JPH05239532A - Method for melting extreme-low carbon steel - Google Patents

Method for melting extreme-low carbon steel

Info

Publication number
JPH05239532A
JPH05239532A JP4407692A JP4407692A JPH05239532A JP H05239532 A JPH05239532 A JP H05239532A JP 4407692 A JP4407692 A JP 4407692A JP 4407692 A JP4407692 A JP 4407692A JP H05239532 A JPH05239532 A JP H05239532A
Authority
JP
Japan
Prior art keywords
molten steel
gas
mass
added
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4407692A
Other languages
Japanese (ja)
Inventor
Akito Kiyose
明人 清瀬
Hironori Goto
裕規 後藤
Muneyasu Nasu
宗泰 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4407692A priority Critical patent/JPH05239532A/en
Publication of JPH05239532A publication Critical patent/JPH05239532A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To easily obtain an extreme-low carbon steel by adding a solid material containing gas component to molten steel having a prescribed or lower carbon concn. in the reduced pressure, increasing gas-liquid reaction interface area by the generated gas and promoting decarburizing reaction. CONSTITUTION:A molten steel having <=0.005mass% carbon concn. is incorporated in a vacuum vessel, and to this molten steel, a solid material [e.g. Ca(OH)2, TiH2, etc.], containing a gas component is added. Then, by the gas instantaneously decomposed and generated, the gas-liquid reaction interface area is increased to promote the decarburizing reaction. In such way, the extreme-low carbon steel having <=0.001mass% carbon content in the molten steel is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶鋼の真空脱ガス装置
において、溶鋼中の炭素(以下、[C]と記す)の含有
量を極微量、例えば0.001mass%以下まで除去
し、極低炭素鋼を溶製するための効率的かつ経済的な方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum degassing apparatus for molten steel in which the content of carbon (hereinafter referred to as [C]) in the molten steel is removed to an extremely small amount, for example, 0.001 mass% or less. The present invention relates to an efficient and economical method for producing low carbon steel.

【0002】[0002]

【従来の技術】一般に、製鉄業においては、溶鋼の脱炭
処理を、例えば第3版鉄鋼便覧II製銑・製鋼671〜6
85ページに示されているような減圧脱炭装置を用いて
実施している。しかし、[C]濃度が0.005mas
s%以下になると脱炭速度が急激に低下し、[C]含有
量を極微量まで迅速に低減することは容易でない。これ
は、溶鋼内部からのCO気泡の発生を伴う脱炭反応が少
なくなり、溶鋼自由表面、あるいは吹込まれたAr気泡
と溶鋼との界面における脱炭反応主体となるためである
と言われている。したがって、[C]濃度が0.005
mass%以下の領域において、気・液反応界面積を増
大させて脱炭反応を促進させる方策がとられる。
2. Description of the Related Art Generally, in the steelmaking industry, decarburization treatment of molten steel is carried out, for example, in the 3rd edition of the Iron and Steel Handbook II, Ironmaking and Steelmaking 671-6.
It is carried out using a vacuum decarburizer as shown on page 85. However, the [C] concentration is 0.005mas
When it is s% or less, the decarburization rate sharply decreases, and it is not easy to rapidly reduce the [C] content to an extremely small amount. It is said that this is because the decarburization reaction accompanied by the generation of CO bubbles from the inside of the molten steel is reduced, and the decarburization reaction mainly occurs on the molten steel free surface or the interface between the blown Ar bubbles and the molten steel. .. Therefore, the [C] concentration is 0.005
In the region of mass% or less, measures are taken to increase the gas-liquid reaction interface area to accelerate the decarburization reaction.

【0003】例えば、RH真空脱ガス装置において、
[C]濃度が0.01mass%以下の領域で気・液反
応界面積の増大と溶鋼強攪拌を狙ってH2 ガス、H2
Arガス、アンモニアガスなどの水素含有物質を溶鋼中
に吹込み、水素ガスボイリングを行わせることにより脱
炭反応を促進する方法が特公昭60−21207号公報
に開示されている。
For example, in an RH vacuum degasser,
[C] H 2 gas, H 2 + for the purpose of increasing the gas-liquid reaction interface area and strong stirring of molten steel in the region of 0.01 mass% or less
Japanese Patent Publication No. 60-21207 discloses a method of accelerating the decarburization reaction by injecting hydrogen-containing substances such as Ar gas and ammonia gas into molten steel and performing hydrogen gas boiling.

【0004】[0004]

【発明が解決しようとする課題】この方法の場合、水素
含有ガスを溶鋼中に吹込む際、ガスを吹込むためのポー
ラスレンガや浸漬ランスの異常溶損のため安定して溶鋼
にガスを吹込むことは困難である。さらに、水素を一旦
溶鋼中に溶解させるため、脱炭処理の後に水素を除去す
る工程が必要である。このことは、処理時間の延長をも
たらし、経済的には不利である。
In the case of this method, when the hydrogen-containing gas is blown into the molten steel, it is possible to stably blow the gas into the molten steel due to abnormal melting damage of the porous brick or the immersion lance for blowing the gas. It is difficult. Furthermore, since hydrogen is once dissolved in molten steel, a step of removing hydrogen after the decarburization treatment is necessary. This leads to an increase in processing time and is economically disadvantageous.

【0005】[0005]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、減圧下において、溶鋼の脱炭処理を実施するにあ
たり、溶鋼中の炭素濃度が0.005mass%以下の
領域で、真空槽内の溶鋼にガス成分を含有する固形物質
を添加することを特徴とする極低炭素鋼の溶製方法にあ
る。
The gist of the present invention is that the decarburization treatment of molten steel under reduced pressure is performed in a vacuum chamber in a region where the carbon concentration in the molten steel is 0.005 mass% or less. In the method for smelting ultra-low carbon steel, a solid substance containing a gas component is added to the molten steel.

【0006】[0006]

【作用】以下、本発明について詳細に述べる。本発明の
本質は、ガス成分含有物質を溶鋼に添加したときに瞬間
的に分解して発生するガスによって、気・液反応界面積
を増大させることにある。一般に、減圧下での溶鋼の脱
炭反応は、大きく次の3種類に分類される。 (1)溶鋼内部、耐火物表面での[C]と[O]との反
応。この場合はCO気泡の発生を伴う。 (2)減圧雰囲気に曝されている溶鋼自由表面での
[C]と[O]との反応。 (3)溶鋼中に吹込まれたアルゴン気泡と溶鋼との界面
で起こる[C]と[O]との反応。
The present invention will be described in detail below. The essence of the present invention is to increase the gas-liquid reaction interface area by the gas generated by momentary decomposition when a gas component-containing substance is added to molten steel. Generally, the decarburization reaction of molten steel under reduced pressure is roughly classified into the following three types. (1) Reaction between [C] and [O] inside the molten steel and on the refractory surface. In this case, CO bubbles are generated. (2) Reaction between [C] and [O] on the molten steel free surface exposed to the reduced pressure atmosphere. (3) Reaction between [C] and [O] that occurs at the interface between the argon bubbles blown into the molten steel and the molten steel.

【0007】これらの反応の内、[C]濃度が0.00
5mass%超の領域では(1)の反応が主体であるこ
とが明らかにされている。この領域では、溶鋼内部から
CO気泡発生が活発に起こっており、ガス成分含有物質
を溶鋼に添加して、気・液反応界面積を拡大しても脱炭
反応の促進には効果が小さい。一方、[C]濃度が0.
005mass%以下の領域では、脱炭反応は、(2)
の溶鋼自由表面および(3)のアルゴン気泡と溶鋼との
界面での反応が主体となる。この領域では、気・液反応
界面積を大きくすることが脱炭反応の促進には重要であ
る。したがって、ガス成分含有物質を添加するときの
[C]濃度は、0.005mass%とする。
Of these reactions, the [C] concentration is 0.00
It has been clarified that the reaction (1) is predominant in the region of more than 5 mass%. In this region, CO bubbles are actively generated from inside the molten steel, and even if a gas component-containing substance is added to the molten steel to increase the gas-liquid reaction interface area, the effect of promoting the decarburization reaction is small. On the other hand, when the [C] concentration is 0.
In the range of 005 mass% or less, the decarburization reaction is (2)
The reaction mainly occurs at the molten steel free surface in (3) and the interface between the argon bubbles in (3) and the molten steel. In this region, increasing the gas-liquid reaction interface area is important for promoting the decarburization reaction. Therefore, the [C] concentration when the gas component-containing substance is added is 0.005 mass%.

【0008】脱炭促進のために溶鋼に添加すべきガス成
分含有物質は、溶鋼に接触したときすぐに分解し、ガス
を発生させ、かつ炭素源を含有しないものが望ましい。
したがって、ガス成分を含有する物質として、Ca(O
H)2 、Mg(OH)2 、Fe(OH)2 、TiH2
MgH2 、VH2 、ZrH2 、TiFeH2 を用いるこ
ととする。さらに、これらの物質を単独で添加しても、
2種以上を混合して添加してもよく、脱炭促進効果は同
等である。
The gas component-containing substance to be added to the molten steel for promoting decarburization is preferably a substance which decomposes immediately upon contact with the molten steel to generate gas and does not contain a carbon source.
Therefore, as a substance containing a gas component, Ca (O
H) 2 , Mg (OH) 2 , Fe (OH) 2 , TiH 2 ,
MgH 2 , VH 2 , ZrH 2 , and TiFeH 2 are used. Furthermore, even if these substances are added alone,
Two or more kinds may be mixed and added, and the decarburization promoting effect is the same.

【0009】Ca(OH)2 あるいはMg(OH)2
溶鋼に添加したときには次の反応により気泡が発生す
る。 Ca(OH)2 →CaO+H2 O→CaO+[O]+H
2 Mg(OH)2 →MgO+H2 O→MgO+[O]+H
2 水素含有ガスを溶鋼中に吹込む際、ガスを吹込むための
ポーラスレンガや浸漬ランスの異常溶損のため安定して
溶鋼にガスを吹込むことは困難である。さらに、水素を
一旦溶鋼中に溶解させるため、脱炭処理の後に水素を除
去する工程が必要である。このことは、処理時間の延長
をもたらし、経済的には不利である。
When Ca (OH) 2 or Mg (OH) 2 is added to the molten steel, bubbles are generated by the following reaction. Ca (OH) 2 → CaO + H 2 O → CaO + [O] + H
2 Mg (OH) 2 → MgO + H 2 O → MgO + [O] + H
2 When a hydrogen-containing gas is blown into molten steel, it is difficult to stably blow the gas into the molten steel due to abnormal melting damage of the porous brick and the immersion lance for blowing the gas. Furthermore, since hydrogen is once dissolved in molten steel, a step of removing hydrogen after the decarburization treatment is necessary. This leads to an increase in processing time and is economically disadvantageous.

【0010】本発明のように固形物質を溶鋼に添加する
場合には、ポーラスレンガやランスの異常溶損はなく、
溶鋼中に溶解する水素の量も少ないため、脱水素工程も
不要である。ガス成分含有物質の添加方法は、溶鋼の上
方から添加する方法、溶鋼中にランスを浸漬させて、不
活性ガスを搬送ガスとして溶鋼中に吹込む方法のいずれ
でもよい。
When a solid substance is added to molten steel as in the present invention, there is no abnormal melting loss of porous brick or lance,
Since the amount of hydrogen dissolved in the molten steel is small, the dehydrogenation step is unnecessary. The gas component-containing substance may be added either by adding it from above the molten steel or by immersing the lance in the molten steel and blowing an inert gas into the molten steel as a carrier gas.

【0011】本発明は、種々の真空脱ガス装置、例えば
RH、DH、VODに適用することができる。さらに、
本発明は、脱炭反応と同様に気・液界面で起こる脱窒反
応の促進にも有効である。
The present invention can be applied to various vacuum degassing devices such as RH, DH and VOD. further,
The present invention is also effective in promoting the denitrification reaction that occurs at the gas-liquid interface as in the decarburization reaction.

【0012】[0012]

【実施例】【Example】

実施例1 初期成分が[C];0.02mass%、[Si];
0.1mass%以下、[Mn];0.01〜0.5m
ass%、[P];0.005〜0.02mass%、
[S];0.003〜0.015mass%、[A
l];0.002mass%以下で重量が300トンの
溶鋼をRH真空脱ガス装置を用いて脱炭処理を実施し
た。[C]濃度が0.005mass%になった時点で
真空槽内の溶鋼にに上方から粒径1〜2mmのCa(O
H)2 300kgを連続的に添加した。このときの
[C]濃度の経時変化を図1に示す。比較例1は、
[C]濃度が0.01mass%以下0.005mas
s%超の領域で真空槽内の溶鋼に上方から粒径1〜2m
mのCa(OH)2 300kgを連続的に添加した場合
の[C]濃度の経時変化である。[C]濃度が0.00
5mass%超の領域で、ガス成分含有物質を添加して
も脱炭促進効果は比較的小さく、20分の脱炭処理後の
[C]濃度も0.0014mass%程度であるのに対
して、[C]濃度が0.005mass%以下の領域で
ガス成分含有物質を添加した場合、脱炭促進効果が大き
く、20分の脱炭処理後の[C]濃度も0.0008m
ass%となった。
Example 1 Initial component is [C]; 0.02 mass%, [Si];
0.1 mass% or less, [Mn]; 0.01 to 0.5 m
%, [P]; 0.005-0.02 mass%,
[S]; 0.003 to 0.015 mass%, [A
l]; 0.002 mass% or less and a weight of 300 tons of molten steel were decarburized using an RH vacuum degassing apparatus. When the [C] concentration reached 0.005 mass%, the molten steel in the vacuum chamber was filled with Ca (O
H) 2 300 kg was added continuously. FIG. 1 shows the change with time of the [C] concentration at this time. Comparative Example 1
[C] concentration is 0.01 mass% or less 0.005mass
In the area of more than s%, the molten steel in the vacuum tank has a grain size of 1 to 2 m from above.
3 is a change with time in [C] concentration when 300 kg of Ca (OH) 2 of m was continuously added. [C] concentration is 0.00
In the region of more than 5 mass%, the decarburization promoting effect is comparatively small even if the gas component-containing substance is added, and the [C] concentration after the decarburization treatment for 20 minutes is about 0.0014 mass%. When the gas component-containing substance is added in the region where the [C] concentration is 0.005 mass% or less, the decarburization promoting effect is large, and the [C] concentration after the decarburization treatment for 20 minutes is 0.0008 m.
It became ass%.

【0013】実施例2 初期成分が[C];0.02mass%、[Si];
0.1mass%以下、[Mn];0.01〜0.5m
ass%、[P];0.005〜0.02mass%、
[S];0.003〜0.015mass%、[A
l];0.002mass%以下で重量が300トンの
溶鋼をRH真空脱ガス装置を用いて脱炭処理を実施し
た。[C]濃度が0.005mass%になった時点で
真空槽内の溶鋼に上方から粒径1〜2mmの表1に示す
ガス成分含有物質300kgを連続的に添加した。この
ときの脱炭処理開始から20分後の[C]濃度を表1に
併示した。比較例2は、炭素源を含有するCaCO3
添加した場合である。CaCO3 を溶鋼に添加した場合
は発生するCO2 が還元され溶鋼中に炭素が溶解するた
め、脱炭促進効果は本発明で用いるガス成分含有物質に
比べて小さく、20分の脱炭処理後の[C]濃度は0.
0015mass%程度である。これに対して、本発明
で用いるガス成分含有物質を添加した場合には、20分
の脱炭処理後、いずれも[C]濃度を0.001mas
s%以下に下げることができる。
Example 2 Initial component is [C]; 0.02 mass%, [Si];
0.1 mass% or less, [Mn]; 0.01 to 0.5 m
%, [P]; 0.005-0.02 mass%,
[S]; 0.003 to 0.015 mass%, [A
l]; 0.002 mass% or less and a weight of 300 tons of molten steel were decarburized using an RH vacuum degassing apparatus. When the [C] concentration reached 0.005 mass%, 300 kg of the gas component-containing substance shown in Table 1 having a particle size of 1 to 2 mm was continuously added to the molten steel in the vacuum chamber from above. The [C] concentration 20 minutes after the start of the decarburization treatment is also shown in Table 1. Comparative Example 2 is a case where CaCO 3 containing a carbon source was added. When CaCO 3 is added to the molten steel, the generated CO 2 is reduced and carbon is dissolved in the molten steel, so the decarburization promoting effect is smaller than that of the gas component-containing substance used in the present invention. [C] concentration of 0.
It is about 0015 mass%. On the other hand, when the gas component-containing substance used in the present invention was added, after the decarburization treatment for 20 minutes, the [C] concentration was 0.001 mass.
It can be reduced to s% or less.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】本発明により、[C]濃度が0.001
mass%以下の極低炭素鋼を容易に溶製できるように
なった。
According to the present invention, the [C] concentration is 0.001.
It has become possible to easily produce an extremely low carbon steel having a mass% or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】[C]濃度の経時変化を示す図である。FIG. 1 is a diagram showing a change with time of a [C] concentration.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 減圧下において、溶鋼の脱炭処理を実施
するにあたり、溶鋼中の炭素濃度が0.005mass
%以下の領域で、真空槽内の溶鋼にガス成分を含有する
固形物質を添加することを特徴とする極低炭素鋼の溶製
方法。
1. When carrying out decarburization treatment of molten steel under reduced pressure, the carbon concentration in the molten steel is 0.005 mass.
% Or less, a method for melting ultra-low carbon steel, characterized in that a solid substance containing a gas component is added to the molten steel in the vacuum chamber.
JP4407692A 1992-02-28 1992-02-28 Method for melting extreme-low carbon steel Withdrawn JPH05239532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4407692A JPH05239532A (en) 1992-02-28 1992-02-28 Method for melting extreme-low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4407692A JPH05239532A (en) 1992-02-28 1992-02-28 Method for melting extreme-low carbon steel

Publications (1)

Publication Number Publication Date
JPH05239532A true JPH05239532A (en) 1993-09-17

Family

ID=12681536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4407692A Withdrawn JPH05239532A (en) 1992-02-28 1992-02-28 Method for melting extreme-low carbon steel

Country Status (1)

Country Link
JP (1) JPH05239532A (en)

Similar Documents

Publication Publication Date Title
EP1997916B1 (en) Method of denitrifying molten steel
JP2009249667A (en) Desulfurization refining method for molten
JPH05239535A (en) Method for melting extreme-low carbon steel
JPH05239532A (en) Method for melting extreme-low carbon steel
WO1994005816A1 (en) Improved method of desulfurization in vacuum processing of steel
JPH05239531A (en) Method for melting extreme-low carbon steel
JPH05239533A (en) Method for melting extreme low carbon steel
JPH05239530A (en) Method for melting extreme-low carbon steel
JPH05239536A (en) Method for melting extreme low carbon steel
JPH05287360A (en) Method for melting extremely low carbon steel
JPH05287361A (en) Method for melting extremely low carbon steel
JPH05239529A (en) Method for melting extreme-low carbon steel
JP7211454B2 (en) Method for denitrifying molten steel, method for simultaneous denitrification and desulfurization, and method for manufacturing steel
JP2003171714A (en) Molten steel refining method
JP2967845B2 (en) Melting method for ultra low sulfur and ultra low carbon steel
WO2022259805A1 (en) Molten steel denitrification method and steel production method
KR100388024B1 (en) Method for refining steel containing ultra-low carbon and ultra-low nitrogen
JP2009263705A (en) Desulfurization refining method for molten iron
JP3577989B2 (en) High-speed desulfurization of molten steel
JPH07188728A (en) Desulfurizing agent for molten steel
EP4328330A1 (en) Method for refining molten iron
JP2024083797A (en) Method for denitrification of molten steel
JP2004300507A (en) Method for restraining foaming of slag
CN117500946A (en) Refining method of molten steel
CN117460846A (en) Method for denitriding molten steel and method for producing steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518