JPH05234556A - Electron microscope - Google Patents
Electron microscopeInfo
- Publication number
- JPH05234556A JPH05234556A JP4069371A JP6937192A JPH05234556A JP H05234556 A JPH05234556 A JP H05234556A JP 4069371 A JP4069371 A JP 4069371A JP 6937192 A JP6937192 A JP 6937192A JP H05234556 A JPH05234556 A JP H05234556A
- Authority
- JP
- Japan
- Prior art keywords
- film
- ray
- sample
- magnetic pole
- electron microscope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims description 31
- 230000005540 biological transmission Effects 0.000 claims description 14
- 238000010894 electron beam technology Methods 0.000 claims description 13
- 230000005855 radiation Effects 0.000 claims description 11
- 229920006254 polymer film Polymers 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 4
- 238000002441 X-ray diffraction Methods 0.000 abstract description 3
- 238000000441 X-ray spectroscopy Methods 0.000 abstract 2
- 239000010408 film Substances 0.000 description 60
- 230000001681 protective effect Effects 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 7
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は特性X線を検出するX
線検出手段を備えた電子顕微鏡に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to X for detecting characteristic X-rays.
The present invention relates to an electron microscope equipped with a line detecting means.
【0002】[0002]
【従来の技術】この種の電子顕微鏡では、電子線を試料
に入射したときに発生する特性X線をX線検出手段で検
出して、その試料を構成する物質元素を定量的・定性的
に分析する。この分析法をエネルギー分散型X線分光法
(energy dispersive X−ray
spectroscopy:EDS)という。2. Description of the Related Art In this type of electron microscope, characteristic X-rays generated when an electron beam is incident on a sample are detected by an X-ray detecting means to quantitatively and qualitatively determine the substance elements constituting the sample. analyse. This analysis method is referred to as energy dispersive X-ray spectroscopy.
spectroscopy (EDS).
【0003】従来の電子顕微鏡では、対物レンズは図6
に示すように上側磁極200と下側磁極210を有し、
これらの間に試料240を保持するようになっている。
電子線250を試料240に照射すると、試料240の
表面から特性X線260を放出する。In the conventional electron microscope, the objective lens is shown in FIG.
Has an upper magnetic pole 200 and a lower magnetic pole 210,
The sample 240 is held between them.
When the sample 240 is irradiated with the electron beam 250, the characteristic X-ray 260 is emitted from the surface of the sample 240.
【0004】X線検出手段270は、内部に検出素子2
80を有し、検出素子280は保護膜290により保護
されている。放射された特性X線260は保護膜290
を通り検出素子280に入る。The X-ray detecting means 270 has a detecting element 2 inside.
80, the detection element 280 is protected by a protective film 290. The emitted characteristic X-ray 260 is a protective film 290.
And enters the detection element 280.
【0005】従来の保護膜として、Be膜が使われてい
る。しかし、軽元素を検出するために高分子膜などのU
TW(Ultra Thin−film Windo
w)と呼ばれる膜を使用している。あるいは、このよう
な保護膜をX線検出手段に設けないウィンド・レスのX
線検出手段が普及している。A Be film is used as a conventional protective film. However, in order to detect light elements, U
TW (Ultra Thin-film Windo
It uses a membrane called w). Alternatively, such a protective film is not provided on the X-ray detection means and the windowless X
Line detection means are widespread.
【0006】一方、試料240を加熱させた状態で、高
分解能で電子顕微鏡観察すると同時に、特性X線分析を
行なって試料の組成を分析する要求が増えつつある。On the other hand, there is an increasing demand to analyze the composition of the sample by performing characteristic X-ray analysis at the same time as observing the sample 240 in a heated state with a high resolution under an electron microscope.
【0007】[0007]
【発明が解決しようとする課題】しかし、UTW膜を保
護膜としたX線検出手段では、試料の加熱に伴う輻射熱
で容易に保護膜が破損してしまう。このために、UTW
膜のX線検出手段を、熱に強いBe膜のX線検出手段に
交換して観察・分析を行なわなければならない。However, in the X-ray detecting means using the UTW film as the protective film, the protective film is easily damaged by the radiant heat accompanying the heating of the sample. Because of this, UTW
The X-ray detecting means for the film must be replaced with the X-ray detecting means for the Be film, which is resistant to heat, and observation and analysis must be performed.
【0008】そこで、本発明は、たとえUTW膜を保護
膜としたX線検出手段もしくはウィンド・レスのX線検
出手段を用いても、試料の加熱により保護膜を破損する
ことのない高分解能な試料の観察と分析のできる電子顕
微鏡を提供することを目的とする。Therefore, according to the present invention, even if the X-ray detecting means using the UTW film as the protective film or the windowless X-ray detecting means is used, the protective film is not damaged by the heating of the sample and has a high resolution. It is an object to provide an electron microscope capable of observing and analyzing a sample.
【0009】[0009]
【課題を解決するための手段】この発明は、電子線11
2を発射させる電子銃2aと、第1の磁極16と第1の
磁極16から所定の間隔をあけて設けられた第2の磁極
18とを有する対物レンズ6と、第1の磁極16と第2
の磁極18の間に試料22aを保持する試料保持手段2
2,26と、試料22aに電子線112を照射させた際
に、放射されるX線110を検出するX線検出手段40
を備えた電子顕微鏡において、対物レンズ6の側部にX
線透過膜76を配置したことを特徴とするX線検出手段
を備えた電子顕微鏡である。The present invention is directed to an electron beam 11
An objective lens 6 having an electron gun 2a for firing 2 and a first magnetic pole 16 and a second magnetic pole 18 provided at a predetermined distance from the first magnetic pole 16; the first magnetic pole 16; Two
Sample holding means 2 for holding the sample 22a between the magnetic poles 18 of the
X-ray detection means 40 that detects X-rays 110 emitted when the sample 22a is irradiated with the electron beam 112.
In an electron microscope equipped with
It is an electron microscope provided with an X-ray detection means characterized by arranging a ray transmission film 76.
【0010】またこの発明は、電子線112を発射させ
る電子銃2aと、第1の磁極116と第1の磁極116
から所定の間隔をあけて設けられた第2の磁極118と
を有する対物レンズ6と、第1の磁極116と第2の磁
極118の間に試料22aを保持する試料保持手段2
2,26と、試料22aに電子線112を照射させた際
に、放射されるX線110を検出するX線検出手段40
を備えた電子顕微鏡において、対物レンズ6の側部にX
線の放射方向を揃える放射方向制御部材180を備え、
放射方向制御部材180の端部にX線透過膜176を配
置したことを特徴とするX線検出手段を備えた電子顕微
鏡である。Further, according to the present invention, an electron gun 2a for emitting an electron beam 112, a first magnetic pole 116 and a first magnetic pole 116 are provided.
From the objective lens 6 having a second magnetic pole 118 provided at a predetermined distance from the sample holding means 2 for holding the sample 22a between the first magnetic pole 116 and the second magnetic pole 118.
X-ray detection means 40 that detects X-rays 110 emitted when the sample 22a is irradiated with the electron beam 112.
In an electron microscope equipped with
A radial direction control member 180 for aligning the radial directions of the lines is provided,
This is an electron microscope equipped with an X-ray detection means characterized in that an X-ray transmission film 176 is arranged at the end of the radiation direction control member 180.
【0011】好ましくはX線検出手段40にX線検出素
子50を備えさせ、X線検出素子50と対向する端部で
X線110を通過させる開口部61に高分子膜62を配
置させている。Preferably, the X-ray detecting means 40 is provided with the X-ray detecting element 50, and the polymer film 62 is arranged in the opening 61 through which the X-ray 110 passes at the end portion facing the X-ray detecting element 50. ..
【0012】また好ましくは放射方向制御部材180は
コリメータである。Also preferably, the radiation direction control member 180 is a collimator.
【0013】[0013]
【作用】対物レンズの側部にX線透過膜76を配置して
いるので、試料の加熱をしてもその輻射熱をX線透過膜
で防ぎ、X線検出手段40のUTW膜などの保護膜を破
損しない。Since the X-ray transmission film 76 is arranged on the side of the objective lens, even if the sample is heated, the radiant heat is prevented by the X-ray transmission film, and the protective film such as the UTW film of the X-ray detection means 40 is protected. Will not be damaged.
【0014】[0014]
【実施例】実施例1 図1は、この発明の電子顕微鏡の好適な実施例を示して
いる。Embodiment 1 FIG. 1 shows a preferred embodiment of the electron microscope of the present invention.
【0015】この電子顕微鏡は、透過型の電子顕微鏡で
あり、鏡筒1、電子銃室2、カメラ室36を有してい
る。電子銃室2には電子銃2aが配置されている。鏡筒
1の中には、集束レンズ4、対物レンズ6、中間レンズ
8、投影レンズ10を備えている。This electron microscope is a transmission electron microscope and has a lens barrel 1, an electron gun chamber 2 and a camera chamber 36. An electron gun 2 a is arranged in the electron gun chamber 2. The lens barrel 1 includes a focusing lens 4, an objective lens 6, an intermediate lens 8 and a projection lens 10.
【0016】集束レンズ4の下には対物レンズ6が位置
している。対物レンズ6は、第1励磁コイル12と第2
励磁コイル14を備えている。図2に示すように、第1
励磁コイル12の上側磁極16と第2励磁コイル14の
下側磁極18の間には、ギャップ20が形成されてい
る。An objective lens 6 is located below the focusing lens 4. The objective lens 6 includes a first exciting coil 12 and a second exciting coil 12.
The exciting coil 14 is provided. As shown in FIG.
A gap 20 is formed between the upper magnetic pole 16 of the exciting coil 12 and the lower magnetic pole 18 of the second exciting coil 14.
【0017】このギャップ20には試料22aの保持手
段として、試料ステージ22が挿入されている。この試
料ステージ22は、電子線112に対して横方向からギ
ャップ20に挿入される、いわゆるサイドエントリー方
式となっている。試料ステージ22は、ゴニオーメータ
26によりたとえばX,Y,Z座標にそれぞれそった移
動および回転操作が行える。試料ステージ22の上には
試料22aがのっている。A sample stage 22 is inserted into the gap 20 as a means for holding the sample 22a. The sample stage 22 is of a so-called side-entry type in which the sample stage 22 is inserted into the gap 20 laterally with respect to the electron beam 112. The sample stage 22 can be moved and rotated by the goniometer 26 along the X, Y, and Z coordinates, respectively. A sample 22 a is placed on the sample stage 22.
【0018】図1に示すように、中間レンズ8は第2励
磁コイル14の下に位置している。投影レンズ10は中
間レンズ8の下に位置している。As shown in FIG. 1, the intermediate lens 8 is located below the second exciting coil 14. The projection lens 10 is located below the intermediate lens 8.
【0019】図1に示すように、鏡筒1の下部は、観察
室30となっている。観察室30は観察窓32と投影ス
クリーン34を備えている。観察室30の下にはカメラ
室36が形成されている。As shown in FIG. 1, the lower part of the lens barrel 1 is an observation room 30. The observation room 30 includes an observation window 32 and a projection screen 34. A camera room 36 is formed below the observation room 30.
【0020】電子銃室2、鏡筒1、およびカメラ室36
の中は真空排気手段(図示せず)により排気して高真空
状態に保つことができる。The electron gun chamber 2, the lens barrel 1, and the camera chamber 36
The inside can be evacuated by vacuum evacuation means (not shown) to maintain a high vacuum state.
【0021】図1に示すように対物レンズ6の付近に
は、X線検出手段40が配置されている。As shown in FIG. 1, an X-ray detecting means 40 is arranged near the objective lens 6.
【0022】図1と図2に示すようにX線検出手段40
は、軸42、この軸42の支持部44、X方向移動操作
部46、X線検出素子50、信号分析手段52を有して
いる。As shown in FIGS. 1 and 2, X-ray detecting means 40
Has a shaft 42, a support part 44 for the shaft 42, an X-direction movement operation part 46, an X-ray detection element 50, and a signal analysis means 52.
【0023】このX線検出手段40は、エネルギー分散
型のX線分光法(EDS)を行うものである。The X-ray detecting means 40 performs energy dispersive X-ray spectroscopy (EDS).
【0024】図1と図2に示すように、支持部44の内
端60は試料室106に対応して配置されている。内端
60の中の軸42にはX線検出素子50が配置されてい
る。内端60には開口部61が形成されている。開口部
61はUTW膜62でおおわれている。UTW膜62
は、たとえば厚さがサブミクロンの有機膜(たとえばパ
ラレン、C8 H8 )や無機膜にAlを保護膜として蒸着
した高分子膜ともいう超薄膜である。このUTW膜62
により炭素Cより軽元素の分析(C〜U)が可能であ
る。As shown in FIGS. 1 and 2, the inner end 60 of the support portion 44 is arranged corresponding to the sample chamber 106. An X-ray detection element 50 is arranged on the shaft 42 in the inner end 60. An opening 61 is formed at the inner end 60. The opening 61 is covered with the UTW film 62. UTW film 62
Is an ultrathin film also called a polymer film in which Al is deposited as a protective film on an organic film (for example, paralene, C 8 H 8 ) having a thickness of submicron or an inorganic film. This UTW film 62
Enables analysis of elements lighter than carbon C (C to U).
【0025】図1に示すように軸42の外端66はブロ
ック体68に固定されている。As shown in FIG. 1, the outer end 66 of the shaft 42 is fixed to the block body 68.
【0026】X線検出素子50は、半導体素子たとえば
Si単結晶にLiをドリフトした検出素子である。The X-ray detection element 50 is a semiconductor element, for example, a detection element obtained by drifting Li in a Si single crystal.
【0027】図1と図2に示すX方向移動操作部46
は、次のような構成となっている。このX方向移動操作
部46は手動式のものである。支持部44に対してL形
の基部92が固定されている。基部92には送りねじ9
4が設けられている。回転体96を手でA方向に回すこ
とで送りねじ94が回る。これによりブロック体68は
ガイド98に沿ってX方向に移動可能である。つまり軸
42をX方向に移動でき、これによりX線検出素子50
は内端60の中でX方向に移動する。X線検出素子50
の受面51はX線が入射しやすいように所定の角度で傾
斜している。The X-direction movement operation section 46 shown in FIGS. 1 and 2.
Has the following configuration. The X-direction movement operation unit 46 is of a manual type. An L-shaped base portion 92 is fixed to the support portion 44. The base 92 has a lead screw 9
4 are provided. By turning the rotating body 96 in the A direction by hand, the feed screw 94 turns. Accordingly, the block body 68 can move in the X direction along the guide 98. In other words, the shaft 42 can be moved in the X direction, which allows the X-ray detection element 50 to be moved.
Moves in the X direction within the inner end 60. X-ray detection element 50
The receiving surface 51 is inclined at a predetermined angle so that X-rays can easily enter.
【0028】X線検出素子50と前置増幅器(図示せ
ず)は、図1の液体窒素デュワ128で冷却する。なぜ
なら、Si単結晶における熱励起イオンの発生をおさえ
たり、前置増幅器の低雑音化を図るためである。The X-ray detecting element 50 and the preamplifier (not shown) are cooled by the liquid nitrogen dewar 128 shown in FIG. This is because the generation of thermally excited ions in the Si single crystal is suppressed and the noise of the preamplifier is reduced.
【0029】図2に示す対物レンズ6の上側磁極16と
下側磁極18の間には、リングともいう側壁部70を有
している。この側壁部70に開口部74が形成されてい
る。好ましくは円形の開口部74にはX線透過膜76と
してのBe膜74が設けられている。Be膜74は、試
料22aを高温(たとえば1000℃)に加熱してもそ
の輻射熱に耐えうる。試料室106は真空に保つことが
できる。A side wall portion 70 also called a ring is provided between the upper magnetic pole 16 and the lower magnetic pole 18 of the objective lens 6 shown in FIG. An opening 74 is formed in the side wall 70. A Be film 74 as an X-ray transmissive film 76 is preferably provided in the circular opening 74. The Be film 74 can withstand the radiant heat even if the sample 22a is heated to a high temperature (for example, 1000 ° C.). The sample chamber 106 can be maintained in a vacuum.
【0030】電子線112が試料22aに照射される
と、特性X線110がX線透過膜76とUTW膜62を
通りX線検出素子50で検出される。When the sample 22a is irradiated with the electron beam 112, the characteristic X-ray 110 passes through the X-ray transmission film 76 and the UTW film 62 and is detected by the X-ray detection element 50.
【0031】このように、開口部74にBe膜などのX
線透過膜76を設けるかもしくは貼ることによって、試
料22aを図示しない加熱手段によりたとえば1000
℃に加熱した状態でも、用いたエネルギー分散型X線分
光(EDS)用のX線検出手段40のUTW膜62を守
ることができる。したがって、別の新たなBe膜を備え
たエネルギー分散型X線分光用のX線検出手段と交換す
る必要はなく、高温状態の試料22aの電子顕微鏡観察
とX線分析が同時に行える。As described above, the X film such as a Be film is formed in the opening 74.
By providing or sticking the line permeable film 76, the sample 22a is heated to a temperature of, for example, 1000 by a heating means (not shown).
The UTW film 62 of the X-ray detection means 40 for energy dispersive X-ray spectroscopy (EDS) used can be protected even in the state of being heated to ° C. Therefore, it is not necessary to replace with another X-ray detection means for energy dispersive X-ray spectroscopy provided with a new Be film, and the electron microscope observation and the X-ray analysis of the sample 22a in the high temperature state can be performed at the same time.
【0032】図3はこの発明の電子顕微鏡の別の実施例
を示している。FIG. 3 shows another embodiment of the electron microscope of the present invention.
【0033】この実施例では、対物レンズ6の上側磁極
116と下側磁極118の間には、側壁部170を有し
ている。側壁部170には開口部174が形成されてい
る。好ましくは円形の開口部174にはコリメータとよ
ばれる放射方向制御部材180を有する。放射方向制御
部材180はチューブ状であり、この端部にはBe膜な
どのX線透過膜176が設けられている。In this embodiment, a side wall portion 170 is provided between the upper magnetic pole 116 and the lower magnetic pole 118 of the objective lens 6. An opening 174 is formed in the side wall 170. The preferably circular opening 174 has a radiation direction control member 180 called a collimator. The radiation direction control member 180 is in the shape of a tube, and an X-ray transmission film 176 such as a Be film is provided at this end.
【0034】電子線112が試料22aに照射される
と、特性X線110が放射方向制御部材180により方
向制御され、そしてX線透過膜176とUTW膜62を
通りX線検出素子50で検出される。When the sample 22a is irradiated with the electron beam 112, the characteristic X-ray 110 is directionally controlled by the radiation direction control member 180, passes through the X-ray transmission film 176 and the UTW film 62, and is detected by the X-ray detection element 50. It
【0035】上記各実施例において、対物レンズの側部
にX線透過膜を配置しているので、試料の加熱をしても
その輻射熱をX線透過膜で防ぎ、X線検出手段40のU
TW膜62などの保護膜を破損しない。In each of the above-mentioned embodiments, since the X-ray transmission film is arranged on the side of the objective lens, even if the sample is heated, the radiant heat is prevented by the X-ray transmission film, and the X-ray detection means 40 U.
The protective film such as the TW film 62 is not damaged.
【0036】ところでこの発明は上述の実施例に限定さ
れない。X線透過膜76,176はBe膜だけでなく、
たとえば別の元素膜もしくは金属物質膜が採用できる。
また、図3に示すX線透過膜176に代えて放射方向制
御部材180の内端にX線透過膜を設けてもよい。The present invention is not limited to the above embodiment. The X-ray transparent films 76 and 176 are not limited to Be films,
For example, another element film or metal substance film can be adopted.
Further, instead of the X-ray transmission film 176 shown in FIG. 3, an X-ray transmission film may be provided on the inner end of the radiation direction control member 180.
【0037】また図4に示すように開口部61にはUT
W膜62のないウィンド・レス形式であってもよい。Further, as shown in FIG. 4, a UT is provided in the opening 61.
It may be a windowless type without the W film 62.
【0038】さらに図5に示すように開口部61にはU
TW膜62のないウィンド・レス形式であってもよい。Further, as shown in FIG.
A windowless type without the TW film 62 may be used.
【0039】[0039]
【発明の効果】請求項1の発明によれば、試料を加熱し
て観察する場合に、X線透過膜により試料からの輻射熱
がX線検出手段のUTW膜などの保護膜に達するのを阻
止できる。このため、X線検出手段を交換する必要がな
い。したがって加熱した試料の電子顕微鏡観察と特性X
線の分析を同時に行える。According to the first aspect of the invention, when the sample is heated and observed, the radiant heat from the sample is prevented from reaching the protective film such as the UTW film of the X-ray detecting means by the X-ray transmitting film. it can. Therefore, it is not necessary to replace the X-ray detecting means. Therefore, the electron microscopic observation of the heated sample and the characteristic X
Line analysis can be performed simultaneously.
【0040】請求項2の発明によれば、試料を加熱して
観察する場合に、X線透過膜により試料からの輻射熱が
X線検出手段のUTW膜などの保護膜に達するのを阻止
できる。このため、X線検出手段を交換する必要がな
い。したがって加熱した試料の電子顕微鏡観察と特性X
線の分析を同時に行える。しかも放射方向制御手段によ
り特性X線を効率よくX線検出手段に向けることができ
る。According to the second aspect of the present invention, when the sample is heated and observed, the radiant heat from the sample can be prevented from reaching the protective film such as the UTW film of the X-ray detection means by the X-ray transmission film. Therefore, it is not necessary to replace the X-ray detecting means. Therefore, the electron microscopic observation of the heated sample and the characteristic X
Line analysis can be performed simultaneously. Moreover, the radiation direction control means can efficiently direct the characteristic X-rays to the X-ray detection means.
【図1】この発明の電子顕微鏡の実施例を示す図。FIG. 1 is a diagram showing an embodiment of an electron microscope of the present invention.
【図2】図1の実施例のX線検出手段と対物レンズを示
す拡大図。FIG. 2 is an enlarged view showing an X-ray detection means and an objective lens of the embodiment shown in FIG.
【図3】この発明の電子顕微鏡の第2の実施例を示す拡
大図。FIG. 3 is an enlarged view showing a second embodiment of the electron microscope of the present invention.
【図4】この発明の電子顕微鏡の第3の実施例を示す
図。FIG. 4 is a diagram showing a third embodiment of the electron microscope of the present invention.
【図5】この発明の電子顕微鏡の第4の実施例を示す
図。FIG. 5 is a diagram showing a fourth embodiment of the electron microscope of the present invention.
【図6】従来の電子顕微鏡におけるX線検出手段と対物
レンズを示す拡大図。FIG. 6 is an enlarged view showing an X-ray detection means and an objective lens in a conventional electron microscope.
2a 電子銃 6 対物レンズ 16 上側磁極(第1の磁極) 18 下側磁極(第2の磁極) 22a 試料 22 試料ステージ 40 X線検出手段 62 UTW膜(保護膜) 180 放射方向制御部材 ◆ 2a Electron gun 6 Objective lens 16 Upper magnetic pole (first magnetic pole) 18 Lower magnetic pole (second magnetic pole) 22a Sample 22 Sample stage 40 X-ray detection means 62 UTW film (protective film) 180 Radiation direction control member ◆
Claims (4)
(2a)と、 第1の磁極(16)と第1の磁極(16)から所定の間
隔をあけて設けられた第2の磁極(18)とを有する対
物レンズ(6)と、 第1の磁極(16)と第2の磁極(18)の間に試料
(22a)を保持する試料保持手段(22,26)と、 試料(22a)に電子線(112)を照射させた際に、
放射されるX線(110)を検出するX線検出手段(4
0)を備えた電子顕微鏡において、 対物レンズ(6)の側部にX線透過膜(76)を配置し
たことを特徴とする電子顕微鏡。1. An electron gun (2a) for emitting an electron beam (112), a first magnetic pole (16), and a second magnetic pole (2) provided at a predetermined distance from the first magnetic pole (16). An objective lens (6) having 18), sample holding means (22, 26) for holding the sample (22a) between the first magnetic pole (16) and the second magnetic pole (18), and the sample (22a ) Is irradiated with an electron beam (112),
X-ray detection means (4) for detecting the emitted X-ray (110)
The electron microscope equipped with the X-ray transmission film (76) on the side of the objective lens (6) in the electron microscope equipped with 0).
(2a)と、 第1の磁極(116)と第1の磁極(116)から所定
の間隔をあけて設けられた第2の磁極(118)とを有
する対物レンズ(6)と、 第1の磁極(116)と第2の磁極(118)の間に試
料(22a)を保持する試料保持手段(22,26)
と、 試料(22a)に電子線(112)を照射させた際に、
放射されるX線(110)を検出するX線検出手段(4
0)を備えた電子顕微鏡において、 対物レンズ(6)の側部にX線の放射方向を揃える放射
方向制御部材(180)を備え、放射方向制御部材(1
80)の端部にX線透過膜(176)を配置したことを
特徴とする電子顕微鏡。2. An electron gun (2a) for emitting an electron beam (112), a first magnetic pole (116), and a second magnetic pole (spaced from the first magnetic pole (116) by a predetermined distance. Sample holding means (22, 26) for holding a sample (22a) between a first magnetic pole (116) and a second magnetic pole (118).
When the sample (22a) is irradiated with the electron beam (112),
X-ray detection means (4) for detecting the emitted X-ray (110)
0) equipped with a radiation direction control member (180) for aligning the radiation direction of X-rays on the side of the objective lens (6).
An electron microscope having an X-ray transparent film (176) arranged at the end of 80).
(50)を備え、X線検出素子(50)と対向する端部
でX線(110)を通過させる開口部(61)に高分子
膜(62)を配置させたことを特徴とする請求項1また
は請求項2に記載の電子顕微鏡。3. The X-ray detection means (40) is provided with an X-ray detection element (50), and an opening (61) through which the X-ray (110) passes at an end portion facing the X-ray detection element (50). The electron microscope according to claim 1 or 2, wherein a polymer film (62) is arranged.
タであることを特徴とする請求項2に記載のX線検出手
段を備えた電子顕微鏡。4. The electron microscope with X-ray detection means according to claim 2, wherein the radiation direction control member (180) is a collimator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4069371A JPH05234556A (en) | 1992-02-20 | 1992-02-20 | Electron microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4069371A JPH05234556A (en) | 1992-02-20 | 1992-02-20 | Electron microscope |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05234556A true JPH05234556A (en) | 1993-09-10 |
Family
ID=13400638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4069371A Pending JPH05234556A (en) | 1992-02-20 | 1992-02-20 | Electron microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05234556A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013513215A (en) * | 2009-12-07 | 2013-04-18 | オックスフォード インストルメンツ ナノテクノロジー ツールス リミテッド | X-ray analyzer |
-
1992
- 1992-02-20 JP JP4069371A patent/JPH05234556A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013513215A (en) * | 2009-12-07 | 2013-04-18 | オックスフォード インストルメンツ ナノテクノロジー ツールス リミテッド | X-ray analyzer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6329523B2 (en) | Environmental cell for charged particle beam systems | |
JP5534646B2 (en) | Apparatus for observing a sample with a microscope using a particle beam and light | |
US5629969A (en) | X-ray imaging system | |
EP2317536B1 (en) | Detection device and particle beam device having a detection device | |
JP2017212194A (en) | Charged-particle microscope with in situ deposition functionality | |
US9536701B2 (en) | Radiation analyzer including a support for tilting an energy-dispersive radiation detector | |
JP7105647B2 (en) | Diffraction pattern detection in transmission charged particle microscope | |
JP2019194585A (en) | Eels detection technique in electron microscope | |
JP2021018988A (en) | Method of manufacturing charged particle detector | |
KR102029869B1 (en) | Detachable Sample Chamber for Electron Microscope and Electron Microscope Comprising The Same | |
JP3231516B2 (en) | Electron beam micro analyzer | |
US10937626B2 (en) | Holder and charged particle beam apparatus | |
US6552341B1 (en) | Installation and method for microscopic observation of a semiconductor electronic circuit | |
JPH05234556A (en) | Electron microscope | |
US20170336336A1 (en) | Quantitative analysis device for trace carbon and quantitative analysis method for trace carbon | |
US5457725A (en) | Analyzing method for foreign matter states | |
JP3684106B2 (en) | Deposition equipment | |
JPH0660873B2 (en) | Luminescence measuring device | |
US3209146A (en) | Apparatus for adjusting position of a sample for electron probe x-ray microanalyzer | |
JPH02843Y2 (en) | ||
JP2005222817A (en) | Scanning electron microscope provided with function of x-ray microscope | |
US20240161999A1 (en) | Laser Thermal Epitaxy in a Charged Particle Microscope | |
Muro et al. | In situ positioning of a few hundred micrometer-sized cleaved surfaces for soft-x-ray angle-resolved photoemission spectroscopy by use of an optical microscope | |
JPH05151923A (en) | Electron beam device | |
JP2002352759A (en) | Electron beam device provided with field emission type electron gun |