Zr metal layer was not formed during film formation, and in the same manner as in Example 1. An evaluation test was conducted. The results are shown in Table 1. Example 5 Hf was used as a metal evaporation source and methane and nitrogen were used as reaction gases in the same manner as in Example 1 so as to form the HfCN coating and the Hf metal layer, and a product having a film thickness of 5.5 μm was obtained. Was manufactured and an evaluation test was conducted in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 5 A product having a single-layer coating with a film thickness of 4.9 μm was produced in the same manner as in Example 5, except that the Hf metal layer was not formed during film formation. An evaluation test was conducted. The results are shown in Table 1. Example 6 Using Nb as a metal evaporation source, a product having a film thickness of 3.7 μm was manufactured by performing the same process as in Example 3 so as to form the NbC coating film and the Nb metal layer, and in the same manner as in Example 1. The evaluation test was performed. The results are shown in Table 1. Comparative Example 6 A product having a single-layer coating with a film thickness of 3.5 μm was produced by the same treatment as in Example 6 except that the Nb metal layer was not formed during film formation, and in the same manner as in Example 1. An evaluation test was conducted. The results are shown in Table 2. Example 7 Ta was used as a metal evaporation source, and a TaN film and a Ta metal layer were formed in the same manner as in Example 1 to form a film having a thickness of 1
A product having a thickness of 0.5 μm was manufactured and an evaluation test was conducted in the same manner as in Example 1. The results are shown in Table 2. Comparative Example 7 A product having a single-layer coating with a film thickness of 9.5 μm was produced in the same manner as in Example 7, except that the Ta metal film was not formed during film formation, and the same procedure as in Example 1 was performed. An evaluation test was conducted. The results are shown in Table 2. Example 8 V was used as a metal evaporation source, and the same treatment as in Example 1 was performed so as to form a VN coating and a V metal layer, and the film thickness was 3.8 μm.
m product was manufactured and the evaluation test was performed in the same manner as in Example 1. The results are shown in Table 2. Comparative Example 8 A product having a monolayer film with a thickness of 3.6 μm was produced in the same manner as in Example 8 except that the V metal layer was not formed during film formation. An evaluation test was conducted. The results are shown in Table 2.
【0019】[0019]
【表1】 [Table 1]
【0020】[0020]
【表2】 [Table 2]
【0021】[0021]
【発明の効果】本発明は、硬質被膜の間に金属被膜を介
在させたので、被膜中のピンホールを減少させ得、耐食
性を向上し得るものであって顕著な効果が認められる。EFFECTS OF THE INVENTION Since the present invention has the metal coating interposed between the hard coatings, the pinholes in the coating can be reduced, and the corrosion resistance can be improved.
Claims (1)
r、Hf、V、Nb、TaまたはCrの窒化物、炭化物
または炭窒化物のうちのいずれか1種類の硬質被膜を形
成する方法において、前記硬質被膜製膜途中において、
製膜に用いられているTi、Zr、Hf、V、Nb、T
aまたはCrの金属を前記硬質被膜上に真空蒸着し、前
記硬質被膜と金属層との多層構造とし、最外層を前記硬
質被膜とすることを特徴とする耐食性硬質多層膜の製造
方法。1. Ti, Z on a metal surface by physical vapor deposition
In the method for forming a hard coating of any one of a nitride, a carbide or a carbonitride of r, Hf, V, Nb, Ta or Cr, in the course of forming the hard coating,
Ti, Zr, Hf, V, Nb, T used for film formation
A method for producing a corrosion-resistant hard multilayer film, wherein a metal of a or Cr is vacuum-deposited on the hard film to form a multilayer structure of the hard film and a metal layer, and the outermost layer is the hard film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7840692A JPH05239620A (en) | 1992-02-28 | 1992-02-28 | Manufacture of corrosion resistant hard multilayer film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7840692A JPH05239620A (en) | 1992-02-28 | 1992-02-28 | Manufacture of corrosion resistant hard multilayer film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05239620A true JPH05239620A (en) | 1993-09-17 |
Family
ID=13661149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7840692A Pending JPH05239620A (en) | 1992-02-28 | 1992-02-28 | Manufacture of corrosion resistant hard multilayer film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05239620A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10324978A (en) * | 1997-04-30 | 1998-12-08 | Masco Corp | Coated article |
JPH11100682A (en) * | 1997-04-30 | 1999-04-13 | Masco Corp | Article having coating |
JP2008231560A (en) * | 2007-03-23 | 2008-10-02 | Toyota Motor Corp | Method for forming film, and film-formed member |
WO2009016938A1 (en) * | 2007-08-02 | 2009-02-05 | Kabushiki Kaisha Kobe Seiko Sho | Hard coating film, material covered with hard coating film, mold for cold plastic forming, and method for forming hard coating film |
JP2009275292A (en) * | 2007-08-02 | 2009-11-26 | Kobe Steel Ltd | Hard film, member coated with hard film, die for cold plastic working, and method for forming hard film |
CN110707340A (en) * | 2019-09-27 | 2020-01-17 | 佛山科学技术学院 | Composite multilayer corrosion-resistant film and application thereof |
-
1992
- 1992-02-28 JP JP7840692A patent/JPH05239620A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10324978A (en) * | 1997-04-30 | 1998-12-08 | Masco Corp | Coated article |
JPH11100682A (en) * | 1997-04-30 | 1999-04-13 | Masco Corp | Article having coating |
JP2008231560A (en) * | 2007-03-23 | 2008-10-02 | Toyota Motor Corp | Method for forming film, and film-formed member |
WO2009016938A1 (en) * | 2007-08-02 | 2009-02-05 | Kabushiki Kaisha Kobe Seiko Sho | Hard coating film, material covered with hard coating film, mold for cold plastic forming, and method for forming hard coating film |
JP2009275292A (en) * | 2007-08-02 | 2009-11-26 | Kobe Steel Ltd | Hard film, member coated with hard film, die for cold plastic working, and method for forming hard film |
US8580406B2 (en) | 2007-08-02 | 2013-11-12 | Kobe Steel, Ltd. | Hard coating film, material coated with hard coating film and die for cold plastic working and method for forming hard coating film |
US8828562B2 (en) | 2007-08-02 | 2014-09-09 | Kobe Steel, Ltd. | Hard coating film, material coated with hard coating film and die for cold plastic working and method for forming hard coating film |
CN110707340A (en) * | 2019-09-27 | 2020-01-17 | 佛山科学技术学院 | Composite multilayer corrosion-resistant film and application thereof |
CN110707340B (en) * | 2019-09-27 | 2022-07-15 | 佛山科学技术学院 | Composite multilayer corrosion-resistant film and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5679448A (en) | Method of coating the surface of a substrate and a coating material | |
US6117280A (en) | Duplex coated steel composite products and method of manufacturing them | |
US6497772B1 (en) | Surface treatment for improved hardness and corrosion resistance | |
US6331332B1 (en) | Process for depositing diamond-like carbon films by cathodic arc evaporation | |
CN110894605B (en) | Corrosion resistant carbon-based coating | |
JPH04368A (en) | Wear resistant coating film and production thereof | |
CN101323945A (en) | Hard film containing stress relaxation layer and method for preparing the same | |
EP3938556A1 (en) | Improved coating processes | |
US20240093344A1 (en) | Hard carbon coatings with improved adhesion strength by means of hipims and method thereof | |
JPH05239620A (en) | Manufacture of corrosion resistant hard multilayer film | |
JPH06248425A (en) | Piston ring | |
JP2003042294A (en) | Piston ring | |
JP4392888B2 (en) | Manufacturing method of hard coating with excellent corrosion resistance | |
JP2022548893A (en) | Substrate with molybdenum nitride coating system and coating method for producing coating system | |
JPH05239624A (en) | Production of corrosion resistant hard film | |
US20220243318A1 (en) | Coated forming tools with enhanced performance and increased service life | |
JPH06248423A (en) | Product stuck with hard film and its production | |
CN116525864B (en) | Improvements in carbon coated electrodes | |
JPH05125521A (en) | Sliding material and its manufacture | |
JPH0735565B2 (en) | Corrosion-resistant and wear-resistant coated steel material and method for producing the same | |
JPH0598419A (en) | Surface coated steel product and its manufacture | |
JPH02166269A (en) | Formation of hard corrosion resisting film | |
JPH05331621A (en) | Production of wear resistant hard film | |
JPH0791635B2 (en) | Method for producing wear resistant hard coating | |
JPH02175858A (en) | Wear resistant coated steel products and production thereof |