JPH05234800A - Magnetic semiconductor oxide thin film and manufacture thereof - Google Patents

Magnetic semiconductor oxide thin film and manufacture thereof

Info

Publication number
JPH05234800A
JPH05234800A JP7243292A JP7243292A JPH05234800A JP H05234800 A JPH05234800 A JP H05234800A JP 7243292 A JP7243292 A JP 7243292A JP 7243292 A JP7243292 A JP 7243292A JP H05234800 A JPH05234800 A JP H05234800A
Authority
JP
Japan
Prior art keywords
thin film
substrate
semiconductor oxide
magnetic semiconductor
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7243292A
Other languages
Japanese (ja)
Inventor
Osamu Nakamura
修 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP7243292A priority Critical patent/JPH05234800A/en
Publication of JPH05234800A publication Critical patent/JPH05234800A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thin film having a high magnetic transition temperature by selecting a composition of RZMnO3 ('R' is a rare earth element having a valence number of 3, and 'Z' is an element chosen from Sr, Ca or Pb having a valence number of 2). CONSTITUTION:After R (NO3)3.6H2O ('R' is a rare earth element), Z (NO3)2 ('Z' is an element chosen from Sr, Ca or Pb having a valence number of 2) and Mn (NO3)3.6H2O are dissolved into an organic solvent, this solution is applied on a substrate made of silica glass. This substrate is then subjected to vacuum drying within a vacuum chamber. A thin film is formed over a substrate 3 by means of a series of these operations. The substrate is introduced into an electric furnace, and is heated, thereby effecting a pyrolytic reaction. This heating results in the formation of a magnetic semiconductor oxide thin film having a composition of La0.5Sr0.7MnO3 over the substrate. This thin film is of a perovskite type manganese oxide, and has a magnetic transition temperature as high as 355K. It is possible to render the thin film practically effective as a magnetic semiconductor oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高い磁気転移温度と抵
抗との半導体的性質を有した磁性半導体酸化薄膜および
その形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic semiconductor oxide thin film having semiconductor properties of high magnetic transition temperature and resistance and a method for forming the same.

【0002】[0002]

【従来の技術】磁性半導体酸化物はフェリ磁性やフェロ
磁性などの強い磁性と半導体の性質とを合わせ持つ物質
であり、大きな磁気抵抗を有するなどの実用上興味深い
組成物である。かかる磁性半導体酸化物として従来は、
EuOが知られており、このEuOの実用化に多くに研
究がなされていた。
2. Description of the Related Art A magnetic semiconductor oxide is a substance having both strong magnetism such as ferrimagnetism and ferromagnetism and semiconductor properties, and is a practically interesting composition having a large magnetic resistance. Conventionally, as such a magnetic semiconductor oxide,
EuO is known, and much research has been done to put it into practical use.

【0003】[0003]

【発明が解決しようとする課題】しかしながらEuOは
磁気転移温度(Tc)がチッ素の液化温度付近と極めて
低いため、このEuOを薄膜化しても極低温でしか使用
できず、実用性に乏しいものとなっていた。
However, since the magnetic transition temperature (Tc) of EuO is extremely low near the liquefaction temperature of nitrogen, even if EuO is made into a thin film, it can be used only at an extremely low temperature and is not practical. It was.

【0004】本発明は上記事情を考慮してなされたもの
であり、磁気転移温度が高く実用性を有した磁性半導体
酸化薄膜およびその形成方法を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a magnetic semiconductor oxide thin film having a high magnetic transition temperature and practicality, and a method for forming the same.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明の磁性半導体酸化薄膜は、RZMnO3 (Rは
3価の希土類元素、Zは2価のSr、CaまたはPbの
中から選ばれる元素)の組成を有していることを特徴と
する。
The magnetic semiconductor oxide thin film of the present invention for achieving the above object is formed of RZMnO 3 (R is a trivalent rare earth element, Z is a divalent Sr, Ca or Pb). It is characterized by having the composition

【0006】この磁性半導体酸化薄膜を形成する本発明
の形成方法は、R(NO3 3 ・6H2 O(Rは希土類
元素)と、Z(NO3 2 (Zは2価のSr,Ca、P
bの中から選ばれる元素)と、Mn(NO3 3 ・6H
2 Oとを有機溶媒に溶解した後、加熱して薄膜とするこ
とを特徴とする。ここで有機溶媒としてはエタノールな
どのアルコール類あるいは1−メチル−2−ピロリドン
などのケトン類を選択使用することができる。
The method of forming the magnetic semiconductor oxide thin film according to the present invention comprises R (NO 3 ) 3 .6H 2 O (R is a rare earth element) and Z (NO 3 ) 2 (Z is divalent Sr, Ca, P
b the element) selected from among, Mn (NO 3) 3 · 6H
It is characterized in that after 2 O is dissolved in an organic solvent, it is heated to form a thin film. Here, alcohols such as ethanol or ketones such as 1-methyl-2-pyrrolidone can be selectively used as the organic solvent.

【0007】[0007]

【実施例】La(NO3 3 ・6H2 Oと、Sr(NO
3 2 と、Mn(NO3 3 ・6H2 Oとを重量比1:
1:1の割合でエタノールに溶解して0.2mol/l
濃度の溶液とした。この溶液を5cm×5cmの石英ガ
ラスからなる基板上に1cc塗布した。基板への塗布は
スプレー、ハケ塗り、あるいは基板を回転させながら溶
液を滴下して拡散させるスピンコートのいずれであって
も良い。
EXAMPLES La (NO 3 ) 3 .6H 2 O and Sr (NO
3 ) 2 and Mn (NO 3 ) 3 .6H 2 O in a weight ratio of 1:
0.2 mol / l dissolved in ethanol at a ratio of 1: 1
A solution having a concentration was prepared. 1 cc of this solution was applied onto a 5 cm × 5 cm substrate made of quartz glass. The application to the substrate may be either spraying, brush coating, or spin coating in which the solution is dropped while the substrate is rotated to diffuse the solution.

【0008】次に、この基板を真空室内で真空乾燥す
る。図2はこの乾燥に用いられる乾燥装置であり、真空
室1内にホルダ2が配設されている。ホルダ2は基板3
をチャッキング、吸着などにより支持するものである。
また、真空室1はバルブ4を介してロータリーポンプ5
に連結され、ロータリーポンプ5の作動により、真空室
1が所定の減圧状態に維持される。溶液が塗布された基
板3はホルダ2によって保持され、真空室1内を減圧す
ることにより基板3上の溶液が真空乾燥される。かかる
真空乾燥は数Torr〜10-2Torr程度の真空度で
約2時間で終了する。
Next, this substrate is vacuum dried in a vacuum chamber. FIG. 2 shows a drying device used for this drying, in which a holder 2 is arranged in a vacuum chamber 1. Holder 2 is substrate 3
Is supported by chucking, adsorption or the like.
Further, the vacuum chamber 1 is provided with a rotary pump 5 via a valve 4.
The vacuum chamber 1 is maintained in a predetermined depressurized state by the operation of the rotary pump 5. The substrate 3 coated with the solution is held by the holder 2, and the solution on the substrate 3 is vacuum dried by reducing the pressure in the vacuum chamber 1. The vacuum drying is completed in about 2 hours at a degree of vacuum of several Torr to 10 -2 Torr.

【0009】このような一連の操作により基板3上には
膜厚1000Å未満の薄膜が形成される。従って、さら
に膜厚を増大させる必要があるときは、上記操作を繰り
返すことにより調整することができる。
By such a series of operations, a thin film having a film thickness of less than 1000Å is formed on the substrate 3. Therefore, when the film thickness needs to be further increased, it can be adjusted by repeating the above operation.

【0010】上記乾燥後においては、基板を電気炉内に
投入して、加熱することにより熱分解反応を行う。この
場合、750℃前後で約2時間放置することにより熱分
解が終了する。かかる加熱によって、La0.5 Sr0.5
MnO3 の組成を有した磁性半導体酸化薄膜を基板上に
形成することができる。この薄膜はフェロブスカイト型
マンガン酸化物となっており、磁気転移温度が355°
Kと高く、磁性半導体酸化物として実用上有効な薄膜で
ある。
After the drying, the substrate is put into an electric furnace and heated to cause a thermal decomposition reaction. In this case, thermal decomposition is completed by leaving it at about 750 ° C. for about 2 hours. By such heating, La 0.5 Sr 0.5
A magnetic semiconductor oxide thin film having a composition of MnO 3 can be formed on the substrate. This thin film is a ferroskite-type manganese oxide and has a magnetic transition temperature of 355 °.
It has a high K and is a thin film which is practically effective as a magnetic semiconductor oxide.

【0011】図1はかかる磁性半導体酸化薄膜のX線回
折図を示し、横軸に2θ(deg)を、縦軸に反射X線
の強度をプロットしてある。同図に示すように、全ての
ピークが薄膜の各組成に対応し、不純物のない良好な磁
性半導体酸化薄膜であることが判る。なお、上記実施例
では真空室内で有機溶媒を蒸発させながら、常圧下で基
板をある程度、加熱して蒸発させても良い。
FIG. 1 shows an X-ray diffraction diagram of such a magnetic semiconductor oxide thin film, in which the horizontal axis plots 2θ (deg) and the vertical axis plots the intensity of reflected X-rays. As shown in the figure, it can be seen that all peaks correspond to the respective compositions of the thin film, and that it is a good magnetic semiconductor oxide thin film with no impurities. In the above embodiment, the substrate may be heated to some extent under normal pressure to evaporate the organic solvent while evaporating the organic solvent in the vacuum chamber.

【0012】上記実施例ではR1-x X MnO3 であら
わされる薄膜に於いて、3価の希土類としてLa(ラン
タン)を用い、ZとしてSr(ストロンチウム)、xの
値を0.5としたが、これらは種々変更することができ
る。
In the above embodiment, in the thin film represented by R 1-x Z x MnO 3 , La (lanthanum) is used as the trivalent rare earth, Sr (strontium) is used as Z, and the value of x is 0.5. However, these can be variously changed.

【0013】図3のプロットAO、A1、A2は夫々L
1-X SrX MnO3 において、Xをそれぞれ0.3、
0.4、0.5とした時のX線回析によって同定した格
子定数である。同図からも判るように、希土類をSrで
置換することによって、即ちSrが増加することによっ
て格子定数は減少する。このことは、希土類としてNd
(ネオジム)を用いた際にも見られた。即ち、図3のプ
ロットBO,B1,B2は夫々Nd1-x Srx MnO3
において、Xをそれぞれ0.2,0.3,0.4とした
時の格子定数であり、希土類をSrで置換することによ
って、即ちSrが増加することによって格子定数が減少
している。このことは、希土類が3価であり、Srが2
価であるから4価のMnの増加が原因と考えられる。
Plots AO, A1 and A2 in FIG. 3 are L, respectively.
a 1-X Sr X MnO 3 , X is 0.3,
It is a lattice constant identified by X-ray diffraction when 0.4 and 0.5 are set. As can be seen from the figure, the lattice constant is decreased by replacing the rare earth element with Sr, that is, by increasing Sr. This means that Nd as a rare earth
It was also seen when using (neodymium). That is, plots BO, B1 and B2 in FIG. 3 are Nd 1-x Sr x MnO 3 respectively.
In, the lattice constants are obtained when X is 0.2, 0.3, and 0.4, respectively, and the lattice constant is reduced by substituting the rare earth with Sr, that is, by increasing Sr. This means that rare earths are trivalent and Sr is 2
Since it is valence, it is considered that the increase in tetravalent Mn is the cause.

【0014】また、上記La1-X SrX MnO3 で表さ
れる薄膜に於いて、X=0.4の時の磁気転移温度は3
60°K、X=0.3の時の磁気転移温度は345°K
であり、また、Nd1-x Srx MnO3 に於いて、Xを
それぞれ0.2,0.3,0.4とした時の磁気転移温
度は、夫々175°K,200°K,235°Kであっ
た。なお、図3におけるプロットCO、C1は3価の希
土類RとしてサマリウムSmを用いた例である。
In the thin film represented by La 1-X Sr X MnO 3 , the magnetic transition temperature at X = 0.4 is 3
Magnetic transition temperature at 60 ° K and X = 0.3 is 345 ° K
Further, in Nd 1-x Sr x MnO 3 , the magnetic transition temperatures when X is 0.2, 0.3 and 0.4 are 175 ° K, 200 ° K and 235, respectively. It was ° K. Plots CO and C1 in FIG. 3 are examples in which samarium Sm is used as the trivalent rare earth R.

【0015】[0015]

【発明の効果】以上説明したように本発明は、磁気転移
温度の高い磁性半導体酸化薄膜であるため、実用性の高
いものとすることができる。また、本発明の方法は、こ
の磁性半導体酸化薄膜を簡単に、しかも高純度で形成す
ることができる。
As described above, since the present invention is a magnetic semiconductor oxide thin film having a high magnetic transition temperature, it can be made highly practical. Further, the method of the present invention can easily form this magnetic semiconductor oxide thin film with high purity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のX線回折図である。FIG. 1 is an X-ray diffraction diagram of an example of the present invention.

【図2】乾燥装置の一例の断面図である。FIG. 2 is a cross-sectional view of an example of a drying device.

【図3】本発明による薄膜の格子定数を示す図である。FIG. 3 is a diagram showing a lattice constant of a thin film according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 RZMnO3 (Rは3価の希土類元素、
Zは2価のSr、CaまたはPbの中から選ばれる元
素)の組成を有していることを特徴とする磁性半導体酸
化薄膜。
1. RZMnO 3 (R is a trivalent rare earth element,
Z is an element selected from divalent Sr, Ca or Pb), which is a magnetic semiconductor oxide thin film.
【請求項2】 R(NO3 3 ・6H2 O(Rは希土類
元素)と、Z(NO3 2 (Zは2価のSr,Ca、P
bの中から選ばれる元素)と、Mn(NO33 ・6H
2 Oとを有機溶媒に溶解した後、加熱して薄膜とするこ
とを特徴とする磁性半導体酸化薄膜の形成方法。
2. R (NO 3 ) 3 .6H 2 O (R is a rare earth element) and Z (NO 3 ) 2 (Z is divalent Sr, Ca, P).
b the element) selected from among, Mn (NO 3) 3 · 6H
A method for forming a magnetic semiconductor oxide thin film, which comprises dissolving 2 O and an organic solvent and then heating the mixture to form a thin film.
JP7243292A 1992-02-21 1992-02-21 Magnetic semiconductor oxide thin film and manufacture thereof Pending JPH05234800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7243292A JPH05234800A (en) 1992-02-21 1992-02-21 Magnetic semiconductor oxide thin film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7243292A JPH05234800A (en) 1992-02-21 1992-02-21 Magnetic semiconductor oxide thin film and manufacture thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10954893A Division JP3293231B2 (en) 1993-05-11 1993-05-11 Method of forming perovskite-type composite oxide thin film

Publications (1)

Publication Number Publication Date
JPH05234800A true JPH05234800A (en) 1993-09-10

Family

ID=13489136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7243292A Pending JPH05234800A (en) 1992-02-21 1992-02-21 Magnetic semiconductor oxide thin film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05234800A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432474B1 (en) * 1998-06-29 2002-08-13 Sharp Kabushiki Kaisha Thin film of perovskite type manganese oxide process for producing the same thin film and an infrared sensing element using the same thin film
CN1324720C (en) * 2001-09-20 2007-07-04 北京有色金属研究总院 Perovskite rare earth manganese oxide giant magnetic resistance material, preparing process and its use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432474B1 (en) * 1998-06-29 2002-08-13 Sharp Kabushiki Kaisha Thin film of perovskite type manganese oxide process for producing the same thin film and an infrared sensing element using the same thin film
CN1324720C (en) * 2001-09-20 2007-07-04 北京有色金属研究总院 Perovskite rare earth manganese oxide giant magnetic resistance material, preparing process and its use

Similar Documents

Publication Publication Date Title
Kato et al. Sol‐gel route to ferroelectric layer‐structured perovskite SrBi2Ta2O9 and SrBi2Nb2O9 thin films
Sønsteby et al. Functional perovskites by atomic layer deposition–An overview
CN108928856B (en) Non-vacuum synthesis method of thermodynamic metastable state rare earth nickel-based oxide material
JP3548801B2 (en) A solution composition containing a metal complex in which a specific ligand is coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex coordinated with an atom, a method for producing a solution for producing a rare earth superconducting film, and a method for forming a superconducting thin film.
Osaka et al. Phase transition in ferroelectric SrBi2Ta2O9 thin films with change of heat-treatment temperature
US5925183A (en) Method for producing layer-structured perovskite thin film of bismuth-based compounds having ferroelectric properties
Zheng et al. Ferroic phase transitions and switching properties of modified BiFeO 3–SrTiO 3 multiferroic perovskites
JPH05234800A (en) Magnetic semiconductor oxide thin film and manufacture thereof
US5578551A (en) Method for synthesis of high-temperature Hg-Ba-Ca-Cu-O (HBCCO) superconductors
Laffez et al. Structural phase transition at low temperature, corresponding to charge ordering in the CMR perovskites LN0. 5A0. 5MNO3
Raghavan et al. Studies on electrical and multiferroic properties of chemical solution deposited (Bi0. 95La0. 05)(Fe0. 97Cr0. 03) O3/CoFe2O4 double layered thin film capacitors
Kitamura et al. Polarization properties of praseodymium-modified SrBi2Ta2O9 ceramics and thin films prepared by sol–gel method
Niu et al. Exploiting laser based methods for low-temperature solid-state synthesis: growth of a series of metastable (Sr1-xMx) 1-. delta. CuO2 materials
JP3500787B2 (en) Method for producing bismuth compound and dielectric substance of bismuth compound
JPH04170318A (en) Lamellar copper oxide
Kato et al. Low-temperature crystallization and ferroelectric properties of sol-gel derived layer-structured perovskite thin films
Kato Chemical routes for low-temperature processing of layer-structured perovskite thin films
JP3293231B2 (en) Method of forming perovskite-type composite oxide thin film
JP3548802B2 (en) A solution composition containing a metal complex having a specific ligand coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex to which a ligand is coordinated, a method for producing a solution for producing a rare earth superconducting film, and a method for producing a superconducting thin film.
JPH07172984A (en) Production of dielectric thin film and apparatus therefor
Fujihira et al. Preparation and properties of highly conductive La 1− x M x MnO 3− y thin film showing magnetic effect from sol-gel process
JP2011201712A (en) Method for producing oriented oxide film, oriented oxide film, and oxide superconductor
CN110877978B (en) Oxide (Na)0.5Bi0.5)1-xMexTiO3Diluted magnetic ferroelectric semiconductor ceramic and preparation method thereof
Gorbenko et al. Colossal Magnetoresisttve Tffin Films of (La1-x, Prx) 0.7 Ca0. 3MnO3 Prepared by Aerosol MOCVD
JPH026366A (en) Oxide-based ceramic, substrate for producing superconducting ceramic film and production of superconducting ceramic film