JPH0523711B2 - - Google Patents

Info

Publication number
JPH0523711B2
JPH0523711B2 JP19021887A JP19021887A JPH0523711B2 JP H0523711 B2 JPH0523711 B2 JP H0523711B2 JP 19021887 A JP19021887 A JP 19021887A JP 19021887 A JP19021887 A JP 19021887A JP H0523711 B2 JPH0523711 B2 JP H0523711B2
Authority
JP
Japan
Prior art keywords
water quality
analyzer
value
chemical
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19021887A
Other languages
Japanese (ja)
Other versions
JPS6435351A (en
Inventor
Hiroshi Yajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP19021887A priority Critical patent/JPS6435351A/en
Publication of JPS6435351A publication Critical patent/JPS6435351A/en
Publication of JPH0523711B2 publication Critical patent/JPH0523711B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、火力発電所の水質管理に用いるヒ
ドラジン計や導電率計等の水質分析計の診断方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for diagnosing water quality analyzers such as hydrazine meters and conductivity meters used for water quality control in thermal power plants.

〔従来の技術〕[Conventional technology]

火力発電所のプラントを支障なく運転するに
は、復水の水質管理を慎重に行わなければならな
い。この水質管理の目的で、従来からヒドラジン
計や導電率計等の分析計を使つて、その分析値に
基づきアンモニア、ヒドラジン等の薬液の注入ポ
ンプを制御することが知られている。
In order to operate a thermal power plant without any problems, the quality of condensate must be carefully managed. For the purpose of water quality control, it has been known to use analyzers such as hydrazine meters and conductivity meters, and to control injection pumps for chemical solutions such as ammonia and hydrazine based on the analyzed values.

例えば、第5図を参照して、従来の水質管理シ
ステムを説明すれば次の通りである。
For example, referring to FIG. 5, a conventional water quality management system will be explained as follows.

まず、復水脱塩装置DEMIを通過して復水ブー
スタポンプCBPにより給送される復水の流量を
流量発信器FXで検知すると共に、その流量に比
例して(比較器PRを介し)薬液注入ポンプのモ
ータの回転数VSを制御する。他方、脱気器入口
からサンプルをラツク(第5図の破線枠内)に導
き、ここでヒドラジン計および導電率計により、
ヒドラジン濃度N2H4と導電率μsとを測定すると
同時に、この測定値を薬液制御器(図中、破線枠
内)の調節計PIDおよびストローク長制御器SP
に入力して薬液注入ポンプのストローク長STを
調節することにより、薬液(アンモニアやヒドラ
ジン)を復水ブースタポンプCBP出口の復水中
への注入量を調整して水質を設定値にコントロー
ルする。かくして、脱気器入口における薬液濃度
および導電率が所定の範囲内に維持される。
First, the flow rate of condensate that has passed through the condensate desalination device DEMI and is supplied by the condensate booster pump CBP is detected by the flow rate transmitter FX, and the chemical liquid is detected in proportion to the flow rate (via the comparator PR). Controls the rotation speed VS of the infusion pump motor. On the other hand, the sample is introduced from the deaerator inlet into the rack (within the dashed line frame in Figure 5), where it is measured using a hydrazine meter and a conductivity meter.
At the same time as measuring the hydrazine concentration N 2 H 4 and conductivity μs, these measured values are transferred to the controller PID of the chemical liquid controller (in the dashed line frame in the figure) and the stroke length controller SP.
By inputting and adjusting the stroke length ST of the chemical injection pump, the amount of chemical liquid (ammonia or hydrazine) injected into the condensate at the condensate booster pump CBP outlet is adjusted and the water quality is controlled to the set value. Thus, the chemical concentration and conductivity at the deaerator inlet are maintained within predetermined ranges.

〔発明が解決しようとする課題〕 しかしながら、前記従来の水質管理システムに
おいては、薬液注入装置の制御をヒドラジン計や
導電率計等の分析計が正常な値を示していること
を前提として行つているため、分析計が正常に作
動し、指示しているかどうかを手分析によりクロ
スチエツクしたり、あるいは他の計器(例えば、
ボイラサイクル下流における給水系の計器)の指
示値との食い違いを点検したり、あるいは薬液注
入ポンプによる注入量の通常値からの大きなズレ
を定期的パトロールによつてチエツクしたりしな
ければならない。従つて、計器が正常に機能して
いないと、適切な薬液の注入ができず、水質がそ
の管理値の設定範囲から逸脱し、ひいてはボイラ
サイクルの腐蝕食につながる惧れもある。このた
め、これらを防止するには、前記のような面倒な
点検チエツク等を必要とする等の難点がある。さ
らに、分析計は、面倒かつ頻繁な校正や保守にも
拘らず、温度、圧力、流量等の変動、あるいは配
管の汚れ等種々の因子により指示不良となり得る
ので、従来のシステムでは、これらを直ちに発見
することができず、また正常に機能しているかど
うかの定期的かつ頻繁な校正の必要性も煩わし
く、不便である。
[Problems to be Solved by the Invention] However, in the conventional water quality management system, the chemical injection device is controlled on the premise that an analyzer such as a hydrazine meter or a conductivity meter shows a normal value. Therefore, it is necessary to cross-check whether the analyzer is working properly and giving indications by manual analysis, or by using other instruments (e.g.
It is necessary to check for discrepancies with the indicated value of the water supply system meter downstream of the boiler cycle, or to check for large deviations in the amount of injection from the chemical injection pump from the normal value through periodic patrols. Therefore, if the meter is not functioning properly, the proper chemical solution cannot be injected, and the water quality may deviate from the set range of control values, which could lead to corrosion of the boiler cycle. Therefore, in order to prevent these problems, there are problems such as the need for troublesome inspections and the like as described above. Furthermore, despite troublesome and frequent calibration and maintenance, analyzers can give incorrect readings due to various factors such as fluctuations in temperature, pressure, flow rate, etc., or dirty piping. The inability to detect and the need for regular and frequent calibration to ensure proper functioning is also cumbersome and inconvenient.

そこで、本発明の目的は、火力発電所の水質管
理に用いられる水質計器、特に薬液注入の水質コ
ントロールに用いられるヒドラジン計や導電率計
等の水質分析計の作動および指示を、薬液注入装
置により容易かつ簡便に診断し、前記従来システ
ムの欠点を解消することができる火力発電所の水
質管理における水質分析計の診断方法を提供する
ことにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to enable operation and instructions of water quality meters used for water quality control in thermal power plants, particularly water quality analyzers such as hydrazine meters and conductivity meters used for water quality control in chemical injection, using a chemical injection device. It is an object of the present invention to provide a method for diagnosing a water quality analyzer in water quality management at a thermal power plant, which can be easily and conveniently diagnosed and eliminates the drawbacks of the conventional system.

〔課題を解決するための手段および作用〕[Means and actions for solving the problem]

本発明は、より信頼性のある薬液注入ポンプの
薬液注入量に基づいて、所定の診断ロジツクによ
り水質計の作動および指示を診断することを特徴
とする。
The present invention is characterized in that the operation and indication of the water quality meter are diagnosed by predetermined diagnostic logic based on the more reliable chemical injection amount of the chemical liquid injection pump.

すなわち、本発明によれば、火力発電所の水質
管理に用いる水質分析計の作動および指示を薬液
注入ポンプの薬液注入量によつて、所定の診断ロ
ジツクに従い診断する方法が提供され、このロジ
ツクは薬液注入量を薬液注入ポンプのストローク
長および回転数から決定し、その決定値と復水の
流量とにより復水中の薬液濃度を算出すると共
に、この計算値を前記分析計の指示値と比較する
ように構成することを特徴とする。
That is, according to the present invention, there is provided a method for diagnosing the operation and instructions of a water quality analyzer used for water quality control in a thermal power plant according to a predetermined diagnostic logic based on the amount of chemical liquid injected by a chemical liquid injection pump. The amount of chemical liquid to be injected is determined from the stroke length and rotation speed of the chemical liquid injection pump, and the chemical liquid concentration in the condensate is calculated from the determined value and the flow rate of condensate, and this calculated value is compared with the indicated value of the analyzer. It is characterized by being configured as follows.

前記の構成において、診断ロジツクを作動した
結果、指示値異常の警報が発生すれば、分析計を
点検して異常原因を取り除く。必要により、手分
析データと比較する。異常がなければ、薬液注入
ポンプの制御機構を点検する。
In the above configuration, if an alarm indicating an abnormality in the indicated value is generated as a result of operating the diagnostic logic, the analyzer is inspected and the cause of the abnormality is removed. If necessary, compare with manual analysis data. If there is no abnormality, check the control mechanism of the chemical injection pump.

一般に、水質分析計は、ヒドラジン計および導
電率計で構成され、診断方法はプラント運用やハ
ードウエア上の制約から、次のようなバリエーシ
ヨンを採用することが可能である。
In general, a water quality analyzer consists of a hydrazine meter and a conductivity meter, and the following variations can be adopted as a diagnostic method depending on plant operation and hardware constraints.

(1) ヒドラジン計または導電率計の指示値が水質
管理値の設定範囲から外れた際に診断する。
(1) Diagnose when the indicated value of the hydrazine meter or conductivity meter is outside the set range of water quality control values.

この場合、診断ロジツクを定期的にスタート
させることも可能であるが、分析計の指示値が
予め定められた管理限界値を越えた時にスター
トさせ、薬液濃度が異常なのか、指示値のみが
異常なのかを確認してもよい。
In this case, it is possible to start the diagnostic logic periodically, but it is possible to start the diagnostic logic when the indicated value of the analyzer exceeds a predetermined control limit value, and check whether the chemical concentration is abnormal or only the indicated value is abnormal. You can check if it is.

(2) 復水の流量と薬液注入ポンプの回転数とを完
全比例させて薬液濃度を一定にした際、前記ポ
ンプにおけるストローク長の制御位置がシフト
する時に診断する。
(2) Diagnosis is made when the control position of the stroke length of the pump shifts when the concentration of the chemical solution is kept constant by making the flow rate of condensate completely proportional to the rotational speed of the chemical injection pump.

この場合、復水の流量とポンプの回転数を完
全比例させたシステムでは、復水流量が変化し
ても、薬液濃度が変化しない限りポンプストロ
ーク長は変化しない筈であり、従つてストロー
ク長の制御位置がシフトすることは、系に異常
を生じた可能性がある。その時に診断ロジツク
をスタートさせるのも好ましい態様である。
In this case, in a system where the condensate flow rate and pump rotation speed are completely proportional, even if the condensate flow rate changes, the pump stroke length should not change unless the chemical concentration changes, and therefore the stroke length will change. If the control position shifts, there is a possibility that an abnormality has occurred in the system. It is also a preferred embodiment to start the diagnostic logic at that time.

(3) 薬液注入ポンプの回転数またはストローク長
の間欠的変更によつて薬液注入量を変化させ、
その注入量の変化値と分析計の指示値の変化値
とを比較して診断する。
(3) Changing the amount of chemical liquid injection by intermittent changing the rotation speed or stroke length of the chemical liquid injection pump,
Diagnosis is made by comparing the change in the injection amount with the change in the value indicated by the analyzer.

すなわち、ポンプの回転数またはストローク
長から計算した濃度と分析計の指示値の比較を
その絶対値で行うことも可能であるが、積極的
にポンプの回転数またはストローク長を微変更
して、計算濃度と指示値のそれぞれ変化値で比
較することも可能である。但し、薬液注入点と
濃度測定点の配管距離に基づく時間遅れと、パ
ルス形状変化(第4図参照)の補正とを診断ロ
ジツク内に組み込んでおく必要がある。
In other words, it is possible to compare the concentration calculated from the pump rotation speed or stroke length with the reading on the analyzer based on its absolute value, but it is also possible to actively make slight changes to the pump rotation speed or stroke length. It is also possible to compare the calculated concentration and the indicated value using their respective change values. However, it is necessary to incorporate into the diagnostic logic a time delay based on the piping distance between the chemical solution injection point and the concentration measurement point, and correction for pulse shape changes (see FIG. 4).

前記第3の実施態様においては、薬液注入ポン
プのストローク長および回転数の変化幅を制御範
囲内に維持し、しかも水質変動が生じるような値
(5〜10%程度)にする必要がある(第4図参
照)。
In the third embodiment, it is necessary to maintain the stroke length and rotational speed variation width of the chemical injection pump within a control range, and also to a value (approximately 5 to 10%) that causes water quality fluctuations ( (See Figure 4).

なお、本発明方法において、薬液注入ポンプに
よる薬液注入量から復水中のヒドラジン値や導電
率を計算して、その数値を分析計の指示値と比較
し、偏差が大きい場合に分析計の作動および指示
の異常を診断する場合、薬液注入ポンプのストロ
ーク長をST%(最大ストローク長に対する比率)
とし、そのポンプの回転数をVS%(最大回転数
に対する比率)とすれば、薬液注入量は、次式の
通りである。
In addition, in the method of the present invention, the hydrazine value and conductivity in the condensate are calculated from the amount of chemical liquid injected by the chemical liquid injection pump, and the calculated values are compared with the indicated value of the analyzer.If the deviation is large, the analyzer operation and When diagnosing an abnormality in the indication, calculate the stroke length of the chemical injection pump by ST% (ratio to the maximum stroke length)
If the number of revolutions of the pump is VS% (ratio to the maximum number of revolutions), the amount of chemical solution injected is as follows.

注入量=ポンプ最大吐出量×ST/100×VS/100 この場合、ポンプ最大吐出量FTは、予め使用
されているポンプの値をインプツトしておく。他
方、注入用の薬液(アンモニアまたはヒドラジ
ン)濃度をC%とし、かつ復水流量をFとすれ
ば、復水中の薬液濃度は次式で示される。
Injection amount = Pump maximum discharge rate x ST/100 x VS/100 In this case, the pump maximum discharge rate FT is inputted in advance as the value of the pump being used. On the other hand, if the concentration of the chemical solution for injection (ammonia or hydrazine) is C% and the flow rate of condensate water is F, then the concentration of the chemical solution in the condensate water is expressed by the following equation.

復水中の濃度=K×注入量×C/100/F 〔式中、Kは定数である〕 そして、薬液濃度ppmと導電率μsとは、既知の
相関があり、次式で示される。
Concentration in condensate=K×injection amount×C/100/F [In the formula, K is a constant] There is a known correlation between the chemical concentration ppm and the conductivity μs, which is expressed by the following formula.

μs=f(薬液濃度) すなわち、この式は、使用する装置および薬液
に応じて、予め濃度と導電率の関係を示す検量線
を作成し得るものであり、実際にはこの検量線が
使用される。
μs = f (concentration of chemical solution) In other words, with this formula, a calibration curve showing the relationship between concentration and conductivity can be created in advance depending on the equipment and chemical solution used, and this calibration curve is not actually used. Ru.

従つて、薬液注入の時点からラツク内の分析計
に至るサンプル水移動の配管遅れを考慮して、同
期をとるよう構成すれば、前記各式で計算して得
た導電率μsおよびヒドラジン濃度をそれぞれ分析
計指示値と比較することにより、指示値の正常も
しくは異常を診断することができる。
Therefore, if the configuration is configured to synchronize by taking into account the piping delay in moving the sample water from the time of chemical injection to the analyzer in the rack, the conductivity μs and hydrazine concentration calculated using the above formulas can be By comparing each with the indicated value of the analyzer, it is possible to diagnose whether the indicated value is normal or abnormal.

また、本発明方法によれば、導電率計測につい
ては、復水脱塩装置DEMIがH塔運用でなく、
NH4塔運用とする場合、復水中の残留NH3が除
去されていないので、その運転塔数に合せて補正
値φBを加算することにより、次式に従つて処理
することができる。
Furthermore, according to the method of the present invention, for conductivity measurement, the condensate desalination equipment DEMI is not operated in the H tower;
When operating an NH 4 tower, residual NH 3 in the condensate has not been removed, so by adding a correction value φ B according to the number of operating towers, processing can be performed according to the following formula.

なお、復水脱塩装置DEMIは、一般にイオン交
換樹脂を使用した復水の浄化装置であり、H塔運
用では復水中のアンモニアイオンは全て除去され
るが、NH4塔運用では除去されない。
Note that the condensate desalination device DEMI is a condensate purification device that generally uses an ion exchange resin, and all ammonia ions in the condensate are removed when operating the H tower, but not when operating the NH 4 tower.

復水中のNH3濃度=ポンプ注入によるNH3濃度 +コンデミ出口のNH3濃度(φB) さらに、本発明によれば、分析計の指示が正常
であれば、薬液注入ポンプの注入量が大きく相違
している場合にも、薬液濃度やポンプ側に起因す
る異常であることを診断し得ることは勿論であ
る。
NH 3 concentration in condensate = NH 3 concentration due to pump injection + NH 3 concentration at the outlet of the condenser (φ B ) Furthermore, according to the present invention, if the analyzer indicates normal, the injection amount of the chemical injection pump will be large. Of course, even if there is a difference, it is possible to diagnose that the abnormality is caused by the concentration of the chemical solution or the pump side.

〔実施例〕〔Example〕

以下、添付図面を参照して本発明をさらに説明
する。
The present invention will be further described below with reference to the accompanying drawings.

第1図において、まず分析計の診断を行うに際
しては、診断ロジツクをスタートさせる。このス
タート信号により、ポンプのストローク長ST、
ポンプの回転数VSおよび復水流量Fを検出し、
予め設定された注入用薬液濃度Cおよび最大吐出
量FTを読み込んで、前述した式に基づき、ポン
プのストローク長ST、ポンプの回転数VS、ポン
プの最大吐出量FTから薬液の注入量を計算し、
この薬液の注入量と薬液濃度Cと復水流量Fとか
ら復水中のヒドラジン濃度N2H4を計算し、そし
てこのヒドラジン濃度から導電率μsを計算する。
次いで、時間差Δtの後に計算値を呼び込み、こ
れを分析計〔導電率計・μsおよびヒドラジン計・
N2H4〕の各指示値(PV1およびPV2)と比較し、
|PV1−μs|>ΔHであれば、導電率計の指示異
常と判定し、また|PV2−N2H4|>ΔHであれ
ば、ヒドラジン計の指示異常と判定する(なお、
ΔHは許容偏差値である)。
In FIG. 1, when diagnosing the analyzer, the diagnostic logic is started. This start signal causes the pump stroke length ST,
Detects the pump rotation speed VS and condensate flow rate F,
Read the preset concentration C of the drug solution for injection and the maximum discharge amount FT, and calculate the injection amount of the drug solution from the pump stroke length ST, the pump rotation speed VS, and the maximum pump discharge amount FT based on the above-mentioned formula. ,
The hydrazine concentration N 2 H 4 in the condensate is calculated from the injection amount of the chemical, the chemical concentration C, and the condensate flow rate F, and the conductivity μs is calculated from this hydrazine concentration.
Next, after the time difference Δt, the calculated value is read in and analyzed using an analyzer [conductivity meter/μs and hydrazine meter/
N 2 H 4 ] compared with each indicated value (PV 1 and PV 2 ),
If |PV 1 − μs | > ΔH, it is determined that the conductivity meter reading is abnormal, and if |PV 2 − N 2 H 4 |
ΔH is the allowable deviation value).

次に、第2図を参照して、ヒドラジン計におけ
る指示異常の診断につき説明する。まず、診断ス
タート信号により、ヒドラジン注入ポンプのスト
ローク長STおよびポンプの回転数VS並びに薬液
注入ポンプに薬液を供給するタンク内のヒドラジ
ン濃度φ(=C)を検出し、これらを乗算器によ
り掛算すると共に定数Kをも掛算してK,ST,
VS,φの数値を算出する。この数値を復水流量
Fにより割算し、その結果を所定の関数f(x)に代
入して、f(K,ST,VS,φ/F)を算出する。
この算出値を無駄時間補正(e-t)した後、これ
をヒドラジン計の指示値と比較し、第1図におけ
る一般的説明と同様に、偏差ΔHが大きい場合に
は、ヒドラジン計の指示異常と診断する。
Next, with reference to FIG. 2, diagnosis of an abnormality in the indication in the hydrazine meter will be explained. First, a diagnosis start signal is used to detect the stroke length ST of the hydrazine injection pump, the rotational speed VS of the pump, and the hydrazine concentration φ (=C) in the tank that supplies the chemical liquid to the chemical liquid injection pump, and these are multiplied by a multiplier. Multiplying the constant K as well as K, ST,
Calculate the values of VS and φ. This value is divided by the condensate flow rate F, and the result is substituted into a predetermined function f(x) to calculate f(K, ST, VS, φ/F).
After this calculated value is corrected for dead time (e - t ), it is compared with the indicated value of the hydrazine meter, and as in the general explanation in Fig. 1, if the deviation ΔH is large, the indicated value of the hydrazine meter is abnormal. Diagnose.

さらに、第3図を参照にして導電率計における
指示異常の診断につき説明する。第2図における
場合と同様に、まず診断スタート信号により、ア
ンモニア注入ポンプのストローク長STおよびポ
ンプの回転数VS並びに薬液注入ポンプに薬液を
供給するタンク内のアンモニア濃度φA(=C)を
検出して、これらを乗算器により定数Kと共に掛
算する。この掛算の結果を、流量発信器FXから
指示された復水流量Fで割算した後、得られた数
値を所定の関数f(x)に代入すると共に、復水脱塩
装置NH4型運用の補正値φBを加算し、さらに無
駄時間補正(e-t)を行う。この最終算出値を、
導電率計の指示値μsと比較し、第1図における一
般的説明と同様に、偏差ΔHが大きい場合には、
導電率計の指示異常と診断する。
Furthermore, with reference to FIG. 3, diagnosis of an abnormality in the indication in the conductivity meter will be explained. As in the case in Fig. 2, first, the stroke length ST of the ammonia injection pump, the rotation speed VS of the pump, and the ammonia concentration φ A (=C) in the tank that supplies the chemical liquid to the chemical liquid injection pump are detected using the diagnostic start signal. Then, these are multiplied together with a constant K by a multiplier. After dividing the result of this multiplication by the condensate flow rate F instructed by the flow rate transmitter FX, the obtained value is substituted into a predetermined function f(x), and the condensate desalination equipment NH 4 type operation A correction value φ B of φ B is added, and dead time correction (e −t ) is further performed. This final calculated value is
Compared with the indicated value μs of the conductivity meter, if the deviation ΔH is large, as in the general explanation in Fig. 1,
Diagnose an abnormality in the conductivity meter reading.

〔発明の効果〕〔Effect of the invention〕

前述した実施例から明らかなように、本発明に
よれば、信頼性の大きい薬液注入ポンプの薬液注
入量を、ポンプのストローク長と回転数、並びに
注入用薬液濃度から計算して、これを水質分析計
の指示値と比較するだけで、分析計の指示異常
を、適正かつ簡便にして、信頼性のある診断を行
うことができる。従つて、火力発電所の水質管理
における水質分析の精度の向上に資する効果はき
わめて大きい。
As is clear from the embodiments described above, according to the present invention, the amount of liquid injected by a reliable liquid injection pump is calculated from the stroke length and rotation speed of the pump, as well as the concentration of the liquid for injection, and this is calculated based on the water quality. By simply comparing the readings with the readings from the analyzer, abnormal readings from the analyzer can be appropriately, easily, and reliably diagnosed. Therefore, the effect of contributing to improving the accuracy of water quality analysis in water quality management at thermal power plants is extremely large.

以上、本発明を火力発電所の水質管理における
分析計の指示異常の診断の実施例について説明し
たが、本発明はこれら実施例にのみ限定されるこ
となく、例えば分析計の指示が正常であつて、ポ
ンプ注入量が異常である場合にも応用し得る等、
種々の設計変更をなし得ることが当業者には了解
されよう。
The present invention has been described above with reference to embodiments for diagnosing abnormality in the readings of an analyzer in water quality management at a thermal power plant, but the present invention is not limited to these examples. Therefore, it can be applied even when the pump injection amount is abnormal, etc.
Those skilled in the art will appreciate that various design changes may be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る火力発電所の水質管理に
おける水質分析計の診断方法の一般的な診断系統
を示すフローチヤート図、第2図はヒドラジン計
の指示異常を診断する本発明方法による診断系統
の実施例を示すフローチヤート図、第3図は導電
率計の指示異常を診断する本発明方法による診断
系統の実施例を示すフローチヤート図、第4図は
薬液注入ポンプの回転数またはストローク長によ
る薬液注入量の間欠的変化に基づくヒドラジン計
および導電率計の指示値の変動を比較する本発明
の一実施態様の波形図、第5図は従来技術による
水質管理システムの系統図である。 DEMI……復水脱塩装置、CBP……復水ブース
タポンプ、μs……導電率計、N2H4……ヒドラジ
ン計、FX……流量発信器、PID……調節計、SP
……ストローク長制御器、ST……ストローク長、
VS……ポンプの回転数、PR……比較器。
Figure 1 is a flowchart showing a general diagnostic system of the water quality analyzer diagnostic method for water quality management in a thermal power plant according to the present invention, and Figure 2 is a diagnosis using the present invention method for diagnosing an abnormal reading on a hydrazine meter. A flowchart showing an embodiment of the system, FIG. 3 is a flowchart showing an embodiment of the diagnostic system according to the method of the present invention for diagnosing an abnormality in the reading of a conductivity meter, and FIG. 4 shows the rotation speed or stroke of the chemical liquid injection pump. FIG. 5 is a waveform diagram of an embodiment of the present invention that compares fluctuations in the indicated values of a hydrazine meter and a conductivity meter based on intermittent changes in the amount of chemical solution injected due to the length of water. FIG. 5 is a system diagram of a water quality management system according to the prior art. . DEMI...Condensate desalination equipment, CBP...Condensate booster pump, μs...Conductivity meter, N 2 H 4 ...Hydrazine meter, FX...Flow rate transmitter, PID...Controller, SP
...Stroke length controller, ST...Stroke length,
VS...Pump rotation speed, PR...Comparator.

Claims (1)

【特許請求の範囲】 1 火力発電所の水質管理に用いる水質分析計の
作動および指示を薬液注入ポンプの楽液注入量に
よつて診断するに際し、薬液注入量を薬液注入ポ
ンプのストローク長および回転数から決定し、そ
の決定値と復水の流量とにより復水中の薬液濃度
を算出すると共に、この計算値を前記分析計の指
示値と比較することを特徴とする診断ロジツクに
よる水質分析計の診断方法。 2 水質分析計がヒドラジン計および導電率計で
ある特許請求の範囲第1項記載の水質分析計の診
断方法。 3 ヒドラジン計または導電率計の指示値が水質
管理値の設定範囲から外れた際に診断する特許請
求の範囲第2項記載の水質分析計の診断方法。 4 復水の流量と薬液注入ポンプの回転数を完全
比例させて薬液濃度を一定にした際に、前記ポン
プにおけるストローク長の制御位置がシフトする
時に診断する特許請求の範囲第1項記載の水質分
析計の診断方法。 5 特許請求の範囲第1項記載の診断方法におけ
る計算値と分析計の指示値との比較は、ポンプの
ストローク長または回転数を変化させた場合の薬
液注入量の変化値と分析計の指示値の変化値とを
比較することからなる水質分析計の診断方法。
[Scope of Claims] 1. When diagnosing the operation and indication of a water quality analyzer used for water quality control in a thermal power plant based on the amount of liquid injected by a chemical injection pump, the amount of liquid injected can be determined by determining the amount of liquid injected by the stroke length and rotation of the chemical liquid injection pump. A water quality analyzer with diagnostic logic, which calculates the concentration of a chemical solution in condensate based on the determined value and the flow rate of condensate, and compares this calculated value with the indicated value of the analyzer. Diagnostic method. 2. The method for diagnosing a water quality analyzer according to claim 1, wherein the water quality analyzer is a hydrazine meter or a conductivity meter. 3. A method for diagnosing a water quality analyzer according to claim 2, which performs diagnosis when the indicated value of the hydrazine meter or the conductivity meter deviates from the set range of the water quality control value. 4. The water quality according to claim 1, wherein the water quality is diagnosed when the stroke length control position of the pump shifts when the concentration of the chemical solution is kept constant by making the flow rate of condensate and the rotation speed of the chemical injection pump completely proportional. Analyzer diagnostic method. 5. The comparison between the calculated value and the value indicated by the analyzer in the diagnostic method described in claim 1 is based on the change in the amount of chemical liquid injected when the stroke length or rotational speed of the pump is changed and the value indicated by the analyzer. A method of diagnosing a water quality analyzer that consists of comparing changes in values.
JP19021887A 1987-07-31 1987-07-31 Method for diagnosing water quality analyzer for water quality control of thermal power plant Granted JPS6435351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19021887A JPS6435351A (en) 1987-07-31 1987-07-31 Method for diagnosing water quality analyzer for water quality control of thermal power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19021887A JPS6435351A (en) 1987-07-31 1987-07-31 Method for diagnosing water quality analyzer for water quality control of thermal power plant

Publications (2)

Publication Number Publication Date
JPS6435351A JPS6435351A (en) 1989-02-06
JPH0523711B2 true JPH0523711B2 (en) 1993-04-05

Family

ID=16254438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19021887A Granted JPS6435351A (en) 1987-07-31 1987-07-31 Method for diagnosing water quality analyzer for water quality control of thermal power plant

Country Status (1)

Country Link
JP (1) JPS6435351A (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732902B2 (en) * 1990-06-25 1995-04-12 栗田工業株式会社 Monitoring device for chemical injection device
KR970011972A (en) 1995-08-11 1997-03-29 쯔지 하루오 Transmission type liquid crystal display device and manufacturing method thereof
JPH0980416A (en) * 1995-09-13 1997-03-28 Sharp Corp Liquid crystal display device
JP3604106B2 (en) * 1995-09-27 2004-12-22 シャープ株式会社 Liquid crystal display
JP3027541B2 (en) * 1995-09-27 2000-04-04 シャープ株式会社 Liquid crystal display
JPH0990421A (en) * 1995-09-27 1997-04-04 Sharp Corp Liquid crystal display device and its manufacture
JP3299869B2 (en) 1995-09-27 2002-07-08 シャープ株式会社 Liquid crystal display device and manufacturing method thereof
JPH0990397A (en) * 1995-09-28 1997-04-04 Sharp Corp Active matrix substrate and display device formed by using the same
JP3418653B2 (en) 1995-09-28 2003-06-23 シャープ株式会社 Active matrix type liquid crystal display
JP3646999B2 (en) 1995-09-28 2005-05-11 シャープ株式会社 Transmission type liquid crystal display device
JPH09236826A (en) * 1995-09-28 1997-09-09 Sharp Corp Liquid crystal display element and its production
JP3272212B2 (en) * 1995-09-29 2002-04-08 シャープ株式会社 Transmissive liquid crystal display device and method of manufacturing the same
DE69614337T2 (en) * 1995-10-15 2002-06-13 Victor Company Of Japan Reflection type display device
JPH09113931A (en) * 1995-10-16 1997-05-02 Sharp Corp Liquid crystal display device
US5995178A (en) * 1995-10-16 1999-11-30 Sharp Kabushiki Kaisha Active matrix liquid crystal panel and method for repairing defect therein
JP3187306B2 (en) * 1995-10-31 2001-07-11 シャープ株式会社 Transmissive liquid crystal display
JP3209317B2 (en) * 1995-10-31 2001-09-17 シャープ株式会社 Transmissive liquid crystal display device and method of manufacturing the same
JP3205501B2 (en) * 1996-03-12 2001-09-04 シャープ株式会社 Active matrix display device and repair method thereof
JP4880345B2 (en) * 2006-04-13 2012-02-22 シャープ株式会社 Air conditioner
JP4880377B2 (en) * 2006-06-16 2012-02-22 シャープ株式会社 Air conditioner
JP5518013B2 (en) * 2011-08-18 2014-06-11 三菱電機株式会社 Air conditioner indoor unit and air conditioner equipped with the indoor unit

Also Published As

Publication number Publication date
JPS6435351A (en) 1989-02-06

Similar Documents

Publication Publication Date Title
JPH0523711B2 (en)
EP1155289B1 (en) Flow measurement with diagnostics
US4772385A (en) Control for use with reverse osmotic treatment system
US11795717B2 (en) Fluid chemistry manifolds and systems
JP2011075373A (en) Method and device for diagnosis of equipment
SE513882C2 (en) Method and apparatus for detecting leakage from a chemical soda boiler system
US20200240287A1 (en) Steam-Using Facility Monitoring System
AU2020246873A1 (en) Method for detecting anomalies in a water treatment plant
JP2001515200A (en) Method and apparatus for monitoring the onset of liquid chemical vaporization
Rieger et al. In-situ measurement of ammonium and nitrate in the activated sludge process
US5817927A (en) Method and apparatus for monitoring water process equipment
JP5983310B2 (en) Boiler water quality management method and apparatus
JP3838099B2 (en) Water quality measuring device
DK1068502T3 (en) Methods and apparatus for monitoring water treatment equipment
JP2002349804A (en) Water supply management device for boiler, water supply control method for boiler and water supply management method for boiler
JP6528120B2 (en) Gas meter evaluation system and gas meter used therefor
JP3063514B2 (en) Flow measurement method using pressure sensor
CN208327657U (en) A kind of thermal power plant water process bus analysis diagnostic system
CN219694222U (en) Automatic monitoring system for steam quality
JP2559293B2 (en) Three-element liquid level control method
SE517983C2 (en) Method for troubleshooting flow meters
JPH0438294B2 (en)
WO2024025630A1 (en) Methods and systems for evaluating heat exchangers
CN115655987A (en) Online aquatic gas detector for thermal power plant
Clarke et al. Model-Based Validation of a DOx Sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20080405