JP3838099B2 - Water quality measuring device - Google Patents

Water quality measuring device Download PDF

Info

Publication number
JP3838099B2
JP3838099B2 JP2002000664A JP2002000664A JP3838099B2 JP 3838099 B2 JP3838099 B2 JP 3838099B2 JP 2002000664 A JP2002000664 A JP 2002000664A JP 2002000664 A JP2002000664 A JP 2002000664A JP 3838099 B2 JP3838099 B2 JP 3838099B2
Authority
JP
Japan
Prior art keywords
water quality
water
pipe
sensor
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002000664A
Other languages
Japanese (ja)
Other versions
JP2003202309A (en
Inventor
誠 埜村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002000664A priority Critical patent/JP3838099B2/en
Publication of JP2003202309A publication Critical patent/JP2003202309A/en
Application granted granted Critical
Publication of JP3838099B2 publication Critical patent/JP3838099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水質測定装置に係り、特に水質センサを有する水質測定装置に関する。
【0002】
【従来の技術】
水質センサを有する水質測定装置では、通常、水質センサは配管に埋め込まれ、通水している間には取り外しができないような構成とされている。
【0003】
このように水質センサが配管内に直付けされ、取り外しができないように設けられている理由は、下記▲1▼,▲2▼による測定誤差を防止するためである。
▲1▼ 超純水の比抵抗のように、外部と触れさせると数値が変化してしまい、正確な測定を行えなくなる場合がある。
▲2▼ 流量、圧力及び流れ(=層流)が一定でないと、その感度の良さからセンサが敏感に反応し、安定した測定ができない場合がある。
【0004】
また、水質測定装置は、一般的な機器と同様に、通常は交流100Vの電源により作動する。水質センサで感知した信号は、水質測定装置で表示され、演算装置により通水開始から積算量を算出したり、また薬注装置がある場合には数値をフィードバックして薬注量の制御を行ったりする。
【0005】
【発明が解決しようとする課題】
従来の水質測定装置では、水質センサは水質を測定する水が流れる配管に直付けされているため、センサの交換を容易に行うことができなかった。特に、超純水装置のようにノンストップ運転する水質センサでは、交換はもちろんのこと、校正を行うことも難しかった。また、水質センサを配管に直付けするため、既存の水処理装置に新たに水質測定装置を設置する場合には、通水を停止し、配管を切断して取り付け部の付いているものに交換したり、穴を開けてセンサを挿入したりしなければならず、大がかりな工事を必要としていた。なお、サンプル配管などを利用して外部にセンサを設けることが考えられるが、この方法では、太い主管に対して細い管を取り付けることになるため、太い主管から細い配管内に流れ出る水は乱流となり易く、かつ圧力の変動を受けやすいために、センサの測定を安定に行うことができず、正確な測定結果を得ることができない。
【0006】
また、水質測定装置は、水質センサの稼働のために電源を必要とする。このため、新設の場合には特に問題とならないが、既存の装置へ新たに水質測定装置を設置する場合や、既存の装置を改造してなる新しい系に水質測定装置を設置する場合には、電源配線を引き直したり、配電盤を増設したり、電源工事のために多大な費用が必要となる。特に、半導体工場や医薬品製造工場、食品/飲料水加工製造工場に設置されるクリーンルーム内では、こうした作業/工事自体が困難であるために、水質測定装置の設置が難しかった。
【0007】
本発明は上記従来の問題点を解決し、水質測定される水が移送される主配管に対して容易に取り付け、取り外し可能であると共に、水質センサにより安定した水質測定を行うことができ、しかも、電源確保の難しい場所においても容易に稼動させることができ、従って、既設の水処理装置にも容易に取り付け、取り外しをすることが可能で、水質センサのメンテナンスも容易に行える水質測定装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の水質測定装置は、水質測定される水が移送される主配管に連結される試料水配管と、該試料水配管に設置された水質センサと、該水質センサより上流側の試料水配管に設けられた回転羽根車と、該回転羽根車の下流側かつ該水質センサの直前に配置された少なくとも5cmの長さを有する直線状配管部とを有し、該回転羽根車の回転力が伝達される発電装置が設けられていることを特徴とする。
【0009】
前述の如く、主配管から細管を引くと、その中を流れる水は乱流となり、かつ圧力が不安定となる結果、脈動が発生して水質センサによる測定が不安定となる。本発明では、水質センサの上流側に回転羽根車を設置し、主配管からの水の流れをこの羽根車で受けることにより、この脈動の発生を抑制する。そして、この回転羽根車の下流側の水質センサの直前に長さ5cm以上の直線状配管部を設けることにより、主配管に水質センサを設置した場合と同等の安定性、精度での水質測定を行うことが可能となる。なお、直線状配管部を水質センサの直前に設けるということは、この直線状配管部に直接水質センサを連結することを意味する。直線状配管部は、特に水平方向に設置され、水質センサと接続されていることがより好ましい。
【0010】
また、水質センサと回転羽根車との間に整流手段を設けることにより、より一層水質センサによる測定の安定性を高めることができる。この場合、整流手段は、水流に圧力損失を生じさせることができるものであれば良く、充填物が充填された充填部や、U字管又はコイル状管、その他蛇行流路部等を適用することができる。このような整流手段による圧力損失で、水の流れが整流化されて均質となる。
【0011】
この、水質センサは、一般に温度により影響を受け測定値が変化するため、測定は一定の温度条件で行うことが好ましい。このため、水質センサの上流側には温度調整手段を設けて測定温度を一定にすることが好ましい。
【0012】
本発明では、回転羽根車に制動力を加えることにより、水流の脈動を十分に抑制して試料水配管内の水流を安定化させることができる。このような制動力を加えるために、羽根車の軸に直結して又は歯車やベルトを介して発電装置を取り付けることができる。
【0013】
この発電装置で起電された電力を水質センサの駆動電力源としてもよい。この発電電力を水質センサの電源として利用することにより、水質センサの駆動のために必要とされる配電工事が不要となり、工事費が抑えられるだけでなく、工事時間も短縮することができる。
【0014】
ところで、水質センサは、水中の溶存酸素により劣化し、経時的に測定精度が低下することがある。即ち、水質センサは、通常、各種金属のもつ電気的な性質を利用して水質の変動を感知するが、センサ部の金属が溶存酸素と反応して表面に酸化皮膜が生じ、徐々に測定精度が変化する。
【0015】
従って、本発明においては、水質センサの上流側の配管に溶存酸素除去手段を設けることが好ましい。この溶存酸素除去手段としては脱酸素触媒又は脱気装置等を用いることができる。脱酸素触媒は、触媒表面において溶存酸素と水素とを反応させて溶存酸素濃度を低減させる。なお、脱気装置は、水中の溶存酸素の変動幅が大きい場合、あるいは汚れ成分を多く含む廃水などからも溶存酸素を効率的に除去することができる。
【0016】
本発明は、例えば、各種工場や発電所などの工業施設、学校や病院、役所、企業ビルなどの公共施設、マンションやホテルなどの居住施設、入浴施設やプールなどのアメニティー施設、デパートやレストランなどの飲食を伴う複合施設、染色工房やクリーニング店などの洗濯施設等で使用される水、これらの施設から排出される産業排水又は家庭排水などの排水の水質管理、これらの水処理又は排水処理装置における水質管理に用いることができるが、これら以外にも適用できる。
【0017】
【発明の実施の形態】
以下に図面を参照して本発明の水質測定装置の実施の形態を詳細に説明する。
【0018】
図1は本発明の水質測定装置の実施の形態を示す系統図である。
【0019】
図1は、本発明の水質測定装置を超純水製造システムのサブシステムに設けたものである。このサブシステムでは、一次純水システムからの一次純水が一次純水タンク11に導入され、ポンプ12により、紫外線(UV)酸化装置13、混床式イオン交換装置14及び限外濾過(UF)膜分離装置15で処理されて超純水が製造される。製造された超純水は、配管16よりユースポイント17に送給され、ユースポイント17で使用されなかった余剰の超純水が配管18より一次純水タンク11に戻されて循環処理される。
【0020】
水質測定装置1は、サブシステムの超純水配管(以下「主配管」と称す。)16に連結される試料水配管2と、回転羽根車3、直線状配管部4及び水質センサ5を備えている。回転羽根車3には発電装置6が設けられる。この水質測定装置1では、主配管16から試料水配管2に流入した超純水の水流を回転羽根車3で安定化させて脈動の発生を抑え、更に直線状配管部4で水流を安定化させ、脈動のない安定な水流として水質センサ5で水質を測定する。なお、回転羽根車3に取り付けられた発電装置6は、水流による回転羽根車3の回転で発電するが、この電力は、水質センサの駆動源として利用される。水質センサ5で水質が測定された試料水は系外へ排出される。
【0021】
羽根車の形式はいずれでもよいが、軸流式が好適である。
【0022】
直線状配管部4を5cm以上とすることにより水流を十分に安定化させることができる。この直線状配管部4の長さは5〜30cm程度で十分である。なお、この直線状配管部4は好ましくは水平に配置される。
【0023】
水質センサ5としては、水の電気伝導度又は比抵抗を測定するもの、水中のイオン濃度を検知するもの、水中の全有機炭素成分を測定するもの、水中の溶存酸素濃度を測定するもの、水中の溶存水素濃度を測定するもの、水中の溶存オゾン濃度を測定するもの、水の酸化還元電位を測定するもの、水の酸性度(=pH)を測定するものなどを用いることができるが、これに限定されない。
【0024】
本発明の水質測定装置は、主配管16から試料水配管2に被測定水を導入して測定を行うものであるため、長期的な安定性が実現できるが、より信頼性のある測定を行うためには、定期的に水質センサの校正を実施することが望ましい。このため、水質測定装置を可搬型とし、装置の持ち帰り校正を可能としてもよい。
【0025】
この可搬型の水質測定装置の一例を図2に示す。図2(a)は、回転羽根車3及び発電装置6を内蔵する試料水導入部21と、直線状配管部4と水質センサ5と、発電装置6からの電力が伝達されると共に水質センサ5の測定結果が入力される表示部22Aを有する本体部22との4つのパーツに分割可能なものである。図2(b)は、回転羽根車3、直線状配管部4及び水質センサ5と発電装置6を内蔵する試料水導入・測定部23と、表示部22Aを有する本体部22との2つのパーツに分割可能なものである。図2(c)は、回転羽根車3、直線状配管部4及び水質センサ5と発電装置6と、水質センサ5の測定結果が入力される演算機24、電源25及び表示部26が一体化された水質測定装置30である。
【0026】
本発明において、試料水配管2内の水流の乱れを抑え、水流をより一層安定化させるためには、水質センサ5と回転羽根車3との間に整流手段を設けることが好ましい。この整流手段としては、水流に圧力損失を生じさせることができるものであれば良く、充填物が充填された充填部や、U字管又はコイル状管、その他蛇行流路部等を適用することができる。
【0027】
充填部に充填される充填材としては、測定対象とする水を汚染しないものであれば何でも良く、合成樹脂、金属、セラミックなどの粒状体やメッシュ等が例示される。充填材は、測定水質項目に影響を与えない場合には活性炭やイオン交換樹脂であってもよい。
【0028】
水質センサ5は、一般に温度により影響を受け測定値が変化するため、測定は一定の温度条件で行うことが好ましく、このために、水質センサ5の上流側に必要に応じて温度調整手段を設けてもよい。この温度調整手段としては恒温槽又は熱媒体を循環させたジャケットを用いることができ、例えば、配管を恒温槽内に通すようにしたものなどを採用することができる。この場合、図3に示す如く、回転羽根車3と直線状配管部4との間に、内部にコイル状管(V字管、蛇行流路であっても良い。)7Aを通した恒温槽7を設け、恒温槽7に熱媒を通すことにより、被測定水の水流を整流化すると共に、温度を一定に調整するようにしても良い。このように恒温槽7内にU字管7A等の曲管を設けることにより、直管よりも熱交換部を長くとることができ、調温効果が高められる。なお、図3及び後述の図4,5において、図1に示す部材と同一機能を奏する部材には同一符号を付してある。
【0029】
水質センサ5が溶存酸素により影響を受けることを防止するために、水質センサ5の上流側に溶存酸素除去手段を設けてもよい。
【0030】
溶存酸素除去手段としては、被測定水中の溶存酸素と水素とを反応させる脱酸素触媒を用いることができる。脱酸素触媒としては、水素と酸素が反応できるものであれば何でも良いが、選択的に触媒作用を示すPdが好ましい。脱酸素触媒は、ゼオライトなどを担体として、触媒金属を担持して使われることが多いが、Pdに関しては市販品として陰イオン交換樹脂に担持したものがあるので、これを利用しても良い。
【0031】
なお、被測定水中の溶存酸素と反応させる水素の注入箇所には特に制限はないが、回転羽根車3の上流側で注入することにより、回転羽根車3の撹拌効果で水素をより均一に分散させることができる。
【0032】
図4は、このような脱酸素触媒による溶存酸素除去手段を設けた水質測定装置を示し、試料水配管2に水素を注入する水素ガスボンベ8と脱酸素触媒充填塔9が設けられ、水素ガスボンベ8から水素が注入された被測定水が回転羽根車3を通過した後、脱酸素触媒充填塔9に導入され、被測定水中の溶存酸素と水素との反応で溶存酸素が除去されるように構成されている。
【0033】
また、この溶存酸素除去手段は物理的に溶存酸素を除去する脱気装置であっても良い。この脱気装置としては特に制限はないが、脱気膜を利用した膜脱気装置がコンパクトであり、かつ、被測定水中に含まれる溶存酸素濃度を効率よく低減できることから好ましい。
【0034】
図5は、このような脱気装置を設けた水質測定装置を示し、試料水配管2に流入した被測定水は脱気装置10で溶存酸素が除去された後、回転羽根車3及び直線状配管部4を経て水質センサ5に送給される。
【0035】
なお、溶存酸素除去手段としての脱気装置を設けた場合、その性能を維持するために、脱気装置への汚れの付着を防止する手段を設けてもよい。例えば、脱気装置の上流側に砂濾過装置や膜(精密濾過膜又は限外濾過膜)分離装置を設けて、被測定水の汚れ成分を除去する。
【0036】
本発明では、水質センサ5は試料水配管内に設けられてもよく、試料水配管に連なる槽内に設けられてもよい。例えば、pH計は、流通状態で連続測定すると精度が不安定となるが、センサを被測定水が10秒以上滞留する槽内に設置すれば、この問題は解決する。
【0037】
一般に、水質測定装置は、集中コントロール室などにおいて遠隔監視することが多い。このため、本発明の水質測定装置では、水質センサの測定値を電気信号として外部に出力できるようにするのが好ましい。この場合、信号の処理の容易性及び精度から、伝達する距離が数m〜十数mの時は電圧出力とし、それ以上の場合には電流出力とするのが好ましい。さらに、数百mを超えるような遠距離送信する場合には、無線による伝達が好ましい。
【0038】
本発明の水質測定装置からの各水質データを、別個設置されている薬注装置にフィードバックして薬注量の制御を行うことができる。
【0039】
また、超純水又は純水製造システム等のイオン交換樹脂を用いた脱塩装置や軟化装置では、そのイオン交換能力が低下した場合に再生剤による再生が行われる。再生の時期は、その処理水の水質で判断しても良いが、最近は入口水質を経時的にモニターし、演算装置で負荷量を計算して寿命を予測する。本発明の水質測定装置は、このようなイオン交換樹脂の寿命予測のための水質測定装置としても好適に使用される。
【0040】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0041】
実施例1
図1に示すように、本発明の水質測定装置1を超純水製造システムのサブシステムの超純水配管(送水圧力0.3MPa)16に取り付け、超純水の比抵抗の測定を行った。
【0042】
試料水配管2としては10mmφのポリテトラフルオロエチレンチューブを用い、超純水配管16から超純水を200L/hrで取り出し、回転羽根車3、長さ5cmの水平直線状配管部4及び水質センサ(比抵抗センサ)5に通水して比抵抗を24時間に亘って連続測定した。回転羽根車3としては、直径45mm,羽根数13枚で羽根には17゜の後退角をもたせたものを用い、軸方向に右奥部から水が入り、手前に抜けるように設置した。また、比抵抗センサとしては、栗田工業(株)製比抵抗計「MX−4」を用いた。
【0043】
このときの比抵抗の測定結果を図6に示した。
【0044】
なお、サブシステムの超純水配管16には同様の比抵抗センサが予め設けられており、この比抵抗センサ(既設センサ)で測定した測定値も図6に併記した。
【0045】
比較例1
実施例1において、10mmφ、長さ1.5mのポリテトラフルオロエチレンチューブを用いて超純水配管16から200L/hrで取り出した超純水を直接比抵抗センサに通水したこと以外は同様にして比抵抗の測定を行い、測定結果を図6に示した。
【0046】
図6より、回転羽根車及び直線状配管部を有する本発明の水質測定装置であれば、主配管に設けた比抵抗センサと同等の測定結果が得られ、測定精度が高いことがわかる。これに対して、比較例1では、主配管に設けた比抵抗センサの測定結果と大きく異なり、水流の脈動でセンサの測定値が不安定となっていることが分かる。
【0047】
なお、実施例1において、回転羽根車に連結した発電装置からは0.5kWの電力が発生し、一方、実施例1で用いた比抵抗センサの定格消費電力は0.1kWであり、比抵抗センサの電源として、必要電力を十分にまかなえることが確認された。
【0048】
実施例2
図1に示す超純水製造システムのサブシステムの超純水配管(送水圧力0.3MPa)16に図4に示す水質測定装置を取り付け、超純水の比抵抗の測定を行った。
【0049】
試料水配管2としては10mmφのポリテトラフルオロエチレンチューブを用い、超純水配管16から超純水を200L/hrで取り出し、水素ガスボンベ8から水素を注入した後、回転羽根車3、脱酸素触媒充填塔9、長さ5cmの水平直線状配管部4及び水質センサ(比抵抗センサ)5に通水して比抵抗を18ヶ月に亘って連続測定した。水素ガスボンベ8としては市販品を用い、レギュレータで圧力を0.32MPaに調整して注入した。また、脱酸素触媒充填塔9としては、直径70mmのポリテトラフルオロエチレン製カラムに、Pd担持樹脂(型番:OC−1063(バイエル社製))を2.5L充填したものを用いた。
【0050】
回転羽根車3としては、直径45mm,羽根数13枚で羽根には17゜の後退角をもたせたものを用い、軸方向に右奥部から水が入り、手前に抜けるように設置した。また、比抵抗センサとしては、栗田工業(株)製比抵抗計「MX−4」を用いた。
【0051】
このときの比抵抗の測定結果を図7に示した。
【0052】
実施例3
実施例2において、脱酸素触媒充填塔を設けなかったこと以外は同様にして比抵抗の測定を行い、測定結果を図7に示した。
【0053】
図7より明らかなように、実施例2では、18ヶ月間を通じて測定値が安定していたが、実施例3では、経時的に測定値が徐々に減少し、溶存酸素の影響でセンサの測定精度が低下していることが分かる。
【0054】
なお、実施例2及び実施例3の被測定水の超純水の溶存酸素濃度は20〜28μg/Lであり、実施例2の脱酸素触媒処理後の溶存酸素濃度は3〜5μg/Lであった。
【0055】
実施例4
図1に示す超純水製造システムのサブシステムの超純水配管(送水圧力0.3MPa)16に図5に示す水質測定装置を取り付け、超純水の比抵抗の測定を行った。ただし、試料水配管2で取り出した超純水には、酸素ガスを吹込み溶存酸素濃度1.0〜3.3mg−O/Lの間で変化させた。
【0056】
試料水配管2としては10mmφのポリテトラフルオロエチレンチューブを用い、超純水配管16から超純水を180L/hrで取り出し、脱気装置10、回転羽根車3、長さ0.5cmの水平直線状配管部4及び水質センサ(比抵抗センサ)5に通水して比抵抗を18ヶ月に亘って連続測定した。脱気装置10の脱気膜としては、大日本インキ社製「PF−004D」を使用した。回転羽根車3としては、直径45mm,羽根数13枚で羽根には17゜の後退角をもたせたものを用い、軸方向に右奥部から水が入り、手前に抜けるように設置した。また、比抵抗センサとしては、栗田工業(株)製比抵抗計「MX−4」を用いた。
【0057】
このときの比抵抗の測定結果を図8に示した。
【0058】
実施例5
実施例4において、図5に示す水質測定装置の代りに図4に示す水質測定装置を設け、水素ガスボンベ8より1mg−H/Lとなるように水素を注入した後、回転羽根車3を経て脱酸素触媒充填塔9に通水し、その後長さ5cmの水平直線状配管部4及び比抵抗センサ5に通水して18ヶ月間比抵抗の測定を行い、結果を図8に示した。なお、用いた回転羽根車3及び比抵抗センサは実施例4のものと同様であり、脱酸素触媒充填塔9としては、直径70mmのポリテトラフルオロエチレン製カラムにPd担持触媒(型番:OC−1063(バイエル社製))を2L充填したものを用いた。
【0059】
図8より明らかなように、脱気装置を用いた実施例4では、18ヶ月間を通じて測定値に変化はなかったが、実施例5では経時的に測定値が低下した。この結果から、溶存酸素濃度が変化する系では、脱気装置を用いる方が溶存酸素を安定して低減することができ、溶存酸素による水質センサの測定精度の経時低下を防止することができることがわかる。
【0060】
【発明の効果】
以上詳述した通り、本発明の水質測定装置は、水質測定される水が移送される主配管に対して容易に水質センサの取り付け、取り外しをすることができると共に、水質センサにより安定した水質測定を行うことができる。しかも、電源確保の難しい場所においても容易に稼動させることができる。従って、本発明の水質測定装置は、既設の水処理装置にも容易に取り付け、取り外しをすることができ、水質センサのメンテナンスも容易に行える。
【図面の簡単な説明】
【図1】本発明の水質測定装置の実施の形態を示す系統図である。
【図2】本発明の水質測定装置の構成例を示す模式図である。
【図3】本発明の水質測定装置の他の実施の形態を示す系統図である。
【図4】本発明の水質測定装置の別の実施の形態を示す系統図である。
【図5】本発明の水質測定装置の異なる実施の形態を示す系統図である。
【図6】実施例1及び比較例1における比抵抗の測定結果を示すグラフである。
【図7】実施例2、3における比抵抗の測定結果を示すグラフである。
【図8】実施例4,5における比抵抗の測定結果を示すグラフである。
【符号の説明】
1 水質測定装置
2 試料水配管
3 回転羽根車
4 直線状配管部
5 水質センサ
6 発電装置
7 恒温槽
7A コイル状管
8 水素ガスボンベ
9 脱酸素触媒充填塔
10 脱気装置
11 一次純水タンク
12 ポンプ
13 UV酸化装置
14 混床式イオン交換装置
15 UF膜分離装置
17 ユースポイント
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water quality measuring device, and more particularly to a water quality measuring device having a water quality sensor.
[0002]
[Prior art]
In a water quality measuring apparatus having a water quality sensor, the water quality sensor is normally embedded in a pipe and cannot be removed while water is flowing.
[0003]
The reason why the water quality sensor is provided directly in the pipe and cannot be removed is to prevent measurement errors due to the following (1) and (2).
(1) Like the specific resistance of ultrapure water, when touching the outside, the numerical value may change and accurate measurement may not be possible.
(2) If the flow rate, pressure and flow (= laminar flow) are not constant, the sensor may react sensitively due to its good sensitivity, and stable measurement may not be possible.
[0004]
In addition, the water quality measuring device is normally operated by a power supply of AC 100V, as in general equipment. The signal detected by the water quality sensor is displayed on the water quality measurement device, and the integrated amount is calculated from the start of water flow by the arithmetic device, and if there is a chemical injection device, the numerical value is fed back to control the chemical injection amount. Or
[0005]
[Problems to be solved by the invention]
In the conventional water quality measuring device, since the water quality sensor is directly attached to a pipe through which water for measuring the water quality flows, the sensor cannot be easily replaced. In particular, a water quality sensor that operates non-stop like an ultrapure water device is difficult to calibrate as well as to be replaced. In addition, when installing a new water quality measurement device in an existing water treatment device to directly attach the water quality sensor to the pipe, stop the water flow, cut the pipe and replace it with one that has a mounting part. Or had to make a hole and insert a sensor, which required extensive work. Although it is conceivable to use a sample pipe etc. to provide an external sensor, this method involves attaching a thin pipe to the thick main pipe, so the water flowing from the thick main pipe into the thin pipe is turbulent. Since it is easy to become, and it is easy to receive the fluctuation | variation of a pressure, the measurement of a sensor cannot be performed stably and an exact measurement result cannot be obtained.
[0006]
In addition, the water quality measuring device requires a power source for the operation of the water quality sensor. For this reason, there is no particular problem in the case of a new installation, but when installing a new water quality measurement device to an existing device or when installing a water quality measurement device in a new system that is a modification of the existing device, It is necessary to redraw the power supply wiring, increase the number of power distribution boards, and enormous costs for the power supply work. In particular, in a clean room installed in a semiconductor factory, a pharmaceutical manufacturing factory, or a food / drinking water processing manufacturing factory, it is difficult to install a water quality measuring device because such work / construction itself is difficult.
[0007]
The present invention solves the above-mentioned conventional problems, can be easily attached to and detached from the main pipe to which water to be measured for water quality is transferred, and can perform stable water quality measurement by a water quality sensor. , Providing a water quality measuring device that can be easily operated even in places where it is difficult to secure a power supply, and therefore can be easily attached to and detached from existing water treatment equipment, and the maintenance of water quality sensors can be easily performed The purpose is to do.
[0008]
[Means for Solving the Problems]
The water quality measuring device of the present invention includes a sample water pipe connected to a main pipe through which water to be measured for water quality is transferred, a water quality sensor installed in the sample water pipe, and a sample water pipe upstream of the water quality sensor. a rotary impeller provided, possess a straight pipe section having a downstream and at least 5cm length of arranged immediately in front of the water quality sensor of the rotating impeller, the rotational force of the rotating impeller power generator is transmitted is characterized that you have provided.
[0009]
As described above, when a narrow pipe is pulled from the main pipe, the water flowing in the pipe becomes turbulent and the pressure becomes unstable. As a result, pulsation occurs and measurement by the water quality sensor becomes unstable. In the present invention, a rotating impeller is installed on the upstream side of the water quality sensor, and the flow of water from the main pipe is received by the impeller, thereby suppressing the occurrence of this pulsation. And, by providing a straight pipe section with a length of 5 cm or more immediately before the water quality sensor on the downstream side of the rotary impeller, water quality measurement with the same stability and accuracy as when the water quality sensor is installed in the main pipe is performed. Can be done. In addition, providing a straight piping part just before a water quality sensor means connecting a water quality sensor directly to this linear piping part. It is more preferable that the straight pipe portion is installed in the horizontal direction and connected to the water quality sensor.
[0010]
Further, by providing a rectifying means between the water quality sensor and the rotary impeller, the stability of measurement by the water quality sensor can be further enhanced. In this case, the rectifying means may be any means that can cause a pressure loss in the water flow, and a filling portion filled with a filling, a U-shaped tube or a coiled tube, and other meandering flow path portions are applied. be able to. Due to the pressure loss due to such rectifying means, the flow of water is rectified and becomes homogeneous.
[0011]
In general, the water quality sensor is affected by temperature and the measured value changes. Therefore, the measurement is preferably performed under a constant temperature condition. For this reason, it is preferable to provide a temperature adjusting means on the upstream side of the water quality sensor to keep the measurement temperature constant.
[0012]
In the present invention, by applying a braking force to the rotating impeller, it is possible to sufficiently suppress the pulsation of the water flow and stabilize the water flow in the sample water pipe. In order to apply such a braking force, the power generator can be attached directly to the shaft of the impeller or via a gear or a belt.
[0013]
The electric power generated by this power generator may be used as a driving power source for the water quality sensor. By using this generated power as a power source for the water quality sensor, the power distribution work required for driving the water quality sensor becomes unnecessary, and not only the construction cost can be reduced, but also the construction time can be shortened.
[0014]
By the way, the water quality sensor may be deteriorated by dissolved oxygen in the water, and the measurement accuracy may deteriorate with time. In other words, the water quality sensor usually senses fluctuations in water quality using the electrical properties of various metals, but the metal in the sensor reacts with dissolved oxygen to form an oxide film on the surface, gradually measuring accuracy. Changes.
[0015]
Therefore, in the present invention, it is preferable to provide a dissolved oxygen removing means in the pipe upstream of the water quality sensor. As the dissolved oxygen removing means, a deoxygenation catalyst or a deaeration device can be used. The deoxygenation catalyst reacts dissolved oxygen and hydrogen on the catalyst surface to reduce the dissolved oxygen concentration. Note that the degassing device can efficiently remove dissolved oxygen even when the fluctuation range of dissolved oxygen in water is large or from wastewater containing a large amount of dirt components.
[0016]
The present invention includes, for example, industrial facilities such as various factories and power plants, public facilities such as schools and hospitals, government offices, corporate buildings, residential facilities such as condominiums and hotels, amenity facilities such as bathing facilities and pools, department stores and restaurants, etc. Water used in laundry facilities such as complex facilities with food and beverages, dyeing workshops and laundry shops, water quality management of wastewater such as industrial wastewater or household wastewater discharged from these facilities, water treatment or wastewater treatment equipment Although it can be used for water quality management, it can be applied to other than these.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the water quality measuring device of the present invention will be described below in detail with reference to the drawings.
[0018]
FIG. 1 is a system diagram showing an embodiment of the water quality measuring apparatus of the present invention.
[0019]
FIG. 1 shows a water quality measuring device according to the present invention provided in a subsystem of an ultrapure water production system. In this subsystem, primary pure water from the primary pure water system is introduced into the primary pure water tank 11, and an ultraviolet (UV) oxidizer 13, a mixed bed ion exchanger 14, and ultrafiltration (UF) are pumped 12. Ultrapure water is produced by being processed by the membrane separator 15. The produced ultrapure water is supplied from the pipe 16 to the use point 17, and surplus ultrapure water that has not been used at the use point 17 is returned from the pipe 18 to the primary pure water tank 11 to be circulated.
[0020]
The water quality measuring device 1 includes a sample water pipe 2 connected to an ultrapure water pipe (hereinafter referred to as “main pipe”) 16 of a subsystem, a rotary impeller 3, a straight pipe section 4, and a water quality sensor 5. ing. The rotating impeller 3 is provided with a power generator 6. In this water quality measuring device 1, the flow of ultrapure water that has flowed into the sample water pipe 2 from the main pipe 16 is stabilized by the rotary impeller 3 to suppress the occurrence of pulsation, and the water flow is stabilized by the straight pipe section 4. The water quality is measured by the water quality sensor 5 as a stable water flow without pulsation. In addition, although the electric power generating apparatus 6 attached to the rotary impeller 3 generate | occur | produces electricity by rotation of the rotary impeller 3 by a water flow, this electric power is utilized as a drive source of a water quality sensor. The sample water whose water quality is measured by the water quality sensor 5 is discharged out of the system.
[0021]
Any type of impeller may be used, but an axial flow type is preferable.
[0022]
A water flow can be fully stabilized by making the linear piping part 4 into 5 cm or more. About 5-30 cm is sufficient for the length of this linear piping part 4. In addition, this linear piping part 4 is preferably arrange | positioned horizontally.
[0023]
Examples of the water quality sensor 5 include those that measure the electrical conductivity or specific resistance of water, those that detect ion concentration in water, those that measure all organic carbon components in water, those that measure the dissolved oxygen concentration in water, Those that measure the dissolved hydrogen concentration, those that measure the dissolved ozone concentration in water, those that measure the oxidation-reduction potential of water, and those that measure the acidity (= pH) of water can be used. It is not limited to.
[0024]
Since the water quality measuring device of the present invention performs measurement by introducing water to be measured from the main pipe 16 to the sample water pipe 2, long-term stability can be realized, but more reliable measurement is performed. Therefore, it is desirable to periodically calibrate the water quality sensor. For this reason, the water quality measuring device may be portable and the device can be taken home and calibrated.
[0025]
An example of this portable water quality measuring apparatus is shown in FIG. FIG. 2A shows a sample water introduction unit 21 incorporating the rotary impeller 3 and the power generation device 6, the straight pipe portion 4, the water quality sensor 5, the power from the power generation device 6 and the water quality sensor 5. The measurement result can be divided into four parts with the main body 22 having the display 22A. FIG. 2 (b) shows two parts of the rotary impeller 3, the straight pipe portion 4, the water quality sensor 5 and the sample water introduction / measurement portion 23 incorporating the power generation device 6, and the main body portion 22 having the display portion 22A. It can be divided into FIG. 2 (c) shows that the rotary impeller 3, the straight pipe portion 4, the water quality sensor 5, the power generator 6, the calculator 24 to which the measurement result of the water quality sensor 5 is input, the power source 25, and the display portion 26 are integrated. It is the water quality measuring device 30 made.
[0026]
In the present invention, it is preferable to provide a rectifying means between the water quality sensor 5 and the rotary impeller 3 in order to suppress disturbance of the water flow in the sample water pipe 2 and further stabilize the water flow. As the rectifying means, any means capable of causing a pressure loss in the water flow may be used, and a filling portion filled with a filling, a U-shaped tube or a coiled tube, and other meandering flow path portions may be applied. Can do.
[0027]
The filler filled in the filling portion may be anything as long as it does not contaminate the water to be measured, and examples thereof include granular materials such as synthetic resins, metals, and ceramics, and meshes. The filler may be activated carbon or ion exchange resin if it does not affect the measured water quality item.
[0028]
Since the water quality sensor 5 is generally affected by temperature and the measured value changes, the measurement is preferably performed under a constant temperature condition. For this purpose, a temperature adjusting means is provided on the upstream side of the water quality sensor 5 as necessary. May be. As the temperature adjusting means, a thermostatic bath or a jacket in which a heat medium is circulated can be used. For example, a device in which piping is passed through the thermostatic bath can be adopted. In this case, as shown in FIG. 3, a constant temperature bath in which a coiled tube (which may be a V-shaped tube or a meandering flow path) 7A is passed between the rotary impeller 3 and the straight pipe portion 4. 7 and by passing a heating medium through the thermostatic chamber 7, the water flow of the water to be measured may be rectified and the temperature may be adjusted to be constant. Thus, by providing a curved pipe such as the U-shaped pipe 7A in the thermostat 7, the heat exchange part can be made longer than the straight pipe, and the temperature control effect is enhanced. In FIG. 3 and FIGS. 4 and 5 to be described later, members having the same functions as those shown in FIG.
[0029]
In order to prevent the water quality sensor 5 from being affected by dissolved oxygen, a dissolved oxygen removing means may be provided on the upstream side of the water quality sensor 5.
[0030]
As the dissolved oxygen removing means, a deoxygenation catalyst for reacting dissolved oxygen and hydrogen in the water to be measured can be used. Any deoxygenation catalyst may be used as long as hydrogen and oxygen can react with each other, but Pd that selectively exhibits catalytic action is preferable. The deoxygenation catalyst is often used by supporting a catalytic metal using zeolite or the like as a carrier. However, as for Pd, there is a commercially available product supported on an anion exchange resin, and this may be used.
[0031]
There is no particular restriction on the injection location of hydrogen to be reacted with dissolved oxygen in the water to be measured, but hydrogen is more evenly dispersed by the stirring effect of the rotary impeller 3 by being injected upstream of the rotary impeller 3. Can be made.
[0032]
FIG. 4 shows a water quality measuring device provided with such a means for removing dissolved oxygen using a deoxygenation catalyst. A hydrogen gas cylinder 8 for injecting hydrogen into the sample water pipe 2 and a deoxygenation catalyst packed tower 9 are provided. The measurement water into which hydrogen has been injected from after passing through the rotary impeller 3 is introduced into the deoxygenation catalyst packed tower 9 and the dissolved oxygen is removed by the reaction of dissolved oxygen and hydrogen in the measurement water. Has been.
[0033]
The dissolved oxygen removing means may be a deaeration device that physically removes dissolved oxygen. Although there is no restriction | limiting in particular as this deaeration apparatus, Since the membrane deaeration apparatus using a deaeration membrane is compact and the dissolved oxygen concentration contained in to-be-measured water can be reduced efficiently, it is preferable.
[0034]
FIG. 5 shows a water quality measuring device provided with such a degassing device. The water to be measured that has flowed into the sample water pipe 2 is freed of dissolved oxygen by the degassing device 10, and then the rotating impeller 3 and the linear shape are measured. It is fed to the water quality sensor 5 through the piping part 4.
[0035]
In addition, when a deaeration device as a dissolved oxygen removal unit is provided, a unit for preventing the adhesion of dirt to the deaeration device may be provided in order to maintain the performance. For example, a sand filtration device or a membrane (microfiltration membrane or ultrafiltration membrane) separation device is provided on the upstream side of the deaeration device to remove dirt components of the water to be measured.
[0036]
In the present invention, the water quality sensor 5 may be provided in the sample water pipe or in a tank connected to the sample water pipe. For example, the accuracy of a pH meter becomes unstable when continuously measured in a flowing state, but this problem can be solved if the sensor is installed in a tank where water to be measured stays for 10 seconds or more.
[0037]
In general, a water quality measuring device is often remotely monitored in a central control room or the like. For this reason, in the water quality measuring apparatus of this invention, it is preferable to enable it to output the measured value of a water quality sensor as an electrical signal outside. In this case, in view of the ease and accuracy of signal processing, it is preferable that the voltage output is used when the transmission distance is several meters to several tens of meters, and the current output is used when the distance is longer. Furthermore, in the case of long-distance transmission exceeding several hundred meters, wireless transmission is preferable.
[0038]
Each water quality data from the water quality measuring device of the present invention can be fed back to a separately installed medication injection device to control the dose.
[0039]
Moreover, in the desalination apparatus and softening apparatus using ion exchange resins, such as an ultrapure water or a pure water production system, when the ion exchange capability falls, regeneration with a regenerant is performed. The timing of regeneration may be judged by the quality of the treated water, but recently, the quality of the inlet water is monitored over time, and the life is predicted by calculating the load with a computing device. The water quality measuring device of the present invention is also suitably used as a water quality measuring device for predicting the life of such an ion exchange resin.
[0040]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0041]
Example 1
As shown in FIG. 1, the water quality measuring device 1 of the present invention was attached to an ultrapure water pipe (water supply pressure 0.3 MPa) 16 of a subsystem of the ultrapure water production system, and the specific resistance of ultrapure water was measured. .
[0042]
As the sample water pipe 2, a 10 mmφ polytetrafluoroethylene tube is used. Ultrapure water is taken out from the ultrapure water pipe 16 at 200 L / hr, and the rotary impeller 3, the horizontal straight pipe part 4 having a length of 5 cm, and the water quality sensor are used. (Resistivity sensor) The water was passed through 5, and the specific resistance was continuously measured over 24 hours. As the rotary impeller 3, a blade having a diameter of 45 mm, the number of blades of 13 and a blade having a receding angle of 17 ° was used. As a specific resistance sensor, a specific resistance meter “MX-4” manufactured by Kurita Kogyo Co., Ltd. was used.
[0043]
The measurement result of the specific resistance at this time is shown in FIG.
[0044]
The ultra-pure water pipe 16 of the subsystem is provided with a similar specific resistance sensor in advance, and the measured values measured by this specific resistance sensor (existing sensor) are also shown in FIG.
[0045]
Comparative Example 1
The same procedure as in Example 1 was performed except that ultrapure water taken out from the ultrapure water pipe 16 at 200 L / hr using a polytetrafluoroethylene tube having a diameter of 10 mmφ and a length of 1.5 m was directly passed through the specific resistance sensor. The specific resistance was measured, and the measurement results are shown in FIG.
[0046]
FIG. 6 shows that the water quality measuring device of the present invention having the rotating impeller and the straight pipe portion can obtain a measurement result equivalent to the specific resistance sensor provided in the main pipe and has high measurement accuracy. On the other hand, in the comparative example 1, it can be seen that the measurement value of the sensor is unstable due to the pulsation of the water flow, which is greatly different from the measurement result of the specific resistance sensor provided in the main pipe.
[0047]
In Example 1, 0.5 kW of power is generated from the power generator connected to the rotary impeller, while the rated power consumption of the specific resistance sensor used in Example 1 is 0.1 kW. It was confirmed that the necessary power can be sufficiently supplied as the power source of the sensor.
[0048]
Example 2
The water quality measuring device shown in FIG. 4 was attached to the ultrapure water pipe (water supply pressure 0.3 MPa) 16 of the subsystem of the ultrapure water production system shown in FIG. 1, and the specific resistance of the ultrapure water was measured.
[0049]
The sample water pipe 2 is a 10 mmφ polytetrafluoroethylene tube, ultrapure water is taken out from the ultrapure water pipe 16 at 200 L / hr, hydrogen is injected from the hydrogen gas cylinder 8, the rotary impeller 3, deoxygenation catalyst The specific resistance was continuously measured over 18 months by passing water through the packed tower 9, the horizontal straight pipe portion 4 having a length of 5 cm, and the water quality sensor (specific resistance sensor) 5. A commercially available product was used as the hydrogen gas cylinder 8, and the pressure was adjusted to 0.32 MPa with a regulator and injected. As the deoxygenation catalyst packed tower 9, a column made of polytetrafluoroethylene having a diameter of 70 mm and packed with 2.5 L of Pd-supported resin (model number: OC-1063 (manufactured by Bayer)) was used.
[0050]
As the rotary impeller 3, a blade having a diameter of 45 mm, the number of blades of 13 and a blade having a receding angle of 17 ° was used. As a specific resistance sensor, a specific resistance meter “MX-4” manufactured by Kurita Kogyo Co., Ltd. was used.
[0051]
The measurement results of the specific resistance at this time are shown in FIG.
[0052]
Example 3
In Example 2, the specific resistance was measured in the same manner except that the deoxygenation catalyst packed tower was not provided, and the measurement results are shown in FIG.
[0053]
As is clear from FIG. 7, in Example 2, the measured value was stable over 18 months, but in Example 3, the measured value gradually decreased with time, and the sensor measurement was performed under the influence of dissolved oxygen. It can be seen that the accuracy is reduced.
[0054]
In addition, the dissolved oxygen concentration of the ultrapure water of the water to be measured in Example 2 and Example 3 is 20 to 28 μg / L, and the dissolved oxygen concentration after the deoxygenation catalyst treatment in Example 2 is 3 to 5 μg / L. there were.
[0055]
Example 4
The water quality measuring device shown in FIG. 5 was attached to the ultrapure water pipe (water supply pressure 0.3 MPa) 16 of the subsystem of the ultrapure water production system shown in FIG. 1, and the specific resistance of the ultrapure water was measured. However, oxygen gas was blown into the ultrapure water taken out by the sample water pipe 2, and the dissolved oxygen concentration was changed between 1.0 and 3.3 mg-O / L.
[0056]
The sample water pipe 2 is a 10 mmφ polytetrafluoroethylene tube, and ultrapure water is taken out from the ultrapure water pipe 16 at 180 L / hr, and the deaerator 10, the rotary impeller 3, and a horizontal straight line with a length of 0.5 cm are used. The specific resistance was continuously measured over 18 months by passing water through the pipe-like piping part 4 and the water quality sensor (specific resistance sensor) 5. As a degassing membrane of the degassing device 10, “PF-004D” manufactured by Dainippon Ink Co., Ltd. was used. As the rotary impeller 3, a blade having a diameter of 45 mm, the number of blades of 13 and a blade having a receding angle of 17 ° was used. As a specific resistance sensor, a specific resistance meter “MX-4” manufactured by Kurita Kogyo Co., Ltd. was used.
[0057]
The measurement results of the specific resistance at this time are shown in FIG.
[0058]
Example 5
In Example 4, instead of the water quality measurement device shown in FIG. 5, the water quality measurement device shown in FIG. 4 is provided, and after hydrogen is injected from the hydrogen gas cylinder 8 to 1 mg−H 2 / L, the rotary impeller 3 is installed. Then, the water was passed through the deoxygenation catalyst packed tower 9 and then passed through the 5 cm long horizontal straight pipe section 4 and the specific resistance sensor 5 to measure the specific resistance for 18 months. The results are shown in FIG. . The rotary impeller 3 and the specific resistance sensor used were the same as those in Example 4. As the deoxygenation catalyst packed tower 9, a Pd-supported catalyst (model number: OC-) was used in a 70 mm diameter polytetrafluoroethylene column. 1063 (manufactured by Bayer)) was used.
[0059]
As is clear from FIG. 8, in Example 4 using the deaeration device, the measurement value did not change throughout 18 months, but in Example 5, the measurement value decreased with time. From this result, in the system in which the dissolved oxygen concentration changes, it is possible to stably reduce the dissolved oxygen by using the degassing device, and to prevent the measurement accuracy of the water quality sensor due to dissolved oxygen from decreasing with time. Recognize.
[0060]
【The invention's effect】
As described above in detail, the water quality measuring device of the present invention can easily attach and detach the water quality sensor to / from the main pipe to which water to be measured is transferred, and can stably measure the water quality by the water quality sensor. It can be performed. Moreover, it can be easily operated even in a place where it is difficult to secure a power source. Therefore, the water quality measuring device of the present invention can be easily attached to and detached from an existing water treatment device, and maintenance of the water quality sensor can be easily performed.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a water quality measuring apparatus of the present invention.
FIG. 2 is a schematic diagram showing a configuration example of a water quality measuring apparatus according to the present invention.
FIG. 3 is a system diagram showing another embodiment of the water quality measuring apparatus of the present invention.
FIG. 4 is a system diagram showing another embodiment of the water quality measuring apparatus of the present invention.
FIG. 5 is a system diagram showing another embodiment of the water quality measuring apparatus of the present invention.
6 is a graph showing specific resistance measurement results in Example 1 and Comparative Example 1. FIG.
7 is a graph showing the measurement results of specific resistance in Examples 2 and 3. FIG.
8 is a graph showing measurement results of specific resistance in Examples 4 and 5. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Water quality measuring device 2 Sample water piping 3 Rotating impeller 4 Straight piping part 5 Water quality sensor 6 Power generation device 7 Constant temperature bath 7A Coiled tube 8 Hydrogen gas cylinder 9 Deoxygenation catalyst packed tower 10 Deaeration device 11 Primary pure water tank 12 Pump 13 UV oxidation device 14 Mixed bed type ion exchange device 15 UF membrane separation device 17 Use point

Claims (9)

水質測定される水が移送される主配管に連結される試料水配管と、
該試料水配管に設置された水質センサと、
該水質センサより上流側の試料水配管に設けられた回転羽根車と、
該回転羽根車の下流側かつ該水質センサの直前に配置された少なくとも5cmの長さを有する直線状配管部と
を有し、
該回転羽根車の回転力が伝達される発電装置が設けられている水質測定装置。
A sample water pipe connected to a main pipe through which water to be measured for water quality is transferred;
A water quality sensor installed in the sample water pipe;
A rotating impeller provided in a sample water pipe upstream of the water quality sensor;
Possess a straight pipe section having a downstream and at least 5cm length of arranged immediately in front of the water quality sensor of the impeller,
Water measuring device power generator rotational force of the rotating impeller is transmitted is that provided.
請求項1において、該水質センサと回転羽根車との間の配管に、水流に圧力損失を生じさせて水の流れを整流化するための整流手段が設けられていることを特徴とする水質測定装置。2. The water quality measurement according to claim 1, wherein the piping between the water quality sensor and the rotary impeller is provided with rectifying means for rectifying the water flow by causing a pressure loss in the water flow. apparatus. 請求項2において、該整流手段は、合成樹脂、金属、セラミックの粒状体或いはメッシュ、活性炭、イオン交換樹脂から選ばれる充填物が充填された充填部であることを特徴とする水質測定装置。3. The water quality measuring apparatus according to claim 2, wherein the rectifying means is a filling portion filled with a filler selected from synthetic resin, metal, ceramic particles or mesh, activated carbon, and ion exchange resin . 請求項2において、該整流手段は、U字管又はコイル状管であることを特徴とする水質測定装置。  3. The water quality measuring device according to claim 2, wherein the rectifying means is a U-shaped tube or a coiled tube. 請求項1ないし4のいずれか1項において、該水質センサの上流側に温度調整手段が設けられていることを特徴とする水質測定装置。  5. The water quality measuring device according to claim 1, wherein a temperature adjusting means is provided upstream of the water quality sensor. 請求項1ないし5のいずれか1項において、該発電装置で起電された電力を水質センサの駆動源とすることを特徴とする水質測定装置。6. The water quality measuring device according to claim 1, wherein electric power generated by the power generation device is used as a drive source for the water quality sensor. 請求項1ないしのいずれか1項において、該水質センサの上流側の配管に溶存酸素除去手段が設けられていることを特徴とする水質測定装置。The water quality measuring apparatus according to any one of claims 1 to 6 , wherein a dissolved oxygen removing unit is provided in a pipe upstream of the water quality sensor. 請求項において、該溶存酸素除去手段は脱酸素触媒であることを特徴とする水質測定装置。8. The water quality measuring apparatus according to claim 7, wherein the dissolved oxygen removing means is a deoxygenation catalyst. 請求項において、該溶存酸素除去手段は脱気装置であることを特徴とする水質測定装置。8. The water quality measuring device according to claim 7, wherein the dissolved oxygen removing means is a deaeration device.
JP2002000664A 2002-01-07 2002-01-07 Water quality measuring device Expired - Fee Related JP3838099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002000664A JP3838099B2 (en) 2002-01-07 2002-01-07 Water quality measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002000664A JP3838099B2 (en) 2002-01-07 2002-01-07 Water quality measuring device

Publications (2)

Publication Number Publication Date
JP2003202309A JP2003202309A (en) 2003-07-18
JP3838099B2 true JP3838099B2 (en) 2006-10-25

Family

ID=27640986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002000664A Expired - Fee Related JP3838099B2 (en) 2002-01-07 2002-01-07 Water quality measuring device

Country Status (1)

Country Link
JP (1) JP3838099B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507659B2 (en) * 2004-03-25 2010-07-21 栗田工業株式会社 Evaluation method of ultrapure water
JP5087839B2 (en) * 2005-12-19 2012-12-05 栗田工業株式会社 Water quality evaluation method, ultrapure water evaluation apparatus and ultrapure water production system using the method
JP2010091309A (en) * 2008-10-06 2010-04-22 Jfe Engineering Corp Method and apparatus for measuring water-quality in non-contact manner
JP5292136B2 (en) * 2009-03-16 2013-09-18 オルガノ株式会社 Method for measuring dissolved nitrogen concentration and measuring device for dissolved nitrogen concentration
JP5549274B2 (en) * 2010-02-25 2014-07-16 栗田工業株式会社 Water quality evaluation method and apparatus
KR101485834B1 (en) * 2013-04-29 2015-01-29 주식회사 유디텍 Sensor apparatus for water quality measurement with self-generating device and self-cleaning device
JP6456744B2 (en) * 2015-03-27 2019-01-23 住友重機械エンバイロメント株式会社 Water treatment equipment
JP6541263B2 (en) * 2015-10-27 2019-07-10 住友重機械エンバイロメント株式会社 Stirring system, water treatment equipment
CN108732208B (en) * 2018-05-22 2020-11-06 上海交通大学 Grain moisture sensor and method for measuring grain moisture
CN112379071B (en) * 2020-11-25 2023-04-11 浙江瀚陆海洋科技有限公司 Water quality monitoring sensor
CN116621250B (en) * 2023-07-18 2023-09-22 成都威克瑞节能技术有限公司 High-efficiency energy-saving intelligent circulating water system based on full-flow optimization

Also Published As

Publication number Publication date
JP2003202309A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
JP3838099B2 (en) Water quality measuring device
US20220033279A1 (en) Method and apparatus to monitor and control a water system
US9739742B2 (en) Carbon nanotube sensor
CA2756348C (en) System and method for monitoring an integrated system
IL280251B1 (en) System and method of deionization of water
WO2012069992A2 (en) Remote monitoring of carbon nanotube sensor
US6235207B1 (en) Method for measuring the degree of treatment of a medium by a gas
JP5285121B2 (en) Electrodeionization apparatus and method including control of current by measurement of ion exchange material expansion
KR20030062838A (en) Reverse osmosis water purifier having function of measuring water quality and flow rate
US20220250959A1 (en) Water Treatment System and Method of Use Thereof
TW202026634A (en) Systems and methods for measuring composition of water
CN208791382U (en) A kind of water purifier
CN104609533B (en) A kind of control system and method for organic wastewater with difficult degradation thereby ozone heterogeneous catalytic oxidation handling process
CN211920982U (en) Water supply circulation system for detecting water purifier
JP4829045B2 (en) Operation support system for water treatment plant
Strubbe Calibration of a Reverse Osmosis Model At Full-Scale
Bender et al. Portable Continuous TOC Monitoring in a Semiconductor Water System
CN206345728U (en) A kind of safe water treatment facilities of efficiently meeting an urgent need of low energy consumption
EP4149892A1 (en) System and method for electrochemical disinfection
CN115655987A (en) Online aquatic gas detector for thermal power plant
WO2015083773A1 (en) Membrane separation device, circulated water utilization system
JP2002086182A (en) Method for obtaining inflow of raw water in batch water treatment apparatus
CA2288947A1 (en) Method and apparatus for measuring the degree of treatment of a medium by a gas
MXPA06001189A (en) Methods and systems for improved dosing of a chemical treatment, such as chlorine dioxide, into a fluid stream, such as a wastewater stream
JP2008221097A (en) Water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140811

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees