JPH0523747B2 - - Google Patents

Info

Publication number
JPH0523747B2
JPH0523747B2 JP60105649A JP10564985A JPH0523747B2 JP H0523747 B2 JPH0523747 B2 JP H0523747B2 JP 60105649 A JP60105649 A JP 60105649A JP 10564985 A JP10564985 A JP 10564985A JP H0523747 B2 JPH0523747 B2 JP H0523747B2
Authority
JP
Japan
Prior art keywords
acid
amino
malic acid
culture
butyric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60105649A
Other languages
Japanese (ja)
Other versions
JPS61265096A (en
Inventor
Masato Terasawa
Shoichi Nara
Hideaki Yugawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP10564985A priority Critical patent/JPS61265096A/en
Priority to GB08612030A priority patent/GB2175304B/en
Priority to US06/864,212 priority patent/US4912043A/en
Publication of JPS61265096A publication Critical patent/JPS61265096A/en
Publication of JPH0523747B2 publication Critical patent/JPH0523747B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は、L−リンゴ酸の製造法に関する物で
ある。 本発明の方法によれば高い収率でL−リンゴ酸
を製造することができる。 L−リンゴ酸は現在医薬用等に用いられるもの
であり、又将来食品用としての利用も期待される
ものである。 先行技術 L−リンゴ酸の製造法としてえは、フマラーゼ
活性を有する微生物をフマール酸を含有する培地
に培養し、培養物からL−リンゴ酸を採取する醗
酵法(例えば特公昭41−16547号等参照)、及びフ
マラーゼ活性を有する微生物中の酵素フマラーゼ
を用いてフマール酸またはその塩からL−リンゴ
酸を製造する酵素法〔例えばThe Journal of
Genersl and Applind Microbiology、、108
〜116(1960)、European Journal of Applied
Microbiology、、169〜183(1976)など参照〕
が知られている。 しかしながら、醗酵法によるL−リンゴ酸の製
造では、大規模な醗酵設備を要し、さらにL−リ
ンゴ酸の生成収率が極めて低いため、高価となる
などの問題がある。公知の酵素法によるL−リン
ゴ酸の製法は、微生物のフマラーゼを利用してフ
マール酸からL−リンゴ酸を得るものであり、従
つて強力なフマラーゼ活性を有する微生物を得る
ことが工業的生産への重要要素となつているが、
このような目的に合致する微生物を自然界から分
離することは多くの困難を伴ない工業化への障害
となつていた。 発明の概要 本発明者らは、上記問題点を解消すべく鋭意検
討を行つた結果、α−アミノ−n−酪酸耐性を有
するブレビバクテリウム属に属する微生物が、強
力なフマラーゼ活性を有することを見い出し、本
発明を完成した。 即ち、本発明は、α−アミノ−n−酪酸耐性を
有するブレビバクテリウム・フラバムを好気的に
培養して得られる培養物若しくはその処理物の存
在下フマール酸またはその塩を水溶媒中で酸素反
応させてL−リンゴ酸を生成させ、該水溶液より
L−リンゴ酸を採取することを特徴とするL−リ
ンゴ酸の製造法を提供するものである。 発明の具体的説明 本発明の方法に用いられる微生物は、ブレビバ
クテリウム属に属し、α−アミノ−n−酪酸耐性
を有する微生物である。この微生物は、該耐性機
構を人為的に付与された微生物に限定されるもの
ではなく、自然界における偶発的変位によつて該
耐性機構を取得した微生物であつてもよい。この
様な微生物の例としては、例えば特公昭57−
26755号公報に開示されているブレビバクテリウ
ム・フラバムMJ−233(微工研条寄第1497号)等
がある。 本発明の方法に用いられるα−アミノ−n−酪
酸耐性を有する微生物は、上述の天然から取得さ
れたそのままの微生物でも用いられるが、好まし
くはブレビバクテリウム属に属しα−アミノ−n
−酪酸耐性を積極的に付与された及び/又は高め
られて有する微生物が用いられる。この様な微生
物としては例えば特公昭59−28398号公報に開示
されているブレビバクテリウム・フラバムMJ−
233−AB−41(微工研条寄第1498号)等がある。 本発明の方法に好ましく使用される上述の、ブ
レビバクテリウム属に属しα−アミノ−n−酪酸
耐性を積極的に付与された及び/又は高められて
有する微生物は、ブレビバクテリウム属に属しα
−アミノ−n−酪酸耐性を有する微生物を公知の
方法、例えば次の操作により誘導することができ
る。即ち、赤外線照射、あるいは化学的薬剤(例
えばN−メチル−N′−ニトロ−N−ニトロソグ
アニジン等)処理により例えばブレビバクテリウ
ム・フラバムMJ−233に変異を誘起せしめた後、
この菌懸濁液をDL−α−アミノ−n−酪酸10
mg/ml含有する平板培地(尿素0.2%、硫安0.7
%、KH2PO40.05%、K2HPO40.05%、MgSO4
7H2O0.05%、NaCl 2mg/、CaCl2・2H2
2mg/、FeSO4・7H2O 2mg/、
MnSO4・4〜6H2O、ZnSO4・7H2O 2mg/
、ビチオン200μg/、チアミン塩酸塩100μ
g/、DL−α−アミノ−n−酪酸1.0%、寒天
2.0%、エタノール3容量%〔滅菌後添加〕)に、
30℃にて数日間培養し、生じた大コロニーを分離
することにより耐性変異株を得ることができる。 ここで、本願発明において使用する微生物のα
−アミノ−n−酪酸耐性は、DL−α−アミノ−
n−酪酸2%を(注−1)の培地に加え、30℃、
3日間振盪培養した時の相対生育度で定義され、
α−アミノ−n−酪酸耐性を積極的に付与された
及び/又は高められて有する微生物の前記相対生
育度は15以上、好ましくは30以上である。 なお、前記相対生育度は次式で示される。 相対生育度=
α−AB2%添加時の生育度O.D610/α−AB無添加時の生
育度O.D610×100 (上式中、α−ABはDL−α−アミノ−n−
酪酸の略号である) (注−1)使用培地組成及び培養方法 尿素0.2%、硫安0.7%、KH2PO4 0.05%、K2
HPO4 0.05%、MgSO4・7H2O 0.05%、酵母
エキス0.01%、カザミノ酸0.01%、FeSO4・7H2
O 2mg/、MnSO4・4〜6H2O 2mg/、
ZnSO4・7H2O 2mg/、ビチオン200μg/
、チアミン塩酸塩100μg/からなる培地
(DL−α−アミノ−n−酪酸は、表1に示す量を
加える)10mlを口径24mmの大型試験管に分注、
120℃、10分間滅菌後、微生物例えばブレビバク
テリウム・フラバムMJ−233−AB−41株を各々
接種し、エタノールを無菌条件にて0.3ml(3容
量%)添加し、30℃で3日間振盪培養を行なつ
た。 (注−2)生育度O.D610、相対生育度 生育度O.D610は、610mμの波長における吸光度
を示し、この吸光度測定は東京大学農学部農芸化
学教室実験農芸化学上巻212項、朝倉書店(1975)
に従い測定した。また、DL−α−アミノ−n−
酪酸無添加時の生育度O.D610を100とし、相対生
育度で表わす。 上述の定義に従い測定したブレビバクテリウ
ム・フラバムMJ−233及びブレビバクテリウム・
フラバムMJ−233−AB−41のDL−α−アミノ
−n−酪酸に対する相対生育度は表1に示す通り
であつた。
Technical Field The present invention relates to a method for producing L-malic acid. According to the method of the present invention, L-malic acid can be produced in high yield. L-malic acid is currently used for medical purposes, and is also expected to be used for foods in the future. Prior Art As a method for producing L-malic acid, there is a fermentation method in which microorganisms having fumarase activity are cultured in a medium containing fumaric acid, and L-malic acid is collected from the culture (for example, Japanese Patent Publication No. 16547/1983). ), and enzymatic methods for producing L-malic acid from fumaric acid or its salts using the enzyme fumarase in microorganisms having fumarase activity [e.g., The Journal of
Genersl and Applind Microbiology, 6 , 108
~116 (1960), European Journal of Applied
Microbiology, 3 , 169-183 (1976), etc.]
It has been known. However, the production of L-malic acid by the fermentation method requires large-scale fermentation equipment, and furthermore, the production yield of L-malic acid is extremely low, resulting in high costs. The known enzymatic method for producing L-malic acid utilizes microbial fumarase to obtain L-malic acid from fumaric acid. Therefore, it is important to obtain microorganisms with strong fumarase activity for industrial production. It has become an important element of
Isolating microorganisms that meet these purposes from the natural world has been accompanied by many difficulties and has been an obstacle to industrialization. Summary of the Invention As a result of intensive studies aimed at solving the above problems, the present inventors found that microorganisms belonging to the genus Brevibacterium that are resistant to α-amino-n-butyric acid have strong fumarase activity. Heading, the invention was completed. That is, the present invention provides fumaric acid or a salt thereof in an aqueous medium in the presence of a culture obtained by aerobically cultivating Brevibacterium flavum having α-amino-n-butyric acid resistance or a processed product thereof. The present invention provides a method for producing L-malic acid, which is characterized by producing L-malic acid through an oxygen reaction and collecting L-malic acid from the aqueous solution. DETAILED DESCRIPTION OF THE INVENTION The microorganism used in the method of the present invention belongs to the genus Brevibacterium and is resistant to α-amino-n-butyric acid. This microorganism is not limited to a microorganism to which the resistance mechanism has been artificially imparted, but may be a microorganism that has acquired the resistance mechanism through accidental displacement in nature. Examples of such microorganisms include, for example,
Examples include Brevibacterium flavum MJ-233 (Feikoken Article No. 1497) disclosed in Publication No. 26755. The microorganism resistant to α-amino-n-butyric acid used in the method of the present invention may be the above-mentioned naturally obtained microorganism, but preferably belongs to the genus Brevibacterium.
- Microorganisms are used which have an actively conferred and/or increased resistance to butyric acid. Examples of such microorganisms include Brevibacterium flavum MJ-, which is disclosed in Japanese Patent Publication No. 59-28398.
233-AB-41 (Feikoken Article No. 1498), etc. The above-mentioned microorganism belonging to the genus Brevibacterium and having α-amino-n-butyric acid resistance actively imparted and/or increased preferably used in the method of the present invention belongs to the genus Brevibacterium and has α-amino-n-butyric acid resistance.
A microorganism resistant to -amino-n-butyric acid can be induced by a known method, for example, by the following procedure. That is, after inducing mutations in, for example, Brevibacterium flavum MJ-233 by infrared irradiation or treatment with chemical agents (for example, N-methyl-N'-nitro-N-nitrosoguanidine, etc.),
This bacterial suspension was mixed with DL-α-amino-n-butyric acid 10
Plate medium containing mg/ml (urea 0.2%, ammonium sulfate 0.7
%, KH2PO4 0.05 %, K2HPO4 0.05 %, MgSO4
7H 2 O 0.05%, NaCl 2 mg/, CaCl 2・2H 2 O
2mg/, FeSO 4 7H 2 O 2mg/,
MnSO 4・4~6H 2 O, ZnSO 4・7H 2 O 2 mg/
, bithion 200μg/, thiamine hydrochloride 100μ
g/, DL-α-amino-n-butyric acid 1.0%, agar
2.0%, ethanol 3% by volume [added after sterilization]),
Resistant mutants can be obtained by culturing at 30°C for several days and isolating the resulting large colonies. Here, α of the microorganism used in the present invention is
-amino-n-butyric acid resistance is DL-α-amino-
Add 2% n-butyric acid to the medium (Note-1) and incubate at 30°C.
Defined by the relative growth rate when cultured with shaking for 3 days,
The relative growth rate of the microorganism to which α-amino-n-butyric acid resistance is actively imparted and/or enhanced is 15 or more, preferably 30 or more. In addition, the said relative growth rate is shown by the following formula. Relative growth rate =
Growth rate OD 610 when α-AB is added 2% / Growth rate OD 610 when α-AB is not added ×100 (In the above formula, α-AB is DL-α-amino-n-
(Note-1) Composition of medium used and culture method Urea 0.2%, ammonium sulfate 0.7%, KH 2 PO 4 0.05%, K 2
HPO 4 0.05%, MgSO 4 7H 2 O 0.05%, yeast extract 0.01%, casamino acid 0.01%, FeSO 4 7H 2
O 2mg/, MnSO 4.4 ~6H 2 O 2mg/,
ZnSO 4・7H 2 O 2mg/, bithione 200μg/
Dispense 10 ml of a medium containing 100 μg/thiamine hydrochloride (DL-α-amino-n-butyric acid is added in the amount shown in Table 1) into a large test tube with a diameter of 24 mm.
After sterilization at 120°C for 10 minutes, each microorganism such as Brevibacterium flavum MJ-233-AB-41 strain was inoculated, 0.3 ml (3% by volume) of ethanol was added under aseptic conditions, and the mixture was shaken at 30°C for 3 days. Culture was carried out. (Note-2) Growth degree OD 610 , relative growth rate Viability OD 610 indicates the absorbance at a wavelength of 610 mμ, and this absorbance measurement was carried out in Experimental Agricultural Chemistry, Department of Agricultural Chemistry, Faculty of Agriculture, University of Tokyo, Volume 1, Section 212, Asakura Shoten (1975).
Measured according to the following. Also, DL-α-amino-n-
Growth rate OD 610 without butyric acid addition is set as 100, and expressed as relative growth rate. Brevibacterium flavum MJ-233 and Brevibacterium flavum measured according to the above definitions.
The relative growth rate of flavum MJ-233-AB-41 against DL-α-amino-n-butyric acid was as shown in Table 1.

【表】 上述したブレビバクテリウム属に属しα−アミ
ノ−n−酪酸耐性を有する微生物を好気的に培養
する。この時培養に使用される炭素源、窒素源、
無機塩等の培地組成は特に限定されるものではな
く、例えば炭素源としてエタノール、メタノー
ル、n−パラフイン、糖蜜等が、窒素源としては
アンモニア、硫酸アンモニウム、塩化アンモニウ
ム、硝酸アンモニウム、尿素等が、無機塩として
はリン酸−水素カリウム、リン酸二水素カリウ
ム、硫酸マグネシウム等が用いられる。これらの
炭素源、窒素源および無機塩はそれぞれ単独又は
混合して用いることができる。 更に、これらの他に菌の生育に必要であれば、
ペプトン、肉エキス、酵母エキス、コーンステイ
ープリカー、カザミノ酸、各種ビタミン等の栄養
素を培地に添加することができる。 培養は通気攪拌、振盪等の好気的条件下で行な
い、培養温度は20〜40℃、好ましくは25〜35℃で
行なう。培養途中のPHは5〜10、好ましくは7〜
8付近にて行ない、培養液中のPHの調整には酸、
アルカリを添加して行なう。 培養開始時の炭素源例えばエタノール濃度は1
〜5容量%、好ましくは2〜3容量%が適する。
培養期間は2〜8日間、好ましくは4〜5日間で
ある。 かくして得られた培養物は、活性の高いフマラ
ーゼを含有しているので、フマール酸またはその
ナトリウム塩、カルシウム塩等のフマール酸塩を
原料として、これを酵素反応によりL−リンゴ酸
を収率よく製造することができる。 ここで、酵素反応には上述の様にして得られた
培養物若しくはその処理物が用いられるが、これ
らには上述の培養液そのものの他、それに含まれ
ている菌体、菌体の破壊物、磨砕物および自己消
化液等、培養で得られる全てのものを含むもので
あり、更に菌体、菌体の破壊物、磨砕物等を固定
化したものも含むものである。 本発明における酵素反応は、上記培養物若しく
はその処理物の存在下フマール酸またはその塩を
水溶媒中で反応させることにより行われる。 該酵素反応は水溶媒中、PH4〜10、反応温度約
15〜約60℃、好ましくは約20〜約50℃で、通常約
0.5〜約48時間行われる。 この酵素反応は水溶媒中で行われるが、水の他
にリン酸緩衝液、トリス塩酸緩衝液等の溶媒10〜
500mMの濃度で用いることもできる。又、反応
液のPHを4〜10に調節する為水酸化ナトリウム、
水酸化カリウム、水酸化アンモニウム等のアルカ
リ類、塩酸、硫酸等の無機酸を添加することもで
きる。 フマール酸またはその塩の反応時の使用量には
特に制限はないが、一般には0.5〜30%(wt/
vol)の範囲で使用するのが適当である。また、
該培養物若しくはその処理物の使用量も特に制限
されるものではないが、一般に0.5〜10%(wt/
vol)の範囲で使用することができる。 培養物若しくはその処理物を用いてフマール酸
と水を反応せしめて得られる反応液中に生成した
L−リンゴ酸の分離・精製は、イオン交換樹脂、
活性炭素による吸着、脱着処理等の公知の方法に
より行なうことができる。 実験例 実施例1及び2 尿素4.0g、硫安14.0g、KH2PO4 0.5g、K2
HPO4 0.5g、MgSO4・7H2O 0.5g、
FeSO4・7H2O 6mg、MnSO4・4〜6H2O 6
mg、酵母エキス1.0g、カザミノ酸1.0g、ビオチ
ン200μg、チアミン塩酸塩100μg、水道水1
からなる培地10mlを口径24mmの大型試験管に分注
し、120℃、10分間加圧滅菌し、無菌的にエタノ
ール0.3mlを添加して前培養用培地とした。この
培地にブレビバクテリウム・フラバムMJ−233
(実施例2)とブレビバクテリウム・フラバムMJ
−233−AB−41(実施例1)を各々1白金耳量植
菌し、30℃で2日間振盪培養を行なつた。 次に、上記の前培養用培地組成と同一なる培地
100mlづつ500ml容量の2個の三角コルベンに分注
し、120℃、10分間加圧滅菌し、無菌的にエタノ
ール3mlをそれぞれ添加して本培養用培地とし、
上記2種の微生物の前培養液1.0mlをそれぞれ植
菌して30℃で3日間振盪培養を行つた。 かくして得られたそれぞれの培養物から一定量
の菌体を集菌する為に、比濁法(O.D610)により
O.D610の値を10.0に水にて調整し、該調製液それ
ぞれ100mlから遠心分離(4000rpm、15分間)に
より集菌した。 一方、フマール酸10gを水70mlに加え、5N−
NaOH溶液にてPH6.2に調整後水で全量を100mlと
した後100ml容三角フラスコに50mlを分注した。
この様な原料溶液を2個作製し、これらにさらに
上記集菌体をそれぞれ添加し、45℃で2時間振と
うを行つた。反応終了後、遠心分離(400rpm、
15分間)にて菌体を除去した上清液中に生成した
L−リンゴ酸量を高速液体クロマトグラフにて測
定した結果、親株であるブレビバクテリウム・フ
ラバムMJ−233の集菌体を使用の場合、40mg/ml
(実施例2)、また積極的にα−アミノ−n−酪酸
耐性を付与した菌株であるブレビバクテリウム・
フラバムMJ−233−AB−41の集菌体を使用の場
合、82mg/ml(実施例1)であつた。 また、各反応終了液50mlに6N−HCl溶液を添
加しPHを約2に調整後、強塩基性樹脂(ローム・
アンド・ハース社製「アンバーライトIRA−
400」、R2CO3型)を充填したカラムに通しL−リ
ンゴ酸を樹脂に吸着させた。次に1N−炭酸アン
モニウムにて溶出後濃縮し、L−リンゴ酸の粗結
晶を析出させた。これをアセトンで洗浄し、乾燥
した。ブレビバクテリウム・フラバムMJ−233集
菌体を使用の反応液50mlからはL−リンゴ酸の結
晶を1.2g、一方、ブレビバクテリウム・フラバ
ムMJ−233−AB−41の集菌体を使用の反応液50
mlからはL−リンゴ酸の結晶を2.6g得た。 発明の効果 フマール酸またはその塩を水溶媒中で酵素反応
によりL−リンゴ酸を製造する方法において、酵
素源としてブレビバクテリウム属に属しα−アミ
ノ−n−酪酸耐性を有する微生物、特に積極的に
α−アミノ−n−酪酸耐性を付与された及び/又
はα−アミノ−n−酪酸耐性が高められたブレビ
バクテリウム属に属する微生物を好気的に培養し
て得られる培養物若しくはその処理物を用いるL
−リンゴ酸が高い収率で製造することが可能とな
つた。
[Table] The above-mentioned microorganism belonging to the genus Brevibacterium and having resistance to α-amino-n-butyric acid is cultured aerobically. At this time, the carbon source, nitrogen source,
The composition of the medium including inorganic salts is not particularly limited, and for example, carbon sources include ethanol, methanol, n-paraffin, molasses, etc., nitrogen sources include ammonia, ammonium sulfate, ammonium chloride, ammonium nitrate, urea, etc., and inorganic salts. As examples, potassium hydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate, etc. are used. These carbon sources, nitrogen sources and inorganic salts can be used alone or in combination. Furthermore, in addition to these, if necessary for the growth of bacteria,
Nutrients such as peptone, meat extract, yeast extract, cornstarch liquor, casamino acids, various vitamins, etc. can be added to the medium. The culture is performed under aerobic conditions such as aeration, stirring, and shaking, and the culture temperature is 20 to 40°C, preferably 25 to 35°C. pH during cultivation is 5-10, preferably 7-10.
To adjust the pH in the culture solution, use acid,
This is done by adding alkali. The carbon source, for example, ethanol concentration at the start of culture is 1
~5% by volume, preferably 2-3% by volume are suitable.
The culture period is 2 to 8 days, preferably 4 to 5 days. Since the culture thus obtained contains highly active fumarase, L-malic acid can be produced in a high yield by enzymatic reaction using fumaric acid or fumarate salts such as its sodium salt or calcium salt as a raw material. can be manufactured. Here, the culture obtained as described above or its processed material is used for the enzyme reaction, but these include the culture solution itself, the bacterial cells contained therein, and the destroyed bacterial cells. It includes all things obtained by culturing, such as , ground products, and autolyzed fluids, and also includes immobilized bacterial cells, destroyed bacterial cells, and ground products. The enzyme reaction in the present invention is carried out by reacting fumaric acid or its salt in an aqueous solvent in the presence of the culture or its treated product. The enzymatic reaction is carried out in an aqueous solvent at a pH of 4 to 10 and a reaction temperature of approx.
15 to about 60°C, preferably about 20 to about 50°C, usually about
It is carried out for 0.5 to about 48 hours. This enzymatic reaction is carried out in an aqueous solvent, but in addition to water, solvents such as phosphate buffer, Tris-HCl buffer, etc.
It can also be used at a concentration of 500mM. In addition, sodium hydroxide was added to adjust the pH of the reaction solution to 4 to 10.
It is also possible to add alkalis such as potassium hydroxide and ammonium hydroxide, and inorganic acids such as hydrochloric acid and sulfuric acid. There is no particular restriction on the amount of fumaric acid or its salt used in the reaction, but it is generally 0.5 to 30% (wt/
It is appropriate to use it within the range of vol). Also,
The amount of the culture or its processed material used is not particularly limited, but it is generally 0.5 to 10% (wt/
vol) can be used. The separation and purification of L-malic acid produced in the reaction solution obtained by reacting fumaric acid and water using a culture or its processed product can be performed using an ion exchange resin,
This can be carried out by known methods such as adsorption and desorption treatment using activated carbon. Experimental Examples Examples 1 and 2 urea 4.0g, ammonium sulfate 14.0g, KH 2 PO 4 0.5g, K 2
HPO 4 0.5g, MgSO 4・7H 2 O 0.5g,
FeSO47H2O 6mg, MnSO4・4 ~ 6H2O6
mg, yeast extract 1.0g, casamino acid 1.0g, biotin 200μg, thiamine hydrochloride 100μg, tap water 1
10 ml of the medium was dispensed into a large test tube with a diameter of 24 mm, sterilized under pressure at 120°C for 10 minutes, and 0.3 ml of ethanol was added aseptically to prepare a preculture medium. Brevibacterium flavum MJ-233 was added to this medium.
(Example 2) and Brevibacterium flavum MJ
-233-AB-41 (Example 1) was inoculated in one platinum loopful amount, and cultured with shaking at 30°C for 2 days. Next, a medium with the same preculture medium composition as above.
Dispense 100 ml into two 500 ml triangular containers, autoclave at 120°C for 10 minutes, and aseptically add 3 ml of ethanol to each to prepare the main culture medium.
1.0 ml of the preculture solution of each of the above two types of microorganisms was inoculated and cultured with shaking at 30°C for 3 days. In order to collect a certain amount of bacterial cells from each culture obtained in this way, nephelometric method (OD 610 ) was used.
The OD 610 value was adjusted to 10.0 with water, and bacteria were collected from 100 ml of each of the prepared solutions by centrifugation (4000 rpm, 15 minutes). Meanwhile, add 10 g of fumaric acid to 70 ml of water and add 5N-
After adjusting the pH to 6.2 with NaOH solution, the total volume was made up to 100 ml with water, and 50 ml was dispensed into a 100 ml Erlenmeyer flask.
Two such raw material solutions were prepared, and the above-mentioned bacterial cells were added to each of them, followed by shaking at 45° C. for 2 hours. After the reaction is complete, centrifuge (400 rpm,
The amount of L-malic acid produced in the supernatant after removing bacterial cells (15 minutes) was measured using high-performance liquid chromatography. 40mg/ml
(Example 2), and Brevibacterium, which is a strain that has been positively conferred with α-amino-n-butyric acid resistance.
When the bacterial strain of Flavum MJ-233-AB-41 was used, the concentration was 82 mg/ml (Example 1). In addition, add 6N-HCl solution to 50 ml of each reaction completed solution to adjust the pH to approximately 2, then add a strong basic resin (Roam,
& Haas “Amberlight IRA-”
400'', R 2 CO 3 type) to adsorb L-malic acid onto the resin. Next, the mixture was eluted with 1N ammonium carbonate and concentrated to precipitate crude crystals of L-malic acid. This was washed with acetone and dried. 1.2 g of L-malic acid crystals were obtained from 50 ml of the reaction solution using Brevibacterium flavum MJ-233, while when using Brevibacterium flavum MJ-233-AB-41. reaction solution 50
2.6 g of L-malic acid crystals were obtained from each ml. Effects of the Invention In a method for producing L-malic acid by enzymatic reaction of fumaric acid or its salt in an aqueous solvent, a microorganism belonging to the genus Brevibacterium and having resistance to α-amino-n-butyric acid, particularly an aggressive microorganism, is used as an enzyme source. A culture obtained by aerobically cultivating a microorganism belonging to the genus Brevibacterium that has been given α-amino-n-butyric acid resistance and/or has increased α-amino-n-butyric acid resistance, or a treatment thereof L using things
-It has become possible to produce malic acid in high yield.

Claims (1)

【特許請求の範囲】[Claims] 1 α−アミノ−n−酪酸耐性を有するブレビバ
クテリウム・フラバムを好気的に培養して得られ
る培養物若しくはその処理物の存在下フマール酸
またはその塩を水溶媒中で酵素反応させてL−リ
ンゴ酸を生成させ、該水溶液よりL−リンゴ酸を
採取することを特徴とするL−リンゴ酸の製造
法。
1. In the presence of a culture obtained by aerobically cultivating Brevibacterium flavum having resistance to α-amino-n-butyric acid or a processed product thereof, fumaric acid or a salt thereof is subjected to an enzymatic reaction in an aqueous solvent to produce L. - A method for producing L-malic acid, which comprises producing malic acid and collecting L-malic acid from the aqueous solution.
JP10564985A 1985-05-17 1985-05-17 Production of l-malic acid Granted JPS61265096A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10564985A JPS61265096A (en) 1985-05-17 1985-05-17 Production of l-malic acid
GB08612030A GB2175304B (en) 1985-05-17 1986-05-16 Method of preparing l-malic acid
US06/864,212 US4912043A (en) 1985-05-17 1986-05-19 Method of preparing L-malic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10564985A JPS61265096A (en) 1985-05-17 1985-05-17 Production of l-malic acid

Publications (2)

Publication Number Publication Date
JPS61265096A JPS61265096A (en) 1986-11-22
JPH0523747B2 true JPH0523747B2 (en) 1993-04-05

Family

ID=14413297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10564985A Granted JPS61265096A (en) 1985-05-17 1985-05-17 Production of l-malic acid

Country Status (1)

Country Link
JP (1) JPS61265096A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231952A (en) * 1975-09-08 1977-03-10 Nippon Kokan Kk Methoa to control hot extrusion temperature for copper formed products

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231952A (en) * 1975-09-08 1977-03-10 Nippon Kokan Kk Methoa to control hot extrusion temperature for copper formed products

Also Published As

Publication number Publication date
JPS61265096A (en) 1986-11-22

Similar Documents

Publication Publication Date Title
US5378616A (en) Mutant Escherichia coli capable of enhanced L-glutamic acid production by fermentation
JPS6129718B2 (en)
US5188947A (en) Process and microorganism for producing l-ornithine by corynebacterium, brevibacterium, or athrobacter
JPH04365491A (en) Production of 4-halo-3-hydroxybutylamide
JPH0523747B2 (en)
US4912043A (en) Method of preparing L-malic acid
JP2721975B2 (en) Method for producing L-lysine
JPS61119194A (en) Production of l-ornithine through fermentation process
US4123329A (en) Process for producing L-lysine by fermentation
JPH04349879A (en) Incubation of brevibacterium microorganism
JP2582808B2 (en) Method for producing L-isoleucine
JP2582806B2 (en) Method for producing L-isoleucine
JPS6342692A (en) Production of l-isoleucine
JP2721989B2 (en) Method for producing L-isoleucine
JPH04271787A (en) Production of d-lactic acid and genus pseudomonas bacterium
JPH0523749B2 (en)
JPH0657155B2 (en) Method for producing L-valine
JPH0822234B2 (en) Method for producing L-valine
JPH02257874A (en) Bacterial strain of genus rhodococcus and production of 2-hydroxybutyric acid using the same
JPH027636B2 (en)
JPH028718B2 (en)
JPS6224072B2 (en)
JPH028719B2 (en)
JPS641115B2 (en)
JPH0411195B2 (en)