JPH05234745A - Anisotropic long magnet - Google Patents

Anisotropic long magnet

Info

Publication number
JPH05234745A
JPH05234745A JP3801392A JP3801392A JPH05234745A JP H05234745 A JPH05234745 A JP H05234745A JP 3801392 A JP3801392 A JP 3801392A JP 3801392 A JP3801392 A JP 3801392A JP H05234745 A JPH05234745 A JP H05234745A
Authority
JP
Japan
Prior art keywords
magnet
magnetic
domain
magnetic powder
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3801392A
Other languages
Japanese (ja)
Other versions
JP3012077B2 (en
Inventor
Satoru Nakatsuka
哲 中塚
Itsuro Tanaka
逸郎 田中
Koichi Nushishiro
晃一 主代
Takahiro Kikuchi
孝宏 菊地
Akira Yasuda
晃 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4038013A priority Critical patent/JP3012077B2/en
Publication of JPH05234745A publication Critical patent/JPH05234745A/en
Application granted granted Critical
Publication of JP3012077B2 publication Critical patent/JP3012077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high surface magnetic field on an operating surface by orientation axes of easy magnetization of magnetic powder particles in a section in a direction from one domain in an operating domain to another domain in the operating domain through an interior of a magnet. CONSTITUTION:A long magnet 1 has a rectangular cross section, and one of its long sides 2 is used as an operating domain. Axes of easy magnetization of magnetic powder particles are oriented in a direction from one of domains 3a and 3b split from the operating domain again to the other domain in the same operating domain through an interior of the magnet, and the operating domain is continued longitudinally. Thus, the surface magnetic field of the operating surface of the long magnet can be remarkably improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、異方性長尺磁石に関
し、特に該磁石の作用面における表面磁界の向上を図っ
たものである。この発明は、磁石作用面が細長く延びる
長尺性を要求される用途、例えば長大掲示板への吸着固
定用磁石等の用途に用いてとりわけ有利に適合するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic long magnet, and more particularly to improving the surface magnetic field on the working surface of the magnet. The present invention is particularly advantageously suited for use in applications where the magnet working surface is elongated and elongated and is required, for example, applications such as a magnet for attracting and fixing to a long bulletin board.

【0002】[0002]

【従来の技術】従来、この種用途の磁石としては、希土
類系又はフェライト系の焼結磁石あるいは合成樹脂磁石
が主に使用されてきた。上記の磁石のうち、特に表面磁
界が強くまた吸着力の優れたものは希土類系の焼結磁石
や合成樹脂磁石であり、これらに比べるとフェライト系
焼結磁石は性能が幾分、またフェライト系合成樹脂磁石
は性能がかなり劣り、それぞれ用途に応じて使用されて
きた。すなわちコストの高い希土類系磁石は高級用途
に、またコストの低いフェライト系磁石は低級用途に使
用されてきたが、いずれにせよ磁粉の配向方向は等方か
厚み方向であり、磁気特性は使用原料の善し悪しによっ
てのみ決定されていた。中でもフェライト系の合成樹脂
磁石は、複雑な形状のものでも容易に成形でき、また軽
量で一体成形も可能という利点はそなえるものの、磁石
の表面磁界が低いことから、その用途は自ずから限定さ
れていた。
2. Description of the Related Art Heretofore, rare earth-based or ferrite-based sintered magnets or synthetic resin magnets have been mainly used as magnets for this type of application. Among the above magnets, those having a strong surface magnetic field and an excellent attracting force are rare earth type sintered magnets and synthetic resin magnets. Compared with these magnets, ferrite type sintered magnets have some performance and ferrite type magnets. Synthetic resin magnets are considerably inferior in performance and have been used according to their respective applications. In other words, high-cost rare-earth magnets have been used for high-grade applications, and low-cost ferrite-based magnets have been used for low-grade purposes.In any case, the magnetic particles are oriented in the isotropic or thickness direction, and the magnetic properties are the raw materials used. It was determined only by the good and bad of. Among them, ferrite synthetic resin magnets have the advantage that they can be easily molded even if they have complicated shapes, and they are lightweight and can be integrally molded, but their use was naturally limited due to the low surface magnetic field of the magnet. ..

【0003】[0003]

【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、たとえフェライト系磁粉を
用いた場合であっても、作用面において高い表面磁界が
得られる新規な磁粉粒子配向構造になる長尺磁石を提案
することを目的とする。
DISCLOSURE OF THE INVENTION The present invention advantageously solves the above-mentioned problems and is a novel magnetic powder particle capable of obtaining a high surface magnetic field on the working surface even when a ferrite magnetic powder is used. The purpose is to propose a long magnet having an oriented structure.

【0004】[0004]

【課題を解決するための手段】まず、この発明の解明経
緯について説明する。さて発明者らは、図1(a)及び
(b)に示した板厚方向に沿う磁粉配向(以下アキシャ
ル配向という)になる従来の磁石に対して、図2に示し
た非作用面から作用面に向けて集束して配向させた(以
下集束配向という)磁石の方が磁気特性に優れる理由を
解明すべく、鋭意検討を重ねた結果、その理由は、磁石
を吸着させたとき、非作用面から無駄に放射される磁力
線の数及びその磁路長さにあるのではないかとの考えを
持つに至った。そこで、吸着時において無駄に放射され
る磁力線の数及びその磁路長さを低減すべく、作用面以
外の面からの磁力線の放射をなくし、すなわち作用面以
外の面からの磁束の漏れをなくしたところ、磁気特性の
改善に関し望外の成果が得られたのである。
First, the process of clarifying the present invention will be described. The inventors of the present invention act from the non-acting surface shown in FIG. 2 on the conventional magnet having the magnetic powder orientation (hereinafter referred to as axial orientation) along the plate thickness direction shown in FIGS. 1A and 1B. As a result of intensive studies to clarify the reason why a magnet focused and oriented toward the surface (hereinafter referred to as “focused orientation”) is superior in magnetic characteristics, the reason is that when magnets are attracted, they do not work. We came to think that the number of magnetic lines of force wasted from the surface and the length of the magnetic path may be the reason. Therefore, in order to reduce the number of magnetic lines of force that are unnecessarily radiated at the time of adsorption and the magnetic path length thereof, radiation of magnetic lines of force from surfaces other than the working surface is eliminated, that is, magnetic flux leakage from surfaces other than the working surface is eliminated. As a result, an unexpected result was obtained regarding the improvement of magnetic properties.

【0005】この発明は、上記の知見に立脚するもので
ある。すなわちこの発明は、長尺磁石の長手方向を横切
る断面(以下単に横断面という)における輪郭線の一又
は複数領域に形成した作用域を長手方向に連ねた長尺磁
石であって、該断面における磁粉粒子の磁化容易軸を、
該作用域内の一区域から磁石内部を通って作用域内の他
の区域に回帰する向きに配向してなる異方性長尺磁石で
ある。この発明において、磁石材料として、可撓性の合
成樹脂材料を採用することにより、用途の一層の拡大を
図ることができる。
The present invention is based on the above findings. That is, the present invention is a long magnet in which a working region formed in one or a plurality of regions of a contour line in a cross section (hereinafter, simply referred to as a cross section) crossing the longitudinal direction of the long magnet is continuous in the longitudinal direction. The easy axis of magnetization of the magnetic particles,
The anisotropic long magnet is oriented so as to return from one area in the working area to the other area in the working area through the inside of the magnet. In the present invention, by adopting a flexible synthetic resin material as the magnet material, the application can be further expanded.

【0006】この発明は、合成樹脂磁石及び焼結磁石の
いずれにも適用できる。例えば合成樹脂磁石及び焼結磁
石における磁粉としては、フェライト系磁粉、アルニコ
系磁粉及びサマリウム−コバルト系磁粉やネオジム−鉄
−ボロン系磁石等の希土類系磁粉など、従来公知のもの
いずれもが使用でき、その平均粒径についてはフェライ
ト系では 1.5μm 程度、その他のものでは5〜50μm 程
度とするのが好ましい。
The present invention can be applied to both synthetic resin magnets and sintered magnets. For example, as the magnetic powder in the synthetic resin magnet and the sintered magnet, any conventionally known magnetic powder such as ferrite magnetic powder, alnico magnetic powder, and rare earth magnetic powder such as samarium-cobalt magnetic powder or neodymium-iron-boron magnetic magnet can be used. The average particle size is preferably about 1.5 μm for ferrite and about 5 to 50 μm for others.

【0007】また合成樹脂についても、従来公知のもの
いずれもが使用でき、その代表例を示すと次のとおりで
ある。ポリアミド−6及びポリアミド−12などのポリア
ミド系合成樹脂。ポリ塩化ビニル、塩化ビニル酢酸ビニ
ル共重合体、ポリメチルメタクリレート、ポリスチレ
ン、ポリエチレン及びポリプルピレンなどの単独又は共
重合したビニル系合成樹脂。ポリウレタン、シリコー
ン、ポリカーボネート、PBT、PET、ポリエーテル
エーテルケトン、PPS、塩素化ポリエチレン及びハイ
パロンなどの合成樹脂。プロピレン、ネオプレン、スチ
レンブタジエン及びアクリロニトリルブタジエンなどの
ゴム。エポキシ系樹脂。フェノール系合成樹脂。さらに
磁粉とバインダーである合成樹脂との配合比率は、体積
比で射出成形用としては磁粉:40〜68に対し、合成樹
脂:60〜32程度、また圧縮成形用としては90〜95:10〜
5程度とするのが望ましい。
As the synthetic resin, any of the conventionally known ones can be used, and typical examples thereof are as follows. Polyamide-based synthetic resins such as polyamide-6 and polyamide-12. A homopolymer or copolymer vinyl-based synthetic resin such as polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethylmethacrylate, polystyrene, polyethylene and polypropylene. Synthetic resins such as polyurethane, silicone, polycarbonate, PBT, PET, polyetheretherketone, PPS, chlorinated polyethylene and hypalon. Rubbers such as propylene, neoprene, styrene butadiene and acrylonitrile butadiene. Epoxy resin. Phenolic synthetic resin. Furthermore, the mixing ratio of magnetic powder and synthetic resin that is a binder is, by volume ratio, magnetic powder: 40-68 for injection molding, synthetic resin: about 60-32, and 90-95: 10- for compression molding.
It is desirable to set it to about 5.

【0008】なおその他にも、従来から常用される可塑
剤や抗酸化剤、表面処理剤などを目的に応じて適量使用
できるのはいうまでもなく、特に可塑剤は可撓性を付与
する際には有効で、かかる可塑剤としては、例えばジオ
クチルフタレート(DOP),ジブタジルプタレート
(DBP)等のフタル酸エステル系可塑剤、ジオクチル
アジペイト(DOA)等のアジピン酸系可塑剤或いはポ
リエステル系に代表される高分子系可塑剤などが好適で
ある。
In addition to the above, it goes without saying that appropriate amounts of conventionally used plasticizers, antioxidants, surface treatment agents and the like can be used, and especially when a plasticizer imparts flexibility. Examples of such plasticizers include phthalate ester-based plasticizers such as dioctyl phthalate (DOP) and dibutazyl phthalate (DBP), adipic acid-based plasticizers such as dioctyl adipate (DOA), and polyester-based plasticizers. Polymeric plasticizers typified by and the like are preferable.

【0009】[0009]

【作用】以下、この発明を具体的に説明する。図3
(a)に、この発明に従う代表的な長尺磁石を示す。こ
の長尺磁石1は、横断面が矩形でその長辺2の一方を作
用域とするもので、磁粉粒子の磁化容易軸を、この作用
域をほぼ2分する区域3aおよび3bの一方から、磁石の内
部を通って再び同じ作用域内の他方の区域に回帰する向
きに配向させ、かつこの作用域を長手方向へ連ねたもの
である。また同図(b)に、この長尺磁石1を吸着させ
たときの磁力線の放射状況を示すように、作用面以外の
面からの磁力線の漏れのほとんどない閉回路を形成で
き、それ故、従来のアキシャル型や集束配向型の磁石に
比べて格段に優れた磁束密度が得られるのである。
The present invention will be described in detail below. Figure 3
A typical long magnet according to the present invention is shown in (a). This long magnet 1 has a rectangular cross section and has one of its long sides 2 as an operating region, and the easy axis of magnetization of the magnetic powder particles is divided from one of the regions 3a and 3b which divide this operating region into two. The magnet is oriented so as to return to the other area in the same working area through the inside of the magnet, and this working area is connected in the longitudinal direction. Further, as shown in FIG. 2B, which shows the radiation state of the magnetic force lines when the long magnet 1 is attracted, a closed circuit can be formed with almost no leakage of the magnetic force lines from the surface other than the working surface, and therefore, The magnetic flux density is far superior to that of the conventional axial type or focused orientation type magnet.

【0010】さらに図4に、矩形断面の両短辺4を作用
域とする場合を示すように、複数の面(または領域)を
作用域とすることが可能である。
Further, as shown in FIG. 4 in which both short sides 4 of the rectangular cross section are used as the working area, a plurality of surfaces (or regions) can be set as the working area.

【0011】上記の例では、長尺磁石の横断面が矩形の
場合について主に説明したが、磁石形状はこの場合だけ
に限るものではなく、図5(a)〜(i)に示すよう
な、台形、三角形、多角形、円形、又は半円形等の様々
な断面形状であっても良く、要は、長尺磁石の横断面に
おける輪郭線の一又は複数領域に、磁粉粒子の配向方向
が回帰する作用域を形成し、この作用域が長手方向に連
続又は断続して連なっていれば良いのである。
In the above example, the case where the cross section of the long magnet is rectangular has been mainly described, but the shape of the magnet is not limited to this case, and as shown in FIGS. 5 (a) to 5 (i). , A trapezoid, a triangle, a polygon, a circle, or a semicircle may be various cross-sectional shapes. The point is that the orientation direction of the magnetic powder particles is in one or more regions of the contour line in the cross section of the long magnet. It suffices to form an operating region that returns and the operating region is continuous or intermittent in the longitudinal direction.

【0012】さてこの発明は、長尺磁石中における磁粉
粒子の磁化容易軸の配向方向を制御することによって、
磁石使用面での表面磁界の向上を図るものである。そこ
で図6に、この発明に従う磁粉配向の実現に好適な磁気
回路をもつ成形金型を模式で示す。図中番号5は成形用
金型内に設けられたキャビティ、6は主極、7は対極及
び8は磁気回路のリターンヨークである。
Now, according to the present invention, by controlling the orientation direction of the easy axis of magnetization of magnetic powder particles in a long magnet,
It is intended to improve the surface magnetic field on the surface where the magnet is used. Therefore, FIG. 6 schematically shows a molding die having a magnetic circuit suitable for realizing the magnetic powder orientation according to the present invention. In the figure, reference numeral 5 is a cavity provided in the molding die, 6 is a main pole, 7 is a counter pole, and 8 is a return yoke of the magnetic circuit.

【0013】さてキャビティ5内に、例えば磁粉と合成
樹脂とを所定の割合で配合した合成樹脂磁石を装入し、
かつ合成樹脂磁石の場合を図7に示すように押出しなが
ら、磁場を印加すると、図中に矢印で示した方向に磁力
線9が発生し、この磁力線9に沿って磁粉粒子の磁化容
易軸が配向することになる。ここに磁力線の漏れは、作
用面のみで、作用面以外の面からの漏れはほとんどな
い。
Now, in the cavity 5, for example, a synthetic resin magnet in which magnetic powder and synthetic resin are mixed at a predetermined ratio is loaded,
Moreover, when a magnetic field is applied while pushing out the case of a synthetic resin magnet as shown in FIG. 7, magnetic force lines 9 are generated in the direction shown by the arrow in the figure, and the easy axis of magnetization of the magnetic powder particles is oriented along the magnetic force lines 9. Will be done. Here, the leakage of the lines of magnetic force is only on the working surface, and there is almost no leakage from surfaces other than the working surface.

【0014】ちなみに上記磁場配向成形金型の磁極4、
対向磁極5及びリターンヨークに用いる強磁性体として
は、S55C,S50C,S40C等の炭素鋼、SKD
11,SKD61等のダイス鋼、その他パメンジュー
ル、純鉄等が使用できるが、耐摩耗性向上のため表面硬
化処理を施すことは一層有利である。また磁極まわりを
埋める非磁性体としては、ステンレス鋼、銅ベリリウム
合金、ハイマンガン鋼、青銅、真ちゅう及び非磁性超硬
鋼N−7等が有利に適合し、これらにも必要に応じ耐摩
耗性向上のため表面硬化処理を施すことは有利である。
By the way, the magnetic pole 4 of the magnetic field orientation molding die,
Ferromagnetic materials used for the opposing magnetic pole 5 and the return yoke include carbon steel such as S55C, S50C, and S40C, SKD.
Die steels such as 11, SKD61, etc., other materials such as pamenjour, pure iron, etc. can be used, but it is more advantageous to apply a surface hardening treatment to improve wear resistance. As the non-magnetic material filling the magnetic pole, stainless steel, copper-beryllium alloy, high-manganese steel, bronze, brass and non-magnetic cemented steel N-7 are suitable, and wear resistance is also required as required. It is advantageous to apply a surface hardening treatment for improvement.

【0015】[0015]

【実施例】図6に示した磁気回路を設定した成形金型及
び図2に示したような集束配向とする磁気回路を設定し
た成形金型(図示省略)を用い、図3に示した形状でそ
の寸法が幅:8mm, 厚さ:4mm及び長さ:150 mmである
長尺磁石を、以下の表1〜3に示す条件で成形した。な
お以下に示す磁粉Bを使用した実験では、予めパルス状
の巨大磁場を印加し、磁粉の磁気モーメントを揃えて磁
場配向成形を実施した。
EXAMPLE A molding die having a magnetic circuit shown in FIG. 6 and a molding die having a magnetic circuit having a focusing orientation shown in FIG. 2 (not shown) were used, and the shape shown in FIG. 3 was used. A long magnet having dimensions of width: 8 mm, thickness: 4 mm and length: 150 mm was molded under the conditions shown in Tables 1 to 3 below. In the experiment using the magnetic powder B shown below, a giant magnetic field having a pulse shape was applied in advance, and the magnetic moments of the magnetic powder were aligned to perform magnetic field orientation molding.

【0016】[0016]

【表1】原料 ・磁粉粒子 磁粉A:フェライト磁粉(平均粒径 1.5μm のマグネト
プランバイト系ストロンチウム系フェライト) 磁粉B:サマリウム−コバルト磁粉(2−17系;平均粒
径 15μm ) ・合成樹脂:塩素化ポリエチレン ・可塑剤 :DOP(ディオクチルフタレート) ・その他 :ポリエチレン系ワックス TTS(イソプロピルトリイソステアロイルチタネー
ト)
[Table 1] Raw materials / Magnetic powder particles Magnetic powder A: Ferrite magnetic powder (magnetoplumbite-based strontium-based ferrite with an average particle size of 1.5 μm) Magnetic powder B: Samarium-cobalt magnetic powder (2-17 system; average particle size 15 μm) -Synthetic resin: Chlorinated polyethylene-Plasticizer: DOP (Dioctyl phthalate) -Others: Polyethylene wax TTS (Isopropyltriisostearoyl titanate)

【0017】[0017]

【表2】配合 ・配合A(プラマグ配合) 磁粉A :61.5 vol% 塩素化ポリエチレン :12 vol% DOP :25.5 vol% ポリエチレン系ワックス:0.5 vol% TTS :0.5 vol% ・配合B(焼結配合) 磁粉:50 wt% 水 :50 wt%[Table 2] Composition / Composition A (Plamag composition) Magnetic powder A: 61.5 vol% Chlorinated polyethylene: 12 vol% DOP: 25.5 vol% Polyethylene wax: 0.5 vol% TTS: 0.5 vol%・ Compound B (Sintering mix) Magnetic powder: 50 wt% Water: 50 wt%

【0018】[0018]

【表3】成形条件 ・押出し成形条件 使用ペレット配合 :配合A 押出しシリンダー温度:160 ℃ 吐出口付近の温度:160 ℃ 吐出速度:2m/min 押出し機:フルフライト型 シリンダー径70mm (シリンダー長)/(内径)=22 圧縮比3 励磁コイル起磁力:10000 アンペアターン ランド部磁場印加幅:70mm ・圧縮成形条件 使用原料 :配合B 成形方法 :インジェクション方式 励磁方向 :圧縮方向 励磁コイル起磁力:10000 アンペアターン 成形温度 :20℃ 焼成温度 :1250℃[Table 3] Molding conditions / extrusion molding conditions Pellet composition used: Compound A Extrusion cylinder temperature: 160 ° C Temperature near discharge port: 160 ° C Discharge speed: 2m / min Extruder: Full flight type Cylinder diameter 70mm (cylinder length) / (Inner diameter) = 22 Compression ratio 3 Excitation coil magnetomotive force: 10000 ampere turns Land part magnetic field applied width: 70mm ・ Compression molding conditions Raw material: Compound B Molding method: Injection method Excitation direction: Compression direction Excitation coil magnetomotive force: 10000 ampere turns Molding temperature: 20 ° C Firing temperature: 1250 ° C

【0019】かくして得られた長尺磁石の着磁後におけ
る表面磁界について調べた結果を表4に示す。なお表面
磁界の測定には、ホール素子(70μm角のガリウムヒ
素)を用いた。
Table 4 shows the results of examining the surface magnetic field of the thus obtained long magnet after magnetization. A Hall element (70 μm square gallium arsenide) was used for the measurement of the surface magnetic field.

【0020】[0020]

【表4】 [Table 4]

【0021】表4より明らかなように、この発明に従っ
て得られた長尺磁石はいずれも、従来法に従い得られた
ものと比較して作用面における表面磁界が著しく向上し
得ることが確かめられた。
As is clear from Table 4, it was confirmed that the long magnets obtained according to the present invention can significantly improve the surface magnetic field on the working surface as compared with those obtained according to the conventional method. ..

【0022】[0022]

【発明の効果】かくしてこの発明によれば、長尺磁石の
作用面における表面磁界を格段に向上させることがで
き、この種磁石の適用範囲の拡大に大きく寄与する。
As described above, according to the present invention, the surface magnetic field on the working surface of the long magnet can be remarkably improved, which greatly contributes to the expansion of the applicable range of this kind of magnet.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、従来のアキシャル型長尺磁石の模式
図である。(b)は、従来のアキシャル型磁石の磁力線
図である。
FIG. 1A is a schematic view of a conventional axial long magnet. (B) is a magnetic force diagram of a conventional axial magnet.

【図2】従来の集束配向型磁石の磁力線分布を示した図
である。
FIG. 2 is a diagram showing a magnetic field line distribution of a conventional focusing orientation type magnet.

【図3】(a)は、この発明に従う、長辺を作用域とす
る閉回路型磁石の模式図である。(b)は、この発明に
従う、長辺を作用域とする閉回路型磁石の磁力線分布を
示した図である。
FIG. 3A is a schematic diagram of a closed circuit type magnet having a long side as a working region according to the present invention. (B) is a diagram showing a magnetic field line distribution of a closed circuit type magnet having a long side as a working region according to the present invention.

【図4】この発明に従う、短辺を作用域とする閉回路型
磁石の模式図である。
FIG. 4 is a schematic diagram of a closed circuit type magnet having a short side as a working region according to the present invention.

【図5】長尺磁石の端面を示す模式図である。FIG. 5 is a schematic view showing an end face of a long magnet.

【図6】この発明の閉回路型磁石の製造に用いて好適な
成形金型の模式図である。
FIG. 6 is a schematic view of a molding die suitable for use in manufacturing the closed circuit magnet of the present invention.

【図7】押出し成形の要領を示す模式図である。FIG. 7 is a schematic view showing the procedure of extrusion molding.

【符号の説明】[Explanation of symbols]

1 長尺磁石 2 長辺 3a 区域 3b 区域 4 短辺 5 キャビティ 6 主極 7 対向極 8 バックヨーク 9 磁力線 1 Long magnet 2 Long side 3a Area 3b Area 4 Short side 5 Cavity 6 Main pole 7 Opposing pole 8 Back yoke 9 Magnetic field lines

───────────────────────────────────────────────────── フロントページの続き (72)発明者 主代 晃一 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 菊地 孝宏 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 安田 晃 東京都千代田区内幸町2丁目2番3号 川 崎製鉄株式会社東京本社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Kadai 1 Kawasaki-cho, Chiba City, Chiba Prefecture Kawasaki Steel Co., Ltd. Technical Research Headquarters (72) Inventor Takahiro Kikuchi 1 Kawasaki-machi, Chiba City Chiba Prefecture Kawasaki Steel Co., Ltd. (72) Inventor Akira Yasuda 2-3-2 Uchisaiwaicho, Chiyoda-ku, Tokyo Kawasaki Steel Co., Ltd. Tokyo head office

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 長尺磁石の長手方向を横切る断面におけ
る輪郭線の一又は複数領域に形成した作用域を長手方向
に連ねた長尺磁石であって、該断面における磁粉粒子の
磁化容易軸を、該作用域内の一区域から磁石内部を通っ
て作用域内の他の区域に回帰する向きに配向してなる異
方性長尺磁石。
1. A long magnet in which an active region formed in one or a plurality of regions of a contour line in a cross section crossing the longitudinal direction of the long magnet is connected in the longitudinal direction, and an easy axis of magnetization of magnetic powder particles in the cross section is formed. An anisotropic long magnet oriented in a direction of returning from one area in the working area to the other area in the working area through the inside of the magnet.
【請求項2】 請求項1において、磁石材料が、可撓性
の合成樹脂材料からなる異方性長尺磁石。
2. The anisotropic long magnet according to claim 1, wherein the magnet material is a flexible synthetic resin material.
JP4038013A 1992-02-25 1992-02-25 Anisotropic long magnet Expired - Fee Related JP3012077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4038013A JP3012077B2 (en) 1992-02-25 1992-02-25 Anisotropic long magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4038013A JP3012077B2 (en) 1992-02-25 1992-02-25 Anisotropic long magnet

Publications (2)

Publication Number Publication Date
JPH05234745A true JPH05234745A (en) 1993-09-10
JP3012077B2 JP3012077B2 (en) 2000-02-21

Family

ID=12513697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4038013A Expired - Fee Related JP3012077B2 (en) 1992-02-25 1992-02-25 Anisotropic long magnet

Country Status (1)

Country Link
JP (1) JP3012077B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014150254A (en) * 2013-01-30 2014-08-21 Arnold Magnetic Technologies Ag Contoured field magnet
JP2018190982A (en) * 2017-05-08 2018-11-29 日東電工株式会社 Rare earth sintered magnet and sintered body for rare earth sintered magnet which is used for the same, and magnetic field applying device that can be used for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014150254A (en) * 2013-01-30 2014-08-21 Arnold Magnetic Technologies Ag Contoured field magnet
JP2018190982A (en) * 2017-05-08 2018-11-29 日東電工株式会社 Rare earth sintered magnet and sintered body for rare earth sintered magnet which is used for the same, and magnetic field applying device that can be used for producing the same

Also Published As

Publication number Publication date
JP3012077B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
US4327346A (en) Anisotropic polymeric magnet in the tubular form and process for producing the same
US5416457A (en) Lateral orientation anisotropic magnet
JP2018127668A (en) Molding die for anisotropic bonded magnet and production method using the same
JP2005064448A (en) Method of manufacturing laminated polar anisotropic hybrid magnet
JP3007491B2 (en) Side-oriented anisotropic magnet
JP6414505B2 (en) Bond magnet manufacturing method and bond magnet
JPH05234745A (en) Anisotropic long magnet
JP2018142635A (en) Molding die for anisotropic bond magnet and manufacturing method using the same
JPH06349630A (en) Anisortopical magmet
JP3012067B2 (en) Extremely anisotropic cylindrical magnet
JPH07250460A (en) Manufacture of dice for orienting magnetic field and flexible magnet
JP4577604B2 (en) Method for producing anisotropic rare earth bonded magnet
JP3012049B2 (en) Anisotropic segment type magnet
JP2005300935A (en) Magnet roller or its manufacturing method
JP4370877B2 (en) Method for orienting permanent magnet powder and method for producing permanent magnet
JPH05234744A (en) Anisotropic magnet
JP2004087644A (en) Magnet roller
JPH04267308A (en) Focused orientation type polar anisotropic disclike magnet and magnetic orienting mold
JP2002343623A (en) Plastic sheet magnet molded body and manufacturing method therefor
JP2002199668A (en) Manufacturing method of cylindrical-shaped magnet for polar magnetizing
JPH0626169B2 (en) Method and apparatus for forming rare earth magnet in magnetic field
JP2003151825A (en) Magnet roller
JPH0619302Y2 (en) Voice coil type linear motor
JPH0787140B2 (en) Focusing orientation type long magnet
JPH05326251A (en) Closed inner face magnetic path type

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees