JPH0523811B2 - - Google Patents

Info

Publication number
JPH0523811B2
JPH0523811B2 JP60144086A JP14408685A JPH0523811B2 JP H0523811 B2 JPH0523811 B2 JP H0523811B2 JP 60144086 A JP60144086 A JP 60144086A JP 14408685 A JP14408685 A JP 14408685A JP H0523811 B2 JPH0523811 B2 JP H0523811B2
Authority
JP
Japan
Prior art keywords
flue gas
concentrator
sulfuric acid
reactor
hydrobromic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60144086A
Other languages
Japanese (ja)
Other versions
JPS6118423A (en
Inventor
Uee Rangenkanpu Hainritsuhi
Ban Beruzen Danieru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUUROPIAN ATOMITSUKU ENAJIIKOMYUNITEII YUURATOMU
Original Assignee
YUUROPIAN ATOMITSUKU ENAJIIKOMYUNITEII YUURATOMU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUUROPIAN ATOMITSUKU ENAJIIKOMYUNITEII YUURATOMU filed Critical YUUROPIAN ATOMITSUKU ENAJIIKOMYUNITEII YUURATOMU
Publication of JPS6118423A publication Critical patent/JPS6118423A/en
Publication of JPH0523811B2 publication Critical patent/JPH0523811B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/88Concentration of sulfuric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/09Bromine; Hydrogen bromide
    • C01B7/093Hydrogen bromide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/081Supplying products to non-electrochemical reactors that are combined with the electrochemical cell, e.g. Sabatier reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Treating Waste Gases (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

The invention relates to a process and a device for flue gas desulphurization using the following reaction: SO2+Br2+2 H2O->H2SO4+2 HBr The hydrobromic acid thus formed is split up by electrolysis into hydrogen and bromine. The sulphuric acid thus produced is brought to a saleable concentration rate of at least 90% in two successive concentrators (1, 2), the post-concentrator being fed with high temperature flue gases which are withdrawn immediately behind the economizer of the power plant. A partial flow of the flue gases to be cleaned traverses a heat exchanger (6), in which the cleaned flue gases are reheated to a temperature level which is compatible with the chimney requirements.

Description

【発明の詳細な説明】 本発明は、煙道ガスの脱硫法及びその装置に係
わる。本発明によれば、煙道ガスが通過する反応
器において、煙道ガスを臭素水溶液と接触させ、
煙道ガス中に含まれる二酸化イオウを臭素水溶液
と反応させて硫酸及び臭化水素酸に変化させ、こ
の臭化水素酸の一部を電気分解して水素及び臭素
を生成し、臭素を前記反応器に再注入する。一
方、臭化水素酸の残部を、熱い煙道ガスが流動す
る濃縮器において蒸発させ、硫酸から分離させ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flue gas desulfurization method and apparatus. According to the invention, in a reactor through which the flue gas passes, the flue gas is brought into contact with an aqueous bromine solution;
Sulfur dioxide contained in the flue gas is reacted with an aqueous solution of bromine to convert it into sulfuric acid and hydrobromic acid, and a portion of this hydrobromic acid is electrolyzed to produce hydrogen and bromine, and the bromine is converted into sulfuric acid and bromine through the reaction. Refill the container. Meanwhile, the remainder of the hydrobromic acid is evaporated and separated from the sulfuric acid in a condenser with flowing hot flue gas.

かかる方法及び装置については、EP−B1
0016290から公知である。この場合、煙道ガスの
温度が少なくとも180℃であれば、濃縮器におい
て濃度80重量%以上の硫酸が生成される。しかし
ながら、現代の発電プラントにおいては、一方で
は汚染物の制御のため、煙突出口の排出温度がで
きるだけ低いものでなければならないこと、及び
他方では排出温度が発電プラントの充填フアクタ
ーに大きく左右されることにより、かかる条件を
常時満足することはできない。このように、充填
フアクターが1の場合150℃である排出温度は、
充填フアクターが0.3である場合には、100℃に低
下する。このような低い温度では、煙道ガスによ
り加熱される濃縮器はその効率の大部分を失な
い、生成する硫酸は、市販用製品として要求され
る濃度である少なくとも75重量%には達し得ない
ことは明らかである。
For such methods and apparatus, see EP-B1
0016290. In this case, if the temperature of the flue gas is at least 180° C., sulfuric acid with a concentration of 80% by weight or more is produced in the concentrator. However, in modern power plants, on the one hand, the discharge temperature at the stack outlet must be as low as possible for pollutant control, and on the other hand, the discharge temperature is highly dependent on the filling factor of the power plant. Therefore, such conditions cannot always be satisfied. Thus, the discharge temperature, which is 150°C for a filling factor of 1, is
If the filling factor is 0.3, it will drop to 100°C. At such low temperatures, the flue gas heated concentrator loses most of its efficiency and the sulfuric acid produced cannot reach concentrations of at least 75% by weight required for commercial products. That is clear.

本発明の目的は、たとえ充填率が低い場合に
も、硫酸の濃縮率を高い値に維持できる上述の種
類の方法及び装置を提供することにある。
The object of the invention is to provide a method and a device of the above-mentioned type, with which the concentration ratio of sulfuric acid can be maintained at a high value even if the filling factor is low.

この目的は、本発明により、濃縮器で得られた
硫酸を、煙道ガスの温度よりも高い温度のガスが
通過する後濃縮器において、さらに蒸発を行なう
ことによつて達成される。
This object is achieved according to the invention by further evaporating the sulfuric acid obtained in the concentrator in a post-concentrator through which a gas having a temperature higher than that of the flue gas is passed.

従つて、本発明による煙道ガス脱硫装置は、濃
縮器につづいて、後濃縮器が設けてあり、この後
濃縮器に煙道ガスよりも高い温度レベルのガスが
供給されることを特徴としている。
Therefore, the flue gas desulfurization device according to the present invention is characterized in that a post-concentrator is provided following the concentrator, after which the concentrator is supplied with gas at a higher temperature level than the flue gas. There is.

本発明による装置の好適な1具体例を概略的に
示す図面を参照して、本発明をさらに詳述する。
The invention will be explained in more detail with reference to the drawing, which schematically shows a preferred embodiment of the device according to the invention.

装置は6つの主要な部材、すなわち予濃縮器
1、後濃縮器2、反応器3、電解槽4、洗浄塔5
及び熱交換器6で構成される。浄化されるべき煙
道ガスの少量部分は予濃縮器1、反応器3、洗浄
塔5及び熱交換器6をシリーズで通過する。一
方、大部分は、浄化されたガスを煙突からの排出
に最適な温度に加熱するため、まず熱交換器に供
給され、ついで反応器の入口で前記少量部分と併
合される。後濃縮器2には、熱発電プラントのエ
コノマイザ(図示せず)の直後で取出された高温
の煙道ガスが供給される。この後濃縮器を通過し
た後、これらの高温ガスは、予濃縮器1に入る煙
道ガスと併わされる。別法では、この目的のため
に、発電プラントの空気プレヒータからの熱空気
を使用することもできる。
The device consists of six main components: pre-concentrator 1, post-concentrator 2, reactor 3, electrolyzer 4, washing tower 5
and a heat exchanger 6. A small portion of the flue gas to be purified passes in series through a preconcentrator 1, a reactor 3, a scrubbing column 5 and a heat exchanger 6. On the other hand, the major part is first fed to a heat exchanger in order to heat the purified gas to the optimum temperature for discharge through the chimney, and then is combined with the minor part at the inlet of the reactor. The post-concentrator 2 is fed with hot flue gas taken off directly after the economizer (not shown) of the thermoelectric power plant. After passing through the concentrator, these hot gases are combined with the flue gas entering the preconcentrator 1. Alternatively, hot air from the air preheater of the power plant can be used for this purpose.

濃縮器1及び2では、臭化水素酸は加熱された
酸混合物から留去され、煙道ガスによつて運ば
れ、一方、より高い沸点をもつ硫酸は濃縮される
ことになる。反応器では、煙道ガスは、水に溶解
している臭素と接触し、以下の反応が生ずる。
In concentrators 1 and 2, hydrobromic acid is distilled off from the heated acid mixture and carried away by the flue gas, while sulfuric acid, which has a higher boiling point, is concentrated. In the reactor, the flue gas is contacted with bromine dissolved in water and the following reaction occurs.

SO2+Br2+2H2O→H2SO4+2HBr これにより、上記の酸混合物が生成する。かか
る接触を強化するため、混合物を連続的に循環さ
せ、反応器の周囲に繰返し噴霧するようにしても
よい。この混合物の一部を連続して電解槽4に供
給する。この電解槽には、グラフアイト電極を介
して一定電流が供給され、臭化水素酸を分子状臭
素及び水素に分解する。臭素は混合物の残部と共
に反応器に戻され、一方、水素は市販可能な生成
物として回収される。
SO 2 +Br 2 +2H 2 O→H 2 SO 4 +2HBr This produces the above acid mixture. To enhance such contact, the mixture may be continuously circulated and sprayed repeatedly around the reactor. A portion of this mixture is continuously supplied to the electrolytic cell 4. This electrolytic cell is supplied with a constant current through graphite electrodes to decompose hydrobromic acid into molecular bromine and hydrogen. Bromine is returned to the reactor with the remainder of the mixture, while hydrogen is recovered as a commercially available product.

洗浄塔5では、水が閉鎖導管において上方から
注入され、一方、被浄化煙道ガスは向流状で塔内
を流動する。反応器3内での蒸発による水のロス
(これにより、洗浄塔内での水レベルが高くなる)
が、水の一部を洗浄塔から反応器にポンプ送給す
ることにより、補償される。常法の如く、濃縮
器、反応器及び洗浄塔に供給される液体は、ポン
プ7及び11により、適切な注入圧力に圧縮され
る。
In the washing tower 5, water is injected from above in a closed conduit, while the flue gas to be purified flows countercurrently through the tower. Water loss due to evaporation in reactor 3 (this increases the water level in the washing tower)
is compensated for by pumping a portion of the water from the wash tower to the reactor. As usual, the liquids fed to the concentrator, reactor and washing tower are compressed by pumps 7 and 11 to the appropriate injection pressure.

以下にパイロツトプラントの操作パラメータを
示す。かかるパイロツトプラントは、20000m3
時間の率で排出ガスを浄化しうる。流率はいずれ
も、常圧及び室温におけるものである。フル充填
率及び部分充填率(充填フアクター0.3)に係わ
る数を併記する。被浄化煙導ガスは以下の組成を
有する。
The operating parameters of the pilot plant are shown below. Such a pilot plant will have an area of 20000m 3 /
The exhaust gas can be purified in a matter of hours. All flow rates are at normal pressure and room temperature. The numbers related to full filling rate and partial filling rate (filling factor 0.3) are also listed. The flue gas to be purified has the following composition.

窒 素 72.9/75 (容量%) 二酸化炭素 14/11 (容量%) 水 9/5 (容量%) 酸 素 4/9 (容量%) 二酸化イオウ 790/470 (ppm) 総煙道ガス流量 20000/60000 (m3/時間) 熱交換器に入る煙道ガスの総流率は66.3/64.4
容量%であり、主濃縮器への総流率は32.0/33.1
容量%であり、電力プラントのエコノマイザから
の煙道ガス1.7/2.5容量%が後濃縮器に入る。
Nitrogen 72.9/75 (vol.%) Carbon dioxide 14/11 (vol.%) Water 9/5 (vol.%) Oxygen 4/9 (vol.%) Sulfur dioxide 790/470 (ppm) Total flue gas flow rate 20000/ 60000 (m 3 / hour) The total flow rate of flue gas entering the heat exchanger is 66.3 / 64.4
% by volume, and the total flow rate to the main concentrator is 32.0/33.1
% by volume, and 1.7/2.5% by volume of the flue gas from the power plant economizer enters the post-concentrator.

熱交換器の上流における元の煙道ガスの温度は
150℃/100℃であり、下流では90℃/75℃であ
る。熱交換器の上流における浄化された煙道ガス
の温度は41.7℃/30.9℃であり、下流では82℃/
47℃である。いずれの場合にも、主濃縮器におけ
る硫酸の濃度は約50%であり、後濃縮器では95%
である。少量の分子状臭素以外にも、反応器は、
いずれの場合も、臭化水素酸約15%及び硫酸15%
を収容している。なお、残部は水である。
The temperature of the original flue gas upstream of the heat exchanger is
150°C/100°C and 90°C/75°C downstream. The temperature of the purified flue gas upstream of the heat exchanger is 41.7°C/30.9°C and downstream it is 82°C/30.9°C.
It is 47℃. In both cases, the concentration of sulfuric acid in the main concentrator is approximately 50% and in the post-concentrator 95%.
It is. Besides a small amount of molecular bromine, the reactor contains
In each case, about 15% hydrobromic acid and 15% sulfuric acid
It accommodates. Note that the remainder is water.

より高い臭素割合、たとえば臭化水素酸20%及
び硫酸10%が選択される場合には、濃縮器への供
給に関して、より大きい総煙道ガス流率(たとえ
ば51%)、浄化された煙道ガスの加熱に関して、
より小さい流率(たとえば47.3%)が選択され
る。この場合には、後者は温度41.7℃で熱交換器
に入り、熱交換器を70℃に加熱する。
If a higher bromine proportion is selected, e.g. 20% hydrobromic acid and 10% sulfuric acid, a greater total flue gas flow rate (e.g. 51%), with respect to the feed to the concentrator, a purified flue Regarding gas heating,
A smaller flow rate (eg 47.3%) is selected. In this case, the latter enters the heat exchanger at a temperature of 41.7°C and heats the heat exchanger to 70°C.

上述の具体例はパイロツトプラントとして代表
的かつ有利なものであるが、本発明はこれら具体
例に限定されない。特に大規模な装置において
は、総煙道ガス流率の分配を、煙突入口における
浄化された煙道ガスの所望最低温度に応じて変化
させることもできる。たとえば、熱交換器の出口
における浄化された煙道ガスの温度が100℃であ
ることが望まれる場合には、被浄化煙道ガスの71
%を、熱交換器における浄化された煙道ガスの加
熱に使用し、23%を主濃縮器に、かつ6%を後濃
縮器に供給することもできる。
Although the above-mentioned embodiments are representative and advantageous as pilot plants, the present invention is not limited to these embodiments. Particularly in large-scale installations, the distribution of the total flue gas flow rate can also be varied depending on the desired minimum temperature of the purified flue gas at the smoke inlet. For example, if it is desired that the temperature of the purified flue gas at the outlet of the heat exchanger is 100°C, then
% can also be used for heating the purified flue gas in the heat exchanger, 23% to the main concentrator and 6% to the post-concentrator.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明による煙道ガス脱硫装置の好適
な1具体例を示すフローチヤートである。 1……予濃縮器(主濃縮器)、2……後濃縮器、
3……反応器、4……電解槽、5……洗浄塔、6
……熱交換器。
The drawing is a flowchart showing one preferred embodiment of the flue gas desulfurization apparatus according to the present invention. 1... Pre-concentrator (main concentrator), 2... Post-concentrator,
3... Reactor, 4... Electrolytic tank, 5... Washing tower, 6
……Heat exchanger.

Claims (1)

【特許請求の範囲】 1 反応器3において煙道ガスを臭素水溶液と接
触させ、これにより該煙道ガス中の二酸化イオウ
を臭素水溶液と反応させて硫酸及び臭化水素酸に
変化させることにより煙道ガスを脱硫すると共
に、該反応器で得られた硫酸−臭化水素酸混合物
の一部を電解槽4に供給し、臭化水素酸を電気分
解して水素及び臭素を生成し、生成した臭素を前
記反応器に再注入し、一方、前記硫酸−臭化水素
酸混合物の残部を濃縮器1に供給して煙道ガスと
接触させ、該硫酸−臭化水素酸混合物から臭化水
素酸を蒸発させて硫酸濃縮溶液を得る煙道ガスの
脱硫法において、前記濃縮器1の下流側に設けた
後濃縮器2で前記濃縮器で得られた硫酸濃縮溶液
を前記煙道ガスよりも高い温度のガスと接触させ
て、該硫酸濃縮溶液から臭化水素酸をさらに蒸
発、分離することを特徴とする、煙道ガスの脱硫
法。 2 特許請求の範囲第1項記載の方法において、
前記後濃縮器で前記濃縮器からの硫酸濃縮溶液と
接触される高温のガスの温度が250ないし400℃で
ある、煙道ガスの脱硫法。 3 特許請求の範囲第1項又は第2項記載の方法
において、前記後濃縮器で硫酸濃縮溶液と接触し
た前記高温のガスを、前記反応器に供給される前
記煙道ガスの流れに併合させる、煙道ガスの脱硫
法。 4 煙道ガスと臭素水溶液とを接触させ、これに
より該煙道ガス中の二酸化イオウを臭素水溶液と
反応させて硫酸及び臭化水素酸の混合物に変化さ
せることにより煙道ガスを脱硫する反応器3と、
該反応器で生成された臭化水素酸を臭素及び水素
に電気分解する電解槽4と、該電解槽で得られた
臭素を前記反応器に再注入する手段と、前記反応
器で生成された硫酸及び臭化水素酸の混合物を煙
道ガスと接触させて、臭化水素酸を蒸発、分離さ
せることにより硫酸濃縮溶液を得る濃縮器1とを
包含してなる煙道ガスの脱硫装置において、前記
濃縮器1の下流側に、前記濃縮器から供給される
前記硫酸濃縮溶液を前記煙道ガスよりも高温のガ
スと接触させ、前記硫酸濃縮溶液から臭化水素酸
をさらに蒸発、分離させる後濃縮器2を設けたこ
とを特徴とする、煙道ガスの脱硫装置。 5 特許請求の範囲第4項記載のものにおいて、
該煙道ガスの脱硫装置が熱発電プラントの煙道ガ
スを浄化するためのものであり、前記後濃縮器2
に、該発電プラントのエコノマイザの直後で取出
した煙道ガスを前記高温ガスとして供給するよう
にした、煙道ガスの脱硫装置。 6 特許請求の範囲第4項又は第5項記載のもの
において、前記反応器へ供給される煙道ガスと、
煙突から排出される前の浄化された煙道ガスとの
間で熱交換させ、浄化された煙道ガスを煙突から
の排出に最適な温度に加熱する変換器6を設けて
なる、煙道ガスの脱硫装置。 7 特許請求の範囲第4項ないし第6項のいずれ
か1項に記載のものにおいて、前記反応器3から
の脱硫された煙道ガスを洗浄するための洗浄塔5
を設けてなる、煙道ガスの脱硫装置。 8 特許請求の範囲第4項記載のものにおいて、
前記煙道ガスの脱硫装置が熱発電プラントの煙道
ガス浄化用のものであり、前記後濃縮器2に、該
発電プラントの空気予熱器からの熱空気を前記高
温ガスとして供給するようにした、煙道ガスの脱
硫装置。
[Scope of Claims] 1. Flue gas is brought into contact with an aqueous bromine solution in the reactor 3, thereby converting sulfur dioxide in the flue gas into sulfuric acid and hydrobromic acid by reacting with the aqueous bromine solution. While desulfurizing the road gas, a part of the sulfuric acid-hydrobromic acid mixture obtained in the reactor was supplied to the electrolytic cell 4, and the hydrobromic acid was electrolyzed to produce hydrogen and bromine. Bromine is reinjected into the reactor, while the remainder of the sulfuric acid-hydrobromic acid mixture is fed to concentrator 1 and contacted with flue gas to extract hydrobromic acid from the sulfuric acid-hydrobromic acid mixture. In the flue gas desulfurization method for obtaining a concentrated sulfuric acid solution by evaporating the sulfuric acid, the concentrated sulfuric acid solution obtained in the concentrator is heated to a higher concentration than the flue gas in a concentrator 2 provided downstream of the concentrator 1. A process for desulfurizing flue gas, characterized in that hydrobromic acid is further evaporated and separated from the concentrated sulfuric acid solution in contact with a gas at temperature. 2. In the method described in claim 1,
A process for desulfurizing flue gas, wherein the temperature of the hot gas contacted with the concentrated sulfuric acid solution from the concentrator in the post-concentrator is 250 to 400°C. 3. A method according to claim 1 or 2, wherein the hot gas that has been in contact with the concentrated sulfuric acid solution in the post-concentrator is merged into the flue gas stream fed to the reactor. , flue gas desulfurization method. 4. A reactor for desulfurizing flue gas by contacting the flue gas with an aqueous bromine solution, thereby causing the sulfur dioxide in the flue gas to react with the aqueous bromine solution and converting it into a mixture of sulfuric acid and hydrobromic acid. 3 and
an electrolytic cell 4 for electrolyzing the hydrobromic acid produced in the reactor into bromine and hydrogen; means for reinjecting the bromine obtained in the electrolytic cell into the reactor; A flue gas desulfurization apparatus comprising a concentrator 1 for obtaining a concentrated sulfuric acid solution by bringing a mixture of sulfuric acid and hydrobromic acid into contact with the flue gas and evaporating and separating the hydrobromic acid, On the downstream side of the concentrator 1, the sulfuric acid concentrated solution supplied from the concentrator is brought into contact with a gas having a higher temperature than the flue gas, and after further evaporation and separation of hydrobromic acid from the sulfuric acid concentrated solution. A flue gas desulfurization device characterized in that a concentrator 2 is provided. 5 In what is stated in claim 4,
The flue gas desulfurization device is for purifying the flue gas of a thermal power generation plant, and the post-concentrator 2
A flue gas desulfurization device, wherein the flue gas taken out immediately after the economizer of the power plant is supplied as the high temperature gas. 6. The product according to claim 4 or 5, wherein the flue gas supplied to the reactor;
The flue gas is equipped with a converter 6 that exchanges heat with the purified flue gas before being discharged from the chimney and heats the purified flue gas to the optimum temperature for discharge from the chimney. desulfurization equipment. 7. A cleaning tower 5 for cleaning the desulfurized flue gas from the reactor 3, according to any one of claims 4 to 6.
A flue gas desulfurization device comprising: 8 In what is stated in claim 4,
The flue gas desulfurization device is for purifying the flue gas of a thermal power generation plant, and hot air from an air preheater of the power generation plant is supplied to the post-concentrator 2 as the high temperature gas. , flue gas desulfurization equipment.
JP60144086A 1984-07-06 1985-07-02 Method and apparatus for desulfurization of flue gas Granted JPS6118423A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU85454 1984-07-06
LU85454A LU85454A1 (en) 1984-07-06 1984-07-06 METHOD AND DEVICE FOR REMOVING SULFUR DIOXIDE FROM HOT EXHAUST GASES

Publications (2)

Publication Number Publication Date
JPS6118423A JPS6118423A (en) 1986-01-27
JPH0523811B2 true JPH0523811B2 (en) 1993-04-05

Family

ID=19730286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60144086A Granted JPS6118423A (en) 1984-07-06 1985-07-02 Method and apparatus for desulfurization of flue gas

Country Status (9)

Country Link
US (1) US4668490A (en)
EP (1) EP0171570B1 (en)
JP (1) JPS6118423A (en)
AT (1) ATE43252T1 (en)
CA (1) CA1269636A (en)
CS (1) CS273164B2 (en)
DD (1) DD236508A5 (en)
DE (1) DE3570369D1 (en)
LU (1) LU85454A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU85457A1 (en) * 1984-07-10 1985-09-12 Euratom METHOD FOR THE PRODUCTION OF HYDROGEN AND SULFUR FROM HYDROGEN SULFUR AND GASES CONTAINING SULFURANT
US4911103A (en) * 1987-07-17 1990-03-27 Texas Instruments Incorporated Processing apparatus and method
US5009869A (en) * 1987-12-28 1991-04-23 Electrocinerator Technologies, Inc. Methods for purification of air
DE3921180A1 (en) * 1989-06-28 1991-01-03 Gsb Ges Zur Beseitigung Von So METHOD AND SYSTEM FOR THE PURIFICATION OF POLLUTANT-BASED EXHAUST GASES WITH AVOIDANCE OF SALT RESIDUES
LU87923A1 (en) * 1991-04-24 1992-11-16 Euratom METHOD FOR REMOVING SULFUR AND / OR SULFUR FROM EXHAUST GASES
AU3973393A (en) * 1992-04-03 1993-11-08 Catalytica, Inc. Desulfurization process using bromine
GB9214851D0 (en) * 1992-07-13 1992-08-26 Europ Economic Community Communities desulphurisation of waste gases
DE4313897C1 (en) * 1993-04-28 1995-03-02 Degussa Process for cleaning oxides of nitrogen and sulfur containing flue gases from incineration plants
US6593520B2 (en) 2000-02-29 2003-07-15 Canon Kabushiki Kaisha Solar power generation apparatus and control method therefor
CN1813371A (en) * 2003-06-05 2006-08-02 太阳能反应器技术公司 Method for processing stack gas emissions
US20060013761A1 (en) * 2004-07-01 2006-01-19 Westinghouse Electric Company Llc Isolated hydrogen production process
US20090028767A1 (en) * 2007-07-16 2009-01-29 Parker Melahn L Waste Treatment and Energy Production Utilizing Halogenation Processes
US7862789B2 (en) * 2008-08-22 2011-01-04 Alstom Technology Ltd. Circulating fluidized bed power plant having integrated sulfur dioxide scrubber system with lime feed
CN101966983A (en) * 2010-10-25 2011-02-09 汪晋强 Method for preparing sulfuric acid and hydrogen bromide from sulfur dioxide waste gas
RU2692382C1 (en) * 2018-08-01 2019-06-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Челябинский государственный университет" Method for removing off gases from sulfur oxides with obtaining commercial products
RU2740015C1 (en) * 2019-12-03 2020-12-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Челябинский государственный университет" Method of cleaning off-gases from chlorine and sulfur oxide to obtain binder
EP4311807A1 (en) * 2022-07-25 2024-01-31 Sulzer Management AG A process for removing sulfur containing compounds from gas containing at least one sulfur containing compound

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1332581A (en) * 1919-01-09 1920-03-02 American Bromine Company Sulfuric and haloid acids
FR1395561A (en) * 1963-08-13 1965-04-16 Aquitaine Petrole Method and apparatus for obtaining sulfuric acid
GB1107626A (en) * 1964-06-18 1968-03-27 Nor Deutsche Affinerie A method of removing sulphur dioxide from gas containing sulphur dioxide
DE2519928C3 (en) * 1975-05-05 1981-04-02 Metallgesellschaft Ag, 6000 Frankfurt Process for the production of sulfuric acid
GB2045218B (en) * 1979-03-23 1982-11-10 Euratom Process for the removal of so2 from waste gases producing hydrogen and sulphuric acid

Also Published As

Publication number Publication date
CS273164B2 (en) 1991-03-12
EP0171570B1 (en) 1989-05-24
JPS6118423A (en) 1986-01-27
US4668490A (en) 1987-05-26
CS506185A2 (en) 1990-07-12
DE3570369D1 (en) 1989-06-29
DD236508A5 (en) 1986-06-11
LU85454A1 (en) 1985-09-12
ATE43252T1 (en) 1989-06-15
EP0171570A1 (en) 1986-02-19
CA1269636A (en) 1990-05-29

Similar Documents

Publication Publication Date Title
JPH0523811B2 (en)
US20100008844A1 (en) Method for processing stack gas emissions
US3733393A (en) Purification of combustion products before discharge into the atmosphere
CN103303872B (en) System device and method for recycling sulfur dioxide from fume to prepare sulfur
US3953578A (en) Method for purification of industrial flue gases
US5433828A (en) Method for the removal of hydrogen sulfide and/or carbon disulfide from waste gases
AU666754B2 (en) Desulphurisation of waste gases
US3574543A (en) Carbonaceous process for recovering sulfur values
EP0016290B1 (en) Continuous process for the removal of sulphur dioxide from waste gases, and hydrogen and sulphuric acid produced thereby
EP0151010B1 (en) Apparatus and process for the concentration of sulphuric acid
CA2298132A1 (en) Comprehensive system for utility load leveling hydrogen production, stack gas cleanup, greenhouse gas abatement, and methanol synthesis
Van Velzen et al. Development and design of a continuous laboratory-scale plant for hydrogen production by the Mark-13 cycle
CA2079757C (en) Process for the recovery of hydrogen and sulfur from a feedstock
US4174383A (en) Process for purifying a sulfur dioxide containing gas with production of elemental sulfur
CN210528467U (en) Selective oxidation sulfur recovery device
Van Velzen et al. Ispra Mark 13A, a new process for flue gas desulphurization
JPS60131801A (en) Production of gaseous hydrogen