JPH0523584B2 - - Google Patents

Info

Publication number
JPH0523584B2
JPH0523584B2 JP62169696A JP16969687A JPH0523584B2 JP H0523584 B2 JPH0523584 B2 JP H0523584B2 JP 62169696 A JP62169696 A JP 62169696A JP 16969687 A JP16969687 A JP 16969687A JP H0523584 B2 JPH0523584 B2 JP H0523584B2
Authority
JP
Japan
Prior art keywords
film
weight
stretching
propylene
shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62169696A
Other languages
Japanese (ja)
Other versions
JPS6414019A (en
Inventor
Hideo Isozaki
Hitoshi Fukushima
Makoto Hirata
Masumi Takahashi
Hiroki Ogawa
Tomoji Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojin Co Ltd
Original Assignee
Kojin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojin Co Ltd filed Critical Kojin Co Ltd
Priority to JP16969687A priority Critical patent/JPS6414019A/en
Publication of JPS6414019A publication Critical patent/JPS6414019A/en
Publication of JPH0523584B2 publication Critical patent/JPH0523584B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、熱収縮性ポリプロピレン系フイルム
に関する。更に詳しくは、瓶などの円筒状物の包
装用シユリンクフイルムとして好適な縦横の熱収
縮率が異なり、かつ低温収縮性の優れた熱収縮性
ポリプロピレン系フイルムに関する。 〔従来の技術〕 最近炭酸飲料、ジユース、ビール、清酒などの
容器として、ガラスPETを素材とする中空瓶に
シユリンクラベルを付したプレラベル瓶が瓶の飛
散防止および商品の宣伝効果のために急増してい
る。 従来、プレラベルの素材としては、ポリ塩化ビ
ニルフイルム、ポリスチレンフイルム等が使用さ
れている。しかしポリ塩化ビニルフイルムは、印
刷性、包装仕上り性、飛散防止性等には優れてい
るが、分子内に塩素を含むため、使用後焼却炉等
で燃焼させる際、有毒性のガスを発生するため環
境上の問題がある。 また、ポリスチレンフイルムは耐熱性が高々80
℃までであり、85℃以上の熱水で殺菌されたり、
レトルト殺菌される場合には不適である。 このため、環境上の問題がなく安全で、包装仕
上り性、飛散防止性等に優れ、かつ85℃以上の熱
水での殺菌やレトルト殺菌が可能なプレラベルの
素材の開発が望まれていた。 〔発明が解決しようとする問題点〕 上記に対応したプレラベル素材として、一軸延
伸ポリプロピレンフイルムがあるが、これらの一
軸延伸ポリプロピレンフイルムは結晶の融点の近
傍まで加熱すれば大きな収縮性を示すものの、通
常の収縮包装工程でフイルムが到達する80〜100
℃前後の低温度での収縮率が小さいという欠点が
ある。定温収縮性の改良としてはプロピレン系共
重合体に石油樹脂類を添加する方法(特公昭55−
50064号)が知られている。しかし単にポリプロ
ピレン系共重合体に石油樹脂類を添加した配合物
を通常の製膜延伸方法を用いて得た延伸フイルム
では、低温収縮性は改良されるものの、このフイ
ルムを用いて瓶等を収縮包装しても仕上りの良好
なものは得られない。つまりポリプロピレン系フ
イルムで瓶等を瓶肩から底部まで収縮包装した場
合、収縮包装後冷却されることによりフイルムの
瓶肩の部分が瓶から離れる現象(以下収縮戻りと
記す)が起き美観上の欠点となる。 〔問題点を解決するための手段〕 本発明者らは、前記の問題点を解決するために
鋭意検討した結果、特定のポリプロピレン系樹脂
組成物と特定の加工条件を組み合せることによ
り、低温収縮性が優れ、しかも収縮包装後の冷却
時に「収縮戻り」現象が起きず美観が良好な熱収
縮性ポリプロピレン系フイルムを提供することが
可能なことを見い出し本発明に到達したものであ
る。 即ち、本発明はプロピレン系共重合体98〜50重
量%と石油系樹脂2〜50重量%との配合物を溶融
押出して得られる未延伸フイルムを、延伸温度70
〜110℃、変形速度500%/秒以上で一軸方向に
1.5〜7倍に延伸してなる延伸フイルムであつて、
80℃における熱収縮率が延伸方向で20%以上、延
伸方向に対して直角方向で5%以下であり、か
つ、S2/S1≧0.3、S2≧50g/mm2(但し、S1、S2
はそれぞれ80℃で延伸方向に20%フリー収縮させ
た後の80℃、25℃における延伸方向の残留収縮応
力)であることを特徴とする熱収縮性ポリプロピ
レン系フイルムである。 本発明におけるプロピレン系共重合体として
は、プロピレン−エチレンランダム共重合体ある
いはプロピレン−エチレン−αオレフイン三元共
重合体が使用される。これらのプロピレン系共重
合体は1種のみを使用してもよく2種以上を組み
合せて使用してもよい。 前記のプロピレン−エチレンランダム共重合体
はエチレン成分含量2〜10重量%のものが使用さ
れるがエチレン成分含量が3〜8重量%のものが
延伸性、低温収縮性の点で特に好ましい。又、プ
ロピレン−エチレン−α−オレフイン三元共重合
体はエチレン成分含量0〜5重量%、α−オレフ
イン成分含量2〜30重量%およびプロピレン成分
含量98〜65重量%のものが使用される。 本発明において用いられる石油系樹脂として
は、石油樹脂、水添石油樹脂、テルペン樹脂、水
添テルペン樹脂などが上げられるが、市販商品の
中の具体的には荒川化学工業製アルコンP−90、
P−115、P−125、P−140、安原油脂工業製ク
リアロンP−85、P−105、P−115、P−125、
エクソン化学(株)製エスコレツツ5300、5320等があ
げられるがこれに限定されるものではない。中で
も軟化点が100〜150℃のものが好適に使用され
る。 プロピレン系共重合体に対する石油系樹脂の配
合割合は2〜50重量%であるが、2重量%未満で
は低温延伸性、低温収縮性の改善効果が乏しく、
50重量%を超えると粘着性が生じ加工性が悪化す
るとともに得られるフイルムの物理強度が低下す
る。 プロピレン系共重合体と石油樹脂の混合方法は
通常のロール混合、バンバリー混合、押出機混合
等の周知の方法により均一な混和状態にすること
が望ましい。 本発明で用いる混合組成物中には、必要に応じ
て酸化防止剤、帯電防止剤、紫外線防止剤、滑剤
その他の添加剤を含むことが出来る。 本発明において延伸原反製法における押出し工
程は300℃以下好ましくは160〜280℃の間の加工
温度で適当な押出機を通してダイスより溶融押出
して冷却する。上記の押出温度は300℃を越える
とプロピレン系共重合体中に混入した石油系樹脂
の熱分解により気泡の発生、著しい発煙等が生じ
好ましくない。 次に延伸は、上記で得られた実質的に未延伸フ
イルムを縦一軸延伸装置あるいは横一軸延伸装置
を用いて延伸温度70〜110℃、変形速度500%/
sec以上で1.5〜7倍、好ましくは2〜5倍に延伸
することによつて行われる。この場合延伸温度が
70℃より低い場合には均一な延伸が行えず延伸ム
ラが発生したり、あるいは得られるフイルムの経
時収縮が大きい等の問題が生じる。延伸温度が
110℃より高いと延伸時にフイルムがロールへ粘
着する等の工程上のトラブルが発生したり、ある
いは得られるフイルムの低温収縮性が劣る等の欠
点が生じる。 変形速度は500%/sec以上であることが必要で
あり、変形速度が500%/sec未満の場合、S2/S1
が小さくなり熱収縮包装後冷却されると瓶肩部の
密着が不良となり美観上の欠点となる。 又、延伸倍率が7倍を超えると収縮率が却つて
低下し、1.5倍未満では配向が十分に生じないた
め、いずれも収縮率が十分でない。 延伸フイルムの延伸方向と直角方向の熱収縮率
の調節はプロピレン系共重合物と石油樹脂の配合
割合および延伸温度、延伸倍率の選択により適宜
行われる。 このようにして得られた延伸フイルムは自然収
縮を抑制するために軽く熱処理することが望まし
い。熱処理温度は40〜100℃、熱処理時間は熱処
理温度に応じて適宜定めればよいが高温になるに
従い短時間の処理が用いられる。通常処理効果が
現われる2秒以上工業的に実用性のある180秒以
下が好ましい。 かくして得られる熱収縮性ポリプロピレン系フ
イルムは、80℃における熱収縮率が延伸方向で20
%以上、延伸方向に対して直角方向で5%以下で
あり、かつ、S2/S1≧0.3、S2≧50g/mm2(但し、
S1、S2はそれぞれ80℃で延伸方向に20%フリー収
縮させた後の80℃、25℃における延伸方向の残留
収縮応力)の性能を有する。 ガラスあるいはPET等を素材とする中空瓶を
シユリンクフイルムで瓶肩から底部まで収縮包装
する場合、例えばシユリンクフイルムで瓶の最大
径より約5%大きい径と必要な高さを有する円筒
状物(以下スリーブという)を作り、このスリー
ブに瓶を挿入した状態で収縮トンネルを通過させ
て行なわれる。したがつて瓶肩の部分、胴の部
分、底の部分では収縮開始から収縮終了までの収
縮挙動が異なる。つまり、胴の部分に位置するフ
イルム部分は約5%の無緊張下の収縮(以下フリ
ー収縮という)をして胴部に密着しその後は緊張
状態となり収縮応力が発現する。一方瓶肩の部分
はスリーブ径と瓶肩の部分の径に対応したフリー
収縮後瓶肩に密着し、その後収縮応力を発現する
ことになる。この場合胴部より瓶肩の方がフリー
収縮が大きい。通常の場合瓶肩の部分はフリー収
縮約20%以上になるものが多く、このような瓶を
完全に収縮包装するためには20%以上のフリー収
縮をした後残留収縮応力が一定量以上であること
が必要である。 ポリプロピレン系フイルムで瓶等を瓶首から底
部まで収縮包装した場合、収縮包装後の冷却時に
みられる瓶肩の部分の「収縮戻り」が、本発明の
ポリプロピレン系フイルムでは見られない。 〔発明の効果〕 本発明で得られる熱収縮性ポリプロピレン系フ
イルムは次の効果が得られる。 (イ) 低温収縮性に優れているので、特に収縮トン
ネルの温度を高温かつ一様に調整する必要がな
く従来の収縮包装ラインがそのまま使用出来
る。 (ロ) 低温収縮性に優れているのて耐熱性の低い容
器でも容器を変形することなしに収縮包装出来
る。 (ハ) ジユース用のガラス瓶やPET瓶の様に胴部
と首部の径に大きな寸法差のある瓶や各種の形
状の複雑な容器類でも十分に密着した包装が出
来る。 (ニ) 低温収縮性及び残留収縮応力の温度による変
化が小さいため瓶等を瓶首から底部まで収縮包
装した場合、収縮包装後の冷却時に「収縮戻
り」が起きず良好な仕上りが得られる。 〔実施例〕 次に本発明を実施例により具体的に説明する
が、本発明はこれらに限定されるものではない。 なお、本発明における特性の測定方法および評
価基準は次のとおりである。 (1) 熱収縮率 測定すべきフイルムを縦100mm、横100mmに切
断しフイルムの縦方向と横方向との寸法を0.1
mmの単位まで正確に測定する。(測定値をAmm
とする)。このフイルムを所定の温度に設定し
たグリセリン浴に10秒間完全に浸漬した後取出
し、直に水浴で急冷する。試料の表面を清澄に
しフイルムの縦方向と横方向の寸法を0.1mmの
単位まで正確に測定する(測定値をBmmとす
る)。熱収縮率の算出は下記の式で行う。 熱収縮率(%)=A−B/A×100 (2) 残留収縮応力 両端から各5mmの位置に標線を付した長さ
72.5mm、幅10mmのフイルムを、歪計に接続し、
つかみ間隔50mmに設定した一対のつかみ装置に
各標線位置で固定した状態で80℃に温調したグ
リセリン浴中に浸漬する。S1は浸漬10秒後の収
縮応力を歪計で読み取り、S2はS1を読取後、グ
リセリン浴中から取り出して25℃に冷却後の収
縮応力を読み取り、それぞれの応力を単位断面
積(mm2)当りに換算し、S1、S2の値とた。 (3) ラベル特性 フイルムを縦(延伸方向と直角方向)117mm、
横(延伸方向)223mmに切除後、縦方向に平行
な端同志をインパルスシールにより端同志が5
mm重なり合うようにして、円筒状のスリープを
作成した。 このスリープを高さ140mm、胴部の直径68.5
mm、底から高さ117mmの肩の位置の直径が約55
mmの300mlガラス瓶の瓶肩部から底部まで保護
されるように瓶に装着した後、200℃のオーブ
ン中に10秒間放置し延伸フイルムを熱収縮させ
ラベリングしたガラス瓶を得た。 このラベリングしたガラス瓶を次の方法で評
価した。 〔外観密着性〕 熱収縮後ポリプロピレン系フイルムとガラス瓶
との密着状態で判定を行ない、全くシワ、アバ
タ、空気のかみ込みのないものを○印、部分的に
シワ、アバタがみられるものを△印、シワ、アバ
タが多いものを×印で示した。 〔瓶肩部のラベル端線の均一性〕 ラベルの端線がほぼ直線状のものを○印、波打
つたもの、しわの発生がみられたものを×印で示
した。 〔冷却後の収縮戻り〕 収縮包装後ラベリングしたガラス瓶を常温下で
放置、24時間後瓶肩部のラベルとガラス瓶との密
着状態で判定。密着しているものを○印、ラベル
が瓶から一部あるいは全体に離れた状態のものを
×印で示した。 〔ボイル適性〕 ラベリングしたガラス瓶を90℃の熱水中に20分
間浸漬処理後取出した時の外観を判定。処理前と
全く変化のないものを○印、部分的なゆるみ、白
濁などを生じているものを×印で示した。 〔レトルト適性〕 ラベリングしたガラス瓶を120℃、40分間スチ
ーム処理後取出した時の外観を判定。処理前と全
く変化のないものを○印、部分的なゆるみ、白濁
などを生じているもの、全体的にプカプカして密
着の悪いものを×印で示した。 実施例 1 プロピレン−エチレンランダム共重合体(エチ
レン含有量4重量%、230℃のメルトインデツク
ス2.7g/10分)90重量%と石油樹脂(アルコン
P−115、荒川化学工業(株)製、軟化点115℃)10重
量%を二軸混練機により混練し、ペレツト状の混
合物を得た。この混合物を170〜250℃で溶融混練
し220℃に保つた環状ダイスより押出し、チユー
ブの内側は冷却水を循環している円筒状マンドレ
ルの外表面を摺動させ、外側は水槽を通すことに
より冷却して引取り、直径約186mm厚み160μのチ
ユーブ状未延伸フイルムを得た。この未延伸フイ
ルムを原反としこれをチユーブ延伸装置に導き、
延伸温度90℃、変形速度600%/secで縦4.0倍、
横1.0倍で延伸した。延伸されたフイルムはチユ
ーブ状アニーリング装置にて60℃の熱風で8秒間
アニーリングした後、室温に冷却し折り畳んで巻
き取つた。 得られた延伸フイルムは厚み42μであつた。こ
のフイルムについて熱収縮率、残留収縮応力の測
定を行い、更にラベル特性を評価した。結果をま
とめて表1に示す。 実施例 2 プロピレン−エチレンランダム共重合体(エチ
レン含有量6重量%、230℃のメルトインデツク
ス5.7g/10分)90重量%と石油樹脂(アルコン
P−115、荒川化学工業(株)製、軟化点115℃)10重
量%を二軸混練機により混練し、ペレツト状の混
合物を得た。この混合物を170〜250℃で溶融混練
し200℃に保つたT−ダイよりシート状に押出し、
冷却ロールで30℃まで冷却した。この未延伸フイ
ルムを90℃迄加熱しロール延伸機より変形速度
1500%/secで縦方向に3倍延伸した。次いでこ
の延伸フイルムを60℃の熱ロールを通して5秒間
アニーリングした。得られた延伸フイルムは厚み
44μであつた。このフイルムについて実施例1と
同様の測定評価を行つた。結果をまとめて表1に
示す。 実施例3、比較例1〜4 原料組成、延伸温度、変形速度、延伸倍率を表
1のように変更する他は実施例1と同様にして厚
さ40μのポリプロピレン系熱収縮性フイルムを製
造し、測定評価を行つた。結果をまとめて表1に
示す。 実施例 4 原料組成としてエチレン含有量3.0重量%、プ
テン−1含有量2.5重量%、メルトインデツクス
が4.0のプロピレン−エチレン−プテン−1の三
元共重合体を85重量%と、アルコンP−125(荒川
化学工業(株)製、軟化点125℃)を15重量%とを用
いた他は実施例3と同様に表1に示した条件で厚
さ42μのポリプロピレン系熱収縮性フイルムを製
造し、測定評価を行なつた。その結果をまとめて
表1に示す。 表1の結果からもわかるように延伸温度が高す
ぎると得られる熱収縮率が不十分となり(比較例
1)、変形速度が遅いと残留収縮応力が不十分と
なり(比較例2)、石油系樹脂の添加がないと熱
収縮率及び残留収縮応力が不十分となり(比較例
3)、又、延伸倍率が高すぎても熱収縮率が却つ
て低下(比較例4)するのに対し、本発明の熱収
縮フイルムは収縮ラベリング後の外観密着性、ボ
イル特性、レトルト特性等がすぐれた特性を有す
る熱収縮性フイルムであることがわかる。
[Industrial Field of Application] The present invention relates to a heat-shrinkable polypropylene film. More specifically, the present invention relates to a heat-shrinkable polypropylene film that has different longitudinal and horizontal heat shrinkage rates and has excellent low-temperature shrinkability and is suitable as a shrink film for packaging cylindrical objects such as bottles. [Conventional technology] Recently, pre-labeled bottles made of glass PET and made of hollow bottles with syringe labels have been rapidly increasing as containers for carbonated drinks, youth, beer, sake, etc. to prevent the bottles from scattering and to promote the products. are doing. Conventionally, polyvinyl chloride film, polystyrene film, etc. have been used as materials for pre-labels. However, although polyvinyl chloride film has excellent printability, packaging finish, and shatterproof properties, it contains chlorine in its molecules, so when it is burned in an incinerator after use, it generates toxic gas. Therefore, there are environmental problems. In addition, polystyrene film has a heat resistance of at most 80
℃ and sterilized with hot water over 85℃,
Not suitable for retort sterilization. Therefore, it has been desired to develop a pre-label material that is safe without any environmental problems, has excellent packaging finish and shatterproof properties, and can be sterilized in hot water of 85°C or higher or retort sterilized. [Problems to be Solved by the Invention] Uniaxially stretched polypropylene films are available as pre-label materials that address the above issues.Although these uniaxially stretched polypropylene films exhibit large shrinkage when heated to near the melting point of the crystals, they usually shrink. In the shrink wrapping process the film reaches 80~100
The drawback is that the shrinkage rate is low at low temperatures around ℃. To improve the constant temperature shrinkability, a method of adding petroleum resins to propylene copolymers (Japanese Patent Publication No. 1987-
No. 50064) is known. However, with a stretched film obtained simply by adding petroleum resins to a polypropylene copolymer using a normal film-forming and stretching method, the low-temperature shrinkability is improved, but this film can be used to shrink bottles, etc. Even if you package it, you will not be able to get a good finish. In other words, when a bottle, etc. is shrink-wrapped with polypropylene film from the shoulder to the bottom of the bottle, the shoulder part of the film separates from the bottle (hereinafter referred to as "shrinkage return") due to cooling after shrink-wrapping, resulting in an aesthetic disadvantage. becomes. [Means for Solving the Problems] As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that low-temperature shrinkage can be achieved by combining a specific polypropylene resin composition and specific processing conditions. The present invention was achieved by discovering that it is possible to provide a heat-shrinkable polypropylene film that has excellent properties and also has a good appearance without causing the phenomenon of "shrinkage return" during cooling after shrink-wrapping. That is, in the present invention, an unstretched film obtained by melt extruding a blend of 98 to 50% by weight of a propylene copolymer and 2 to 50% by weight of a petroleum resin is stretched at a stretching temperature of 70%.
~110℃, deformation rate of 500%/sec or more in uniaxial direction
A stretched film that is stretched 1.5 to 7 times,
Thermal shrinkage rate at 80°C is 20% or more in the stretching direction and 5% or less in the direction perpendicular to the stretching direction, and S 2 /S 1 ≧0.3, S 2 ≧50g/mm 2 (However, S 1 , S 2
is a heat-shrinkable polypropylene film characterized by a residual shrinkage stress in the stretching direction at 80°C and 25°C after 20% free shrinkage in the stretching direction at 80°C, respectively. As the propylene copolymer in the present invention, a propylene-ethylene random copolymer or a propylene-ethylene-α-olefin terpolymer is used. These propylene copolymers may be used alone or in combination of two or more. The aforementioned propylene-ethylene random copolymer having an ethylene component content of 2 to 10% by weight is used, but one having an ethylene component content of 3 to 8% by weight is particularly preferred in terms of stretchability and low-temperature shrinkability. The propylene-ethylene-α-olefin terpolymer used has an ethylene component content of 0 to 5% by weight, an α-olefin component content of 2 to 30% by weight, and a propylene component content of 98 to 65% by weight. Petroleum resins used in the present invention include petroleum resins, hydrogenated petroleum resins, terpene resins, and hydrogenated terpene resins, but commercially available products include Alcon P-90 manufactured by Arakawa Chemical Industries, Ltd.
P-115, P-125, P-140, Clearon P-85, P-105, P-115, P-125,
Examples include Escorets 5300 and 5320 manufactured by Exxon Chemical Co., Ltd., but are not limited thereto. Among them, those having a softening point of 100 to 150°C are preferably used. The blending ratio of petroleum-based resin to the propylene-based copolymer is 2 to 50% by weight, but if it is less than 2% by weight, the effect of improving low-temperature stretchability and low-temperature shrinkage is poor;
If it exceeds 50% by weight, tackiness occurs, resulting in poor processability and a decrease in the physical strength of the resulting film. It is desirable to mix the propylene copolymer and petroleum resin to a uniformly mixed state by a known method such as ordinary roll mixing, Banbury mixing, or extruder mixing. The mixed composition used in the present invention may contain antioxidants, antistatic agents, ultraviolet light inhibitors, lubricants, and other additives as required. In the extrusion step in the stretched raw fabric manufacturing method of the present invention, the material is melt-extruded from a die through a suitable extruder at a processing temperature of 300 DEG C. or lower, preferably between 160 DEG and 280 DEG C., and then cooled. If the extrusion temperature exceeds 300°C, the petroleum resin mixed in the propylene copolymer will be thermally decomposed, resulting in generation of bubbles and significant smoke generation, which is not preferable. Next, the substantially unstretched film obtained above is stretched using a longitudinal uniaxial stretching device or a horizontal uniaxial stretching device at a stretching temperature of 70 to 110°C and a deformation rate of 500%/
This is carried out by stretching 1.5 to 7 times, preferably 2 to 5 times, at sec or more. In this case, the stretching temperature is
If the temperature is lower than 70°C, problems such as uniform stretching cannot be achieved and uneven stretching occurs, or the resulting film shrinks significantly over time. The stretching temperature
If the temperature is higher than 110°C, problems may occur during the process such as the film sticking to the roll during stretching, or the resulting film may have disadvantages such as poor low-temperature shrinkability. The deformation speed must be 500%/sec or more, and if the deformation speed is less than 500%/sec, S 2 /S 1
becomes smaller and when cooled after heat-shrink packaging, the adhesion of the bottle shoulder becomes poor, resulting in an aesthetic defect. Moreover, if the stretching ratio exceeds 7 times, the shrinkage rate is rather reduced, and if the stretching ratio is less than 1.5 times, sufficient orientation does not occur, so the shrinkage rate is not sufficient in either case. The heat shrinkage rate of the stretched film in the direction perpendicular to the stretching direction is appropriately adjusted by selecting the blending ratio of the propylene copolymer and petroleum resin, the stretching temperature, and the stretching ratio. The stretched film thus obtained is desirably lightly heat-treated to suppress natural shrinkage. The heat treatment temperature is 40 to 100°C, and the heat treatment time may be determined as appropriate depending on the heat treatment temperature, but as the temperature increases, a shorter treatment time is used. The time is preferably 2 seconds or more, at which the treatment effect usually appears, and 180 seconds or less, which is industrially practical. The heat-shrinkable polypropylene film thus obtained has a heat shrinkage rate of 20 in the stretching direction at 80°C.
% or more and 5% or less in the direction perpendicular to the stretching direction, and S 2 /S 1 ≧0.3, S 2 ≧50 g/mm 2 (However,
S 1 and S 2 have the performance of residual shrinkage stress in the stretching direction at 80°C and 25°C after 20% free shrinkage in the stretching direction at 80°C, respectively. When shrink-wrapping a hollow bottle made of glass, PET, etc. from the bottle shoulder to the bottom with shrink-wrapping film, for example, shrink-wrapping a cylindrical object with a diameter approximately 5% larger than the maximum diameter of the bottle and the required height. (hereinafter referred to as a sleeve) is made, and the bottle is inserted into this sleeve and passed through a shrinkage tunnel. Therefore, the contraction behavior from the start of contraction to the end of contraction is different for the shoulder, body, and bottom of the bottle. In other words, the film portion located in the body part shrinks by about 5% without tension (hereinafter referred to as free contraction) and comes into close contact with the body part, and then becomes under tension and develops contraction stress. On the other hand, the bottle shoulder portion comes into close contact with the bottle shoulder after free contraction corresponding to the diameter of the sleeve and the diameter of the bottle shoulder portion, and then develops shrinkage stress. In this case, the free shrinkage is larger at the shoulder of the bottle than at the body. In most cases, the free shrinkage at the shoulder of a bottle is approximately 20% or more, and in order to completely shrink wrap such bottles, the residual shrinkage stress must be at least a certain amount after free shrinkage of 20% or more. It is necessary that there be. When a bottle or the like is shrink-wrapped from the neck to the bottom using a polypropylene film, the "return of shrinkage" at the shoulder of the bottle, which occurs when the bottle is cooled after shrink-wrapping, is not observed with the polypropylene film of the present invention. [Effects of the Invention] The heat-shrinkable polypropylene film obtained by the present invention has the following effects. (a) Since it has excellent low-temperature shrinkability, there is no need to particularly adjust the temperature of the shrink tunnel to a high and uniform temperature, and conventional shrink packaging lines can be used as is. (b) Because it has excellent low-temperature shrinkability, even containers with low heat resistance can be shrink-wrapped without deforming the container. (c) Even bottles with a large difference in diameter between the body and neck, such as glass bottles for youth use and PET bottles, and containers with various complicated shapes can be packaged in a sufficiently tight manner. (d) Low-temperature shrinkability and residual shrinkage stress change with temperature are small, so when a bottle, etc. is shrink-wrapped from the neck to the bottom, no "shrinkage return" occurs when cooling after shrink-wrapping, and a good finish can be obtained. [Example] Next, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto. In addition, the measuring method and evaluation criteria of the characteristics in the present invention are as follows. (1) Heat shrinkage rate Cut the film to be measured into 100 mm long and 100 mm wide, and measure the vertical and horizontal dimensions of the film to 0.1.
Accurately measure to the nearest mm. (The measured value is Amm
). This film is completely immersed in a glycerin bath set at a predetermined temperature for 10 seconds, then taken out and immediately quenched in a water bath. The surface of the sample is cleared and the vertical and horizontal dimensions of the film are accurately measured to the nearest 0.1 mm (the measured value is designated as Bmm). The thermal shrinkage rate is calculated using the following formula. Thermal shrinkage rate (%) = A-B/A x 100 (2) Residual shrinkage stress Length with marked lines 5mm from both ends
Connect a film of 72.5 mm and width of 10 mm to a strain meter,
The specimen is fixed at each marked line position to a pair of gripping devices set at a gripping interval of 50 mm, and immersed in a glycerin bath whose temperature is controlled to 80°C. For S 1 , read the shrinkage stress after 10 seconds of immersion with a strain meter, and for S2 , after reading S 1 , take it out of the glycerin bath and read the shrinkage stress after cooling to 25℃, and calculate each stress by unit cross-sectional area ( The values of S 1 and S 2 were calculated per mm 2 ). (3) Label characteristics Film lengthwise (direction perpendicular to stretching direction) 117mm,
After cutting to 223mm horizontally (stretching direction), impulse seal the ends parallel to each other in the vertical direction so that the ends are 5mm apart.
I created a cylindrical sleep by overlapping mm. This sleep has a height of 140mm and a trunk diameter of 68.5mm.
mm, the diameter at the shoulder at a height of 117 mm from the bottom is approximately 55
After attaching it to a 300 ml glass bottle of 300 mm in diameter so as to protect it from the shoulder to the bottom, the stretched film was placed in an oven at 200° C. for 10 seconds to heat shrink the stretched film and obtain a labeled glass bottle. This labeled glass bottle was evaluated by the following method. [Appearance adhesion] Judgment is made based on the adhesion between the polypropylene film and the glass bottle after heat shrinkage. Those with no wrinkles, avatars, or air entrapment are marked ○, and those with partial wrinkles or avatars are marked △. Those with many marks, wrinkles, and avatars are marked with an x. [Uniformity of label edge line on bottle shoulder] Labels with almost straight edge lines are marked with a circle, and labels with wavy or wrinkled edges are marked with an x. [Shrinkage return after cooling] After shrink-wrapping and labeling, the glass bottle is left at room temperature, and after 24 hours it is determined by the adhesion between the label on the shoulder of the bottle and the glass bottle. A label that is in close contact with the bottle is marked with an ○ mark, and a label that is partially or completely separated from the bottle is marked with an x mark. [Boiling suitability] Judging the appearance when a labeled glass bottle is immersed in hot water at 90℃ for 20 minutes and then taken out. Items that have not changed at all from before treatment are marked with an ○ mark, and cases with partial loosening, cloudiness, etc. are marked with an x mark. [Retort Suitability] Judging the appearance when a labeled glass bottle is removed from steam treatment at 120℃ for 40 minutes. Those that have not changed at all from before treatment are marked with an ○, those that are partially loosened or cloudy, and those that are overall bulky and have poor adhesion are marked with an x. Example 1 90% by weight of propylene-ethylene random copolymer (ethylene content: 4% by weight, melt index 2.7g/10 min at 230°C) and petroleum resin (Alcon P-115, manufactured by Arakawa Chemical Co., Ltd., 10% by weight (softening point: 115°C) was kneaded using a twin-screw kneader to obtain a pellet-like mixture. This mixture is melt-kneaded at 170-250°C and extruded through an annular die kept at 220°C.The inside of the tube slides on the outer surface of a cylindrical mandrel that circulates cooling water, and the outside is passed through a water bath. It was cooled and taken off to obtain a tubular unstretched film with a diameter of about 186 mm and a thickness of 160 μm. This unstretched film is used as a raw material and is led to a tube stretching device.
4.0 times the length at a stretching temperature of 90℃ and a deformation rate of 600%/sec.
Stretched at 1.0 times horizontally. The stretched film was annealed with hot air at 60° C. for 8 seconds in a tube-shaped annealing device, then cooled to room temperature, folded, and rolled up. The resulting stretched film had a thickness of 42μ. The heat shrinkage rate and residual shrinkage stress of this film were measured, and the label properties were further evaluated. The results are summarized in Table 1. Example 2 90% by weight of propylene-ethylene random copolymer (ethylene content 6% by weight, melt index 5.7g/10 minutes at 230°C) and petroleum resin (Alcon P-115, manufactured by Arakawa Chemical Co., Ltd., 10% by weight (softening point: 115°C) was kneaded using a twin-screw kneader to obtain a pellet-like mixture. This mixture was melt-kneaded at 170 to 250°C and extruded into a sheet through a T-die kept at 200°C.
It was cooled to 30°C using a cooling roll. This unstretched film is heated to 90℃ and deformed at a speed of
It was stretched 3 times in the machine direction at 1500%/sec. The stretched film was then passed through a hot roll at 60° C. and annealed for 5 seconds. The thickness of the obtained stretched film is
It was 44μ. This film was subjected to the same measurement and evaluation as in Example 1. The results are summarized in Table 1. Example 3, Comparative Examples 1 to 4 A polypropylene heat-shrinkable film with a thickness of 40μ was produced in the same manner as in Example 1, except that the raw material composition, stretching temperature, deformation speed, and stretching ratio were changed as shown in Table 1. , conducted measurement evaluation. The results are summarized in Table 1. Example 4 The raw material composition was 3.0% by weight of ethylene content, 2.5% by weight of putene-1 content, 85% by weight of a propylene-ethylene-putene-1 terpolymer with a melt index of 4.0, and Alcon P-1. A polypropylene heat-shrinkable film with a thickness of 42 μm was produced in the same manner as in Example 3 under the conditions shown in Table 1, except that 15% by weight of 125 (manufactured by Arakawa Chemical Industry Co., Ltd., softening point 125°C) was used. We then conducted a measurement evaluation. The results are summarized in Table 1. As can be seen from the results in Table 1, if the stretching temperature is too high, the obtained thermal shrinkage rate will be insufficient (Comparative Example 1), and if the deformation rate is slow, the residual shrinkage stress will be insufficient (Comparative Example 2). Without the addition of resin, the heat shrinkage rate and residual shrinkage stress would be insufficient (Comparative Example 3), and even if the stretching ratio was too high, the heat shrinkage rate would actually decrease (Comparative Example 4). It can be seen that the heat-shrinkable film of the invention has excellent properties such as appearance adhesion after shrink labeling, boiling properties, and retort properties.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 プロピレン系共重合体98〜50重量%と石油系
樹脂2〜50重量%との配合物を溶融押出して得ら
れる未延伸フイルムを、延伸温度70〜110℃、変
形速度500%/秒以上で一軸方向に1.5〜7倍に延
伸してなる延伸フイルムであつて、80℃における
熱収縮率が延伸方向で20%以上、延伸方向に対し
て直角方向で5%以下であり、かつ、S2/S1
0.3、S2≧50g/mm2(但し、S1、S2はそれぞれ80
℃で延伸方向に20%フリー収縮させた後の80℃、
25℃における延伸方向の残留収縮応力)であるこ
とを特徴とする熱収縮性ポリプロピレン系フイル
ム。 2 プロピレン系共重合体が、エチレン成分含量
2〜10重量%のプロピレン−エチレンランダム共
重合体あるいはエチレン成分含量0〜5重量%、
α−オレフイン成分含量2〜30重量%およびプロ
ピレン成分含量98〜65重量%のプロピレン−エチ
レン−α−オレフイン三元共重合体のいずれか一
以上を用いてなることを特徴とする特許請求範囲
第1項記載の熱収縮性ポリプロピレン系フイル
ム。
[Claims] 1. An unstretched film obtained by melt extruding a blend of 98 to 50% by weight of a propylene copolymer and 2 to 50% by weight of a petroleum resin is stretched at a stretching temperature of 70 to 110°C and a deformation rate. A stretched film that is stretched 1.5 to 7 times in the uniaxial direction at 500%/second or more, and whose heat shrinkage rate at 80°C is 20% or more in the stretching direction and 5% or less in the direction perpendicular to the stretching direction. Yes, and S 2 /S 1
0.3, S 2 ≧50g/mm 2 (However, S 1 and S 2 are each 80
80℃ after 20% free shrinkage in the stretching direction at ℃
A heat-shrinkable polypropylene film characterized by a residual shrinkage stress in the stretching direction at 25°C. 2 The propylene copolymer is a propylene-ethylene random copolymer with an ethylene component content of 2 to 10% by weight, or an ethylene component content of 0 to 5% by weight,
Claim No. 1, characterized in that it is made of one or more of a propylene-ethylene-α-olefin terpolymer having an α-olefin component content of 2 to 30% by weight and a propylene component content of 98 to 65% by weight. The heat-shrinkable polypropylene film according to item 1.
JP16969687A 1987-07-09 1987-07-09 Heat-shrinkable polypropylene film Granted JPS6414019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16969687A JPS6414019A (en) 1987-07-09 1987-07-09 Heat-shrinkable polypropylene film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16969687A JPS6414019A (en) 1987-07-09 1987-07-09 Heat-shrinkable polypropylene film

Publications (2)

Publication Number Publication Date
JPS6414019A JPS6414019A (en) 1989-01-18
JPH0523584B2 true JPH0523584B2 (en) 1993-04-05

Family

ID=15891192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16969687A Granted JPS6414019A (en) 1987-07-09 1987-07-09 Heat-shrinkable polypropylene film

Country Status (1)

Country Link
JP (1) JPS6414019A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527853Y2 (en) * 1991-03-19 1997-03-05 グンゼ株式会社 Battery packaging
JP2006082383A (en) * 2004-09-16 2006-03-30 Mitsubishi Plastics Ind Ltd Heat-shrinkabie olefin film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550064A (en) * 1978-10-02 1980-04-11 Exxon Research Engineering Co Aromatic amide plasticizer for ionic polymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550064A (en) * 1978-10-02 1980-04-11 Exxon Research Engineering Co Aromatic amide plasticizer for ionic polymer

Also Published As

Publication number Publication date
JPS6414019A (en) 1989-01-18

Similar Documents

Publication Publication Date Title
EP0270932B1 (en) Monolayer polyethylene shrink film
AU650779B2 (en) Heat shrinkable foamed molding and process for producing same
CA2039158C (en) Biaxially stretched polyethylene film
US5132074A (en) Process of making stretchable, heat shrinkable polyethylene film
JPH01317765A (en) Transparent shrinkable film using mixture of polypropylene and hydrocarbon resin as basis and manufacture thereof
JP2002200672A (en) Packaging film
EP0171733B1 (en) Process for producing a heat-shrinkable polypropylene film
US4156709A (en) Process for preparing a polypropylene film for shrink packaging
JPH0651808B2 (en) High shrinkability and high adhesion polyolefin film
JPWO2007032306A1 (en) Heat shrinkable multilayer film
JP3442415B2 (en) Heat-resistant shrink label film
JPH0523584B2 (en)
JPH0582810B2 (en)
WO1996009930A1 (en) Heat-shrinkable polyolefin laminate film
EP0945490A2 (en) Propylene resin composition and stretched film produced therefrom
JPH0890737A (en) Multilayered polyethylenic stretch/shrink film and production thereof
JPH10272747A (en) Laminated stretch shrink film
US4740529A (en) Heat resistant foamed shrinkable film
JPH0546304B2 (en)
EP0456353A2 (en) Polyolefin film
JP3189174B2 (en) Composite stretched film
JPH02187441A (en) Heat-shrinkable polypropylene-based film having excellent fog resistance
JPH039852B2 (en)
JPH0530855B2 (en)
JP3452421B2 (en) Polypropylene heat shrinkable film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees