JPH05232094A - Ion chromatography measuring method and its device - Google Patents

Ion chromatography measuring method and its device

Info

Publication number
JPH05232094A
JPH05232094A JP6924892A JP6924892A JPH05232094A JP H05232094 A JPH05232094 A JP H05232094A JP 6924892 A JP6924892 A JP 6924892A JP 6924892 A JP6924892 A JP 6924892A JP H05232094 A JPH05232094 A JP H05232094A
Authority
JP
Japan
Prior art keywords
column
ion
ions
measured
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6924892A
Other languages
Japanese (ja)
Inventor
Makiko Tamaoki
真希子 玉置
Kiyoko Yamazaki
貴代子 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP6924892A priority Critical patent/JPH05232094A/en
Publication of JPH05232094A publication Critical patent/JPH05232094A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To improve analytic sureness and realize simple measuring by removing coexisting opposition electric charge ions at the front step of an enrichment column. CONSTITUTION:The 1st and 2nd six-way valves 20, 21 are set at the route of a solid line. A sample solution 10 is delivered by means of a liquid delivering pump 14 to a positive ion removing column 17 via the valve 20, and only positive ions in the solution 10 are adsorbed and removed therein, and the solution 10 containing negative ions alone is delivered to a negative ion enrichment column 18 via valves 20, 21. Negative ions are adsorbed therein, and the enrichment of negative ions is conducted by continuing to let the solution 10 flow for a fixed time. The solution 10 that has passed the column 18 is discharged from a waste liquid drain 24 via the valve 21. During this time, an eluate 11 is delivered to a negative ion separation column 19 and the inside of it is washed. After the solution 10 is enriched for a fixed time, valves 20, 21 are switched over to the route shown by dotted lines. The eluate 11 is delivered to the column 18 through the valve 21, and enriched negative ions are conducted with elution and delivery to the column 19 via the valve 21 is carried out. The separation of this is conducted at the column 19 and delivery to a detection portion 23 is carried out, and analysis is conducted therein.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオンクロマトグラフ
ィー測定方法とその装置とに関するもので、特に例えば
数 ppmレベルの陽イオン(または数十 ppmレベルの陰イ
オン)を含む水中の微量陰イオン(または陽イオン)不
純物の測定に使用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion chromatography measuring method and an apparatus therefor, and in particular, trace anions in water containing cations (or tens of ppm anions) of several ppm level ( (Or cation) impurities.

【0002】[0002]

【従来の技術】水質に関する環境測定や半導体プロセス
で使用する純水等では、水中の ppb(10-9)レベルでの
微量陰イオン量測定が必要である。
2. Description of the Related Art For environmental measurement of water quality, pure water used in semiconductor processes, etc., it is necessary to measure the amount of trace anions at a ppb (10 -9 ) level in water.

【0003】従来このような分析は、イオンクロマトグ
ラフィーを用いて測定することが規格化されており、図
10に示すような構成の装置が用いられる。
Conventionally, such an analysis has been standardized to be measured by using ion chromatography, and an apparatus having a structure as shown in FIG. 10 is used.

【0004】この装置は、微量な陰イオンを測定する装
置で、試料溶液1、溶離液2、試料溶液送液ポンプ3、
溶離液送液ポンプ4、陰イオン濃縮カラム5、陰イオン
分離カラム6、六方バルブ7等から構成されている。
This device is a device for measuring a minute amount of anions, and includes a sample solution 1, an eluent 2, a sample solution delivery pump 3,
The eluent feed pump 4, anion concentration column 5, anion separation column 6, hexagonal valve 7 and the like are included.

【0005】試料溶液1は、六方バルブ7の円周枠内の
実線経路を通り、次に濃縮カラム5を通過することによ
り陰イオンのみを吸着濃縮し、ドレイン8より廃液され
る。なお六方バルブ7が実線Aの位置にある場合をAモ
ードと呼ぶことにする。このように試料溶液1を一定時
間(一定量)流し、微量の陰イオンの濃縮を行なう。
The sample solution 1 passes through the solid line path in the circumferential frame of the hexagonal valve 7 and then passes through the concentration column 5 to adsorb and concentrate only anions, and is drained from the drain 8. The case where the hexagonal valve 7 is at the position indicated by the solid line A will be referred to as A mode. In this way, the sample solution 1 is allowed to flow for a fixed time (fixed amount) to concentrate a trace amount of anions.

【0006】上記のように、一定量の試料溶液1に含ま
れる陰イオンの濃縮を行なった後、六方バルブ7を点線
Bの経路に切り替える。このBモードでは、溶離液2
は、六方バルブ7の点線Bの経路を通り、濃縮カラム5
に吸着濃縮された陰イオンを溶離して、分離カラム6で
分離し、検出部9へ送って所定の分析を行なう。
As described above, after the anion contained in the fixed amount of the sample solution 1 is concentrated, the hexagonal valve 7 is switched to the path of the dotted line B. In this B mode, eluent 2
Passes through the path of the dotted line B of the hexagonal valve 7 and passes through the concentration column 5
The anions that have been adsorbed and concentrated on the column are eluted, separated by the separation column 6, and sent to the detection unit 9 for predetermined analysis.

【0007】以上陽イオン共存中の陰イオン測定につい
て述べたが、逆の陰イオン共存中の微量陽イオン測定に
ついても同様で、陰イオン濃縮カラム及び陰イオン分離
カラムをそれぞれ陽イオン濃縮カラム及び陽イオン分離
カラムに代えて分析を行なうことができる。
Although the measurement of anions in the presence of cations has been described above, the same applies to the measurement of trace amounts of cations in the reverse coexistence of anions. Anion concentration column and anion separation column are respectively used as a cation concentration column and a cation concentration column. Analysis can be performed in place of the ion separation column.

【0008】しかしながら上記従来の方法では、陽イオ
ンが数ppm (10-6)以上共存する試料溶液1中の微量の
陰イオンを測定する場合、特に弗素イオン(F- )や塩
素イオン(Cl - )等の測定においては、濃縮カラム5
の陰イオン濃縮効率(吸着された陰イオン量/流入した
試料溶液中の陰イオン量)が低下し、実際の値よりも陰
イオン測定値が低くなる現象が見られ、その程度も共存
する陽イオンの濃度によって異なり、分析確度が著しく
低下していた。
[0008] However, in the above conventional method, when measuring a small amount of anions in a sample solution 1 coexisting cation number ppm (10 -6) above, in particular fluorine ions (F -) and chlorine ions (Cl - ) Etc., the concentration column 5
The anion concentration efficiency (amount of adsorbed anions / amount of anions in the sample solution that flowed in) was decreased, and the measured value of anions was lower than the actual value. The analysis accuracy was significantly reduced, depending on the ion concentration.

【0009】また陰イオンが数十ppm 以上共存する試料
溶液中の陽イオンを測定する場合にも、陽イオン濃縮カ
ラムの濃縮効率が低下し、上記と同様な現象が見られ、
分析確度が著しく低下していた。
Also, when measuring cations in a sample solution in which anions coexist at several tens of ppm or more, the concentration efficiency of the cation concentration column decreases, and the same phenomenon as described above is observed.
The analysis accuracy was significantly reduced.

【0010】[0010]

【発明が解決しようとする課題】これまで述べたよう
に、試料溶液中の被測定イオンを、濃縮カラムで一定量
濃縮した後、分離カラムで被測定イオンを分離測定する
従来方法においては、被測定イオンが微量な陰イオンま
たは陽イオンであり、かつ被測定イオンでないイオンが
それぞれの反対電荷を持つ陽イオンまたは陰イオンであ
るある場合においては、濃縮カラムの被測定イオンの濃
縮効率が反対電荷のイオン濃度の影響により低下し、そ
の低下の程度も、反対電荷のイオンの濃度により変動
し、その結果被測定イオンの分析確度を著しく悪くする
という課題があった。
As described above, in the conventional method of concentrating a certain amount of the ions to be measured in the sample solution in the concentration column and then separately measuring the ions to be measured in the separation column, When the measured ion is a small amount of anion or cation and the non-measured ion is a cation or anion having opposite charges, the concentration efficiency of the measured ion in the concentration column is opposite. However, there is a problem in that the degree of the decrease is also affected by the concentration of the oppositely charged ions, and as a result, the analytical accuracy of the measured ions is significantly deteriorated.

【0011】このような問題点を改善するため、次のよ
うな方法が用いられている。例えば試料溶液中の被測定
イオンが微量な陰イオンであり、被測定イオンでない陽
イオンが共存している場合においては、前記試料溶液中
の共存陽イオンと同濃度の陽イオンを添加した標準溶液
を調製して、検量線を求め、これを利用して陰イオンの
測定をすることができる。しかしながらこの方法では、
共存する陽イオン濃度が変わるごとに標準溶液を調製す
る必要があり、手間がかかると共に不作為な誤差も追加
されるという課題がある。
In order to improve such problems, the following method is used. For example, when the measured ion in the sample solution is a small amount of anion and a cation that is not the measured ion coexists, a standard solution to which the same concentration of cation as the coexisting cation in the sample solution is added Can be prepared to obtain a calibration curve, which can be used to measure anions. However, with this method,
It is necessary to prepare a standard solution every time the coexisting cation concentration changes, which is troublesome and adds a random error.

【0012】これまで述べたように、試料溶液中のイオ
ンをイオンクロマトグラフィーにて測定するに際し、試
料溶液中に被測定イオンと共存する極性反対の電荷を持
つイオンが含まれる場合、この共存イオンの影響により
分析確度が低下するという課題があり、また共存イオン
を添加した標準溶液を使用する方法は手間がかかる等の
課題がある。本発明は、これらの課題を解決し、分析確
度を向上し、かつ簡便に測定できるイオンクロマトグラ
フィー測定方法とその装置を提供することを目的とす
る。
As described above, when the ion in the sample solution is measured by ion chromatography, when the sample solution contains an ion having a charge opposite in polarity that coexists with the ion to be measured, the coexisting ion However, there is a problem in that the accuracy of analysis is reduced due to the influence of, and the method of using a standard solution to which coexisting ions are added is troublesome. It is an object of the present invention to provide an ion chromatography measurement method and an apparatus therefor, which can solve these problems, improve the analysis accuracy, and perform simple measurement.

【0013】[0013]

【課題を解決するための手段】本発明の請求項1に係る
イオンクロマトグラフィー測定方法は、被測定イオンが
陰イオンであり被測定イオン以外のイオンが陽イオンで
ある場合、または被測定イオンが陽イオンであり被測定
イオン以外のイオンが陰イオンである場合における試料
溶液中のイオンをイオンクロマトグラフィーにて測定す
る方法において、 被測定イオン以外のイオンを除去し
た後に被測定イオンを測定することを特徴とするイオン
クロマトグラフィー測定方法である。
The ion chromatography measurement method according to claim 1 of the present invention is such that when the ion to be measured is an anion and an ion other than the ion to be measured is a cation, or the ion to be measured is When measuring ions in a sample solution by ion chromatography when ions other than the ions to be measured are cations and anions other than the ions to be measured, measure the ions to be measured after removing the ions other than the ions to be measured. And an ion chromatography measurement method characterized by:

【0014】また本発明の請求項2に係るイオンクロマ
トグラフ装置は、被測定イオン濃縮カラム及び被測定イ
オン分離カラムの前段に被測定イオン以外のイオンを除
去する除去カラムを設けると共に前記除去カラムに再生
液を流して再生する手段及び前記除去カラムに純水を流
して洗浄する手段とを具備することを特徴とする請求項
1記載の測定方法を実施する装置である。
Further, in the ion chromatograph apparatus according to claim 2 of the present invention, a removal column for removing ions other than the ions to be measured is provided in front of the ion concentration column to be measured and the ion separation column to be measured, and the removal column is provided. The apparatus for carrying out the measuring method according to claim 1, further comprising: a unit for flowing a regeneration liquid to regenerate and a unit for flowing deionized water to wash the removal column.

【0015】[0015]

【作用】被測定イオン濃縮カラムは、試料溶液中の被測
定イオンと共存する極性反対の電荷イオンの影響を受
け、その被測定イオン濃縮効率が低下するという現象
を、試行により発見した。
[Function] The phenomenon that the measured ion concentration column is affected by the charged ions of the opposite polarities coexisting with the measured ion in the sample solution and the concentration efficiency of the measured ion is lowered was found by trial.

【0016】したがって本発明においては、試料溶液中
の前記共存する反対電荷イオンを除去カラムにより除去
した後、濃縮カラムで被測定イオンを一定量濃縮し、被
測定イオン分離カラムで被測定イオンを分離測定する。
これにより被測定イオン濃縮カラムの濃縮効率は、向上
すると共に一定値となり、分析確度は大幅に向上する。
また従来技術のように、共存する反対電荷イオンの濃度
に対応してその都度該イオンを添加した標準溶液を調製
する必要もなくなり、より簡便に測定できる。
Therefore, in the present invention, after the coexisting oppositely charged ions in the sample solution are removed by the removal column, the concentration of the measured ions is concentrated by the concentration column and the measured ions are separated by the measured ion separation column. taking measurement.
As a result, the concentration efficiency of the measured ion concentration column is improved and becomes a constant value, and the analysis accuracy is significantly improved.
Further, unlike the prior art, it is not necessary to prepare a standard solution to which coexisting oppositely charged ions are added in response to the concentration of the oppositely charged ions, so that the measurement can be performed more easily.

【0017】[0017]

【実施例】以下本発明の一実施例を図1を参照して説明
する。同図は、陽イオンを含む水中の微量陰イオン不純
物の測定を行なう場合の本発明のイオンクロマトグラフ
装置のフロー図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. This figure is a flow chart of the ion chromatograph apparatus of the present invention when measuring a trace amount of anionic impurities in water containing cations.

【0018】該装置は、試料溶液10、溶離液11、再
生液12、純水13、試料溶液送液ポンプ14、溶離液
送液ポンプ15、再生液及び純水送液ポンプ16、陽イ
オン除去カラム17、陰イオン濃縮カラム18、陰イオ
ン分離カラム19、第1六方バルブ20、第2六方バル
ブ21、三方バルブ22及びこれらを接続する配管等か
ら構成されている。符号23はサプレッサー、検出器等
からなる検出部、符号24、25は廃液用ドレインであ
る。
The apparatus comprises a sample solution 10, an eluent 11, a regenerant 12, a pure water 13, a sample solution delivery pump 14, an eluent delivery pump 15, a regenerant and pure water delivery pump 16, cation removal. The column 17, an anion concentration column 18, an anion separation column 19, a first hexagonal valve 20, a second hexagonal valve 21, a three-way valve 22 and pipes connecting them are provided. Reference numeral 23 is a detection unit including a suppressor and a detector, and reference numerals 24 and 25 are drains for waste liquid.

【0019】次に上記構成のイオンクロマトグラフ装置
を使用する測定方法の実施例について説明する。
Next, an example of a measuring method using the ion chromatograph having the above-mentioned structure will be described.

【0020】まず第1六方バルブ20及び第2六方バル
ブ21は、それぞれ円周枠内の実線の経路(Aモードと
呼ぶ)に設定しておく。試料溶液10は、送液ポンプ1
4により、第1六方バルブ20の実線経路を経て、陽イ
オン除去カラム17へ送られる。陽イオン除去カラム1
7では、試料溶液の中の陽イオンのみが吸着除去され
る。被測定イオンのみを含む試料溶液は、第1及び第2
の六方バルブ20及び21の実線経路を通って、陰イオ
ン濃縮カラム18へ送られる。陰イオン濃縮カラム18
では、溶液中の陰イオンが吸着され、一定時間(すなわ
ち一定容量)試料溶液を上記状態で流し続けることによ
り、被測定イオンの濃縮を行なう。濃縮カラム18を通
過した試料溶液は、第2六方バルブ21の実線経路を経
て、廃液用ドレイン24から排出される。
First, the first six-way valve 20 and the second six-way valve 21 are set in the paths (referred to as A mode) indicated by solid lines in the circumferential frame. The sample solution 10 is a liquid feed pump 1
4, it is sent to the cation removal column 17 via the solid line path of the first hexagonal valve 20. Cation removal column 1
In 7, only cations in the sample solution are adsorbed and removed. The sample solution containing only the ions to be measured is the first and second
Is sent to the anion concentration column 18 through the solid line paths of the hexagonal valves 20 and 21 of FIG. Anion concentration column 18
Then, the anions in the solution are adsorbed, and the sample solution is continuously flowed in the above state for a certain period of time (that is, a certain volume) to concentrate the ions to be measured. The sample solution that has passed through the concentration column 18 is discharged from the waste liquid drain 24 through the solid line path of the second hexagonal valve 21.

【0021】このAモードの間、溶離液11は、送液ポ
ンプ15により、第2六方バルブ21の実線経路を経
て、陰イオン分離カラム19へ送液され、該分離カラム
19内を洗浄する。
During the A mode, the eluent 11 is sent by the liquid feed pump 15 to the anion separation column 19 through the solid line path of the second hexagonal valve 21 to wash the inside of the separation column 19.

【0022】試料溶液10を一定時間濃縮後、第1及び
第2六方バルブ20及び21を点線の経路(Bモードと
呼ぶ)に切り換える。溶離液11は、送液ポンプ15に
より、第2六方バルブ21の点線経路を通り、陰イオン
濃縮カラム18に入り、該カラムに吸着濃縮された陰イ
オンを溶離し、次ぎに第2六方バルブ21の他の点線経
路を経て陰イオン分離カラム19に入り分離され、検出
部23に送られ分析される。
After concentrating the sample solution 10 for a certain period of time, the first and second hexagonal valves 20 and 21 are switched to the paths of dotted lines (referred to as B mode). The eluent 11 passes through the dotted line path of the second hexagonal valve 21 by the liquid delivery pump 15, enters the anion concentration column 18, elutes the anions that have been adsorbed and concentrated in the column, and then the second hexagonal valve 21. Then, it enters the anion separation column 19 via the other dotted line path, is separated, and is sent to the detection unit 23 for analysis.

【0023】上記Bモードの間、再生液及び純水送液ポ
ンプ16が稼働し、再生液12は、三方バルブ22の実
線経路を経て、第1六方バルブ20の点線経路を通り、
陽イオン除去カラム17に送液される。陽イオン除去カ
ラム17に吸着されている陽イオンは再生液により除去
される。使用済みの再生液は、第1六方バルブの他の点
線経路を経て廃液ドレイン25より排出される。一定時
間再生液12を流した後、三方バルブ22を点線の経路
に切り換える。純水13は、三方バルブ22の点線経路
を経て、送液ポンプ16により、第1六方バルブ20の
点線経路を通り、陽イオン除去カラム17へ送液され、
該除去カラム17を洗浄する。
During the B mode, the regenerant and pure water feed pump 16 is operated, and the regenerant 12 passes through the solid line path of the three-way valve 22 and the dotted line path of the first hexagonal valve 20,
The solution is sent to the cation removal column 17. The cations adsorbed on the cation removal column 17 are removed by the regenerant. The used regenerating liquid is discharged from the waste liquid drain 25 through another dotted line path of the first hexagonal valve. After flowing the regeneration liquid 12 for a certain period of time, the three-way valve 22 is switched to the path indicated by the dotted line. The pure water 13 is sent to the cation removal column 17 by the liquid feed pump 16 via the dotted line path of the three-way valve 22 and the dotted line path of the first hexagonal valve 20.
The removal column 17 is washed.

【0024】次にアンモニウムイオン(NH4 + )を共
存陽イオンとし、その濃度をパラメータ(10ppm,1ppm,
0.1ppm,0ppmの 4種)とし、各濃度のNH4 + の共存溶
液中の微量弗素イオン(F- )及び塩素イオン(Cl
- )の検量線測定を行なった。その結果を図2ないし
図5に示す。図2及び図3は、図10に示す従来装置を
用いて測定した結果、図4及び図5は、図1に示す本発
明装置を用いて測定した結果である。また図2及び図4
は、Fイオンの、また図3及び図5はCl イオンの検量
線を示す。横軸は被測定イオンの濃度(ppb )、縦軸
は、検出器で実測される波形のピーク高さである。
Next, ammonium ion (NH 4 + ) was used as a coexisting cation, and its concentration was used as a parameter (10 ppm, 1 ppm,
0.1 ppm, 0 ppm), and trace amounts of fluorine ions (F ) and chlorine ions (Cl) in coexisting solutions of NH 4 + at various concentrations.
- ) Calibration curve was measured. The results are shown in FIGS. 2 to 5. 2 and 3 show the results of measurement using the conventional apparatus shown in FIG. 10, and FIGS. 4 and 5 show the results of measurement using the apparatus of the present invention shown in FIG. 2 and 4
Shows the calibration curve of F ion, and FIGS. 3 and 5 show the calibration curve of Cl ion. The horizontal axis represents the concentration of measured ions (ppb), and the vertical axis represents the peak height of the waveform actually measured by the detector.

【0025】従来装置を用いた図2及び図3では、NH
4 + の共存により実測されるピーク値の低下が見られ、
NH4 + 濃度の増加にともなって低下の程度も大きく、
検量線はより緩やかな傾斜を示す。このため従来装置で
は、共存するNH4 + の濃度を考慮しない場合には分析
確度が極めて低くなる。正確な陰イオン濃度の測定を行
なうためには、試料溶液と同濃度の陽イオンを添加した
標準溶液を調製する必要があった。
In FIGS. 2 and 3 using the conventional apparatus, NH
There is a decrease in the measured peak value due to the coexistence of 4 + ,
With the increase of NH 4 + concentration, the degree of decrease is large,
The calibration curve shows a more gradual slope. Therefore, in the conventional apparatus, the analysis accuracy is extremely low unless the coexisting NH 4 + concentration is taken into consideration. In order to measure the anion concentration accurately, it was necessary to prepare a standard solution containing the same concentration of cations as the sample solution.

【0026】他方、同様の試料を本発明の装置を用いて
測定した図4及び図5では、溶液中のNH4 + 濃度にか
かわらず検量線の傾きが一定になっている。
On the other hand, in FIGS. 4 and 5 in which the same sample was measured using the apparatus of the present invention, the slope of the calibration curve is constant regardless of the NH 4 + concentration in the solution.

【0027】すなわち図1に示す本発明の装置では、陽
イオン除去カラムで試料溶液中の陽イオンを除去した
後、陰イオンの濃縮を行なうため、濃縮カラムの陰イオ
ン濃縮効率の低下を防ぐことができ、そのため、本発明
の装置では、陽イオン添加標準溶液を用いずに簡単に確
度よく微量陰イオンの測定を行なえるようになった。
That is, in the apparatus of the present invention shown in FIG. 1, since the cations in the sample solution are removed by the cation removal column and then the anions are concentrated, a decrease in the anion concentration efficiency of the concentration column is prevented. Therefore, the apparatus of the present invention can easily and accurately measure a trace amount of anions without using a cation-added standard solution.

【0028】上記実施例では、被測定イオンが陰イオン
であり、被測定イオン以外のイオンが陽イオンである場
合について説明した。上記説明で、陰イオンと陽イオン
とを互いに取り換えた場合、すなわち被測定イオンが陽
イオンであり、被測定イオン以外のイオンが陰イオンで
ある場合においては、そのイオンクロマトグラフ装置
は、陽イオン濃縮カラム及び陽イオン分離カラムの前段
に陰イオン除去カラムを設けると共に陰イオン除去カラ
ム再生液及び陰イオン除去カラム洗浄用純水の流路を具
備する装置とすればよい。
In the above embodiment, the case where the ions to be measured are negative ions and the ions other than the ions to be measured are positive ions have been described. In the above description, when the anion and the cation are exchanged with each other, that is, when the measured ion is a cation and the ion other than the measured ion is an anion, the ion chromatograph apparatus uses the cation. The apparatus may be provided with an anion removal column in front of the concentration column and the cation separation column, and an anion removal column regenerant and a pure water channel for washing the anion removal column.

【0029】図10に示す従来装置及び図2に示す本発
明装置のフロー図において、陰イオンに代えて陽イオ
ン、陽イオンに代えて陰イオンとした構成要素を持つそ
れぞれの装置を使用して、図2ないし図5に示すような
検量線測定を行なった。その結果を図6ないし図9に示
す。図6及び図7は前記従来装置、図8及び図9は前記
本発明装置を用いて求めたものであり、また図6と図8
とは、Fイオンを共存陰イオンとし、その濃度をパラメ
ータ(30ppm,10ppm,0ppmの 3種)とし、各濃度のF-
存溶液中の微量アンモニウムイオン(NH4 + )の検量
線測定の結果であり、図7と図9とは、Cl イオンを共
存陰イオンとし、その濃度をパラメータ(50ppm,30ppm,
0ppm)とし,各濃度のCl - 共存溶液中の微量NH4 +
の検量線測定の結果である。
In the flow charts of the conventional apparatus shown in FIG. 10 and the apparatus of the present invention shown in FIG. 2, the respective apparatuses having the constituents of cations instead of anions and anions instead of cations are used. A calibration curve measurement as shown in FIGS. 2 to 5 was performed. The results are shown in FIGS. 6 to 9. 6 and 7 are obtained by using the conventional apparatus, FIGS. 8 and 9 are obtained by using the apparatus of the present invention, and FIGS.
Is the result of calibration curve measurement of trace ammonium ion (NH 4 + ) in F - coexisting solution at each concentration, with F ion as coexisting anion and its concentration as parameter (30 ppm, 10 ppm, 0 ppm) 7 and 9 show that Cl ion is a coexisting anion and the concentration thereof is a parameter (50 ppm, 30 ppm,
0 ppm), and trace amounts of NH 4 + in each concentration of Cl - coexisting solution
Is the result of calibration curve measurement.

【0030】図6ないし図9に示す検量線測定結果によ
れば、図2ないし図5の場合と同様、従来装置では、共
存陰イオンの影響により陽イオン濃縮カラムの濃縮効率
が著しく低下し、分析確度が低くなるが、本発明の装置
では、前段で共存陰イオンを除去するため、該共存陰イ
オンの影響を受けることなく検量線の傾きは常に一定
で、高い確度の分析結果が得られる。
According to the calibration curve measurement results shown in FIGS. 6 to 9, as in the case of FIGS. 2 to 5, in the conventional apparatus, the concentration efficiency of the cation concentration column was significantly reduced due to the influence of coexisting anions. Although the analysis accuracy is low, the apparatus of the present invention removes the coexisting anions in the previous stage, so that the slope of the calibration curve is always constant without being affected by the coexisting anions, and high-accuracy analysis results can be obtained. ..

【0031】[0031]

【発明の効果】被測定イオン濃縮カラムの濃縮効率が、
被測定イオンと共存する反対電荷を持つイオンの影響を
受け低下するが、本発明においては、共存する反対電荷
イオンを前記濃縮カラムの前段において除去するので、
この共存イオンの影響により分析確度が低下するという
課題も解決され、また共存イオンを添加した標準溶液を
調製する手間も省略できる。本発明により、分析確度を
向上し、かつ簡便に測定できるイオンクロマトグラフィ
ー測定方法とその装置を提供することができた。
The concentration efficiency of the ion concentration column to be measured is
It decreases due to the influence of ions having opposite charges coexisting with the ion to be measured, but in the present invention, since coexisting opposite charges ions are removed in the preceding stage of the concentration column,
The problem that the analysis accuracy is lowered due to the influence of the coexisting ions is also solved, and the labor for preparing the standard solution to which the coexisting ions are added can be omitted. According to the present invention, it is possible to provide an ion chromatography measurement method and an apparatus therefor which can improve the analysis accuracy and can perform the measurement easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のイオンクロマトグラフ装置
における構成要素のフロー図である。
FIG. 1 is a flow chart of components in an ion chromatograph device according to an embodiment of the present invention.

【図2】従来装置を用いたNH4 + 共存溶液中の微量F
- の検量線の測定結果である。
FIG. 2 Trace F in NH 4 + coexisting solution using conventional equipment
- the measurement results of the calibration curve.

【図3】従来装置を用いたNH4 + 共存溶液中の微量C
l - の検量線の測定結果である。
FIG. 3 Trace amount C in NH 4 + coexisting solution using a conventional device
l - is a measurement result of the calibration curve.

【図4】本発明装置を用いたNH4 + 共存溶液中の微量
- の検量線の測定結果である。
FIG. 4 is a measurement result of a calibration curve of a small amount of F − in an NH 4 + coexisting solution using the device of the present invention.

【図5】本発明装置を用いたNH4 + 共存溶液中の微量
Cl - の検量線の測定結果である。
FIG. 5 is a measurement result of a calibration curve of a trace amount of Cl − in an NH 4 + coexisting solution using the device of the present invention.

【図6】従来装置を用いたF- 共存溶液中の微量NH4
+ の検量線の測定結果である。
FIG. 6 Trace amount of NH 4 in F coexisting solution using a conventional apparatus
This is the measurement result of the + calibration curve.

【図7】従来装置を用いたCl - 共存溶液中の微量NH
4 + の検量線の測定結果である。
FIG. 7: Trace amount NH in Cl - coexisting solution using a conventional apparatus
It is the measurement result of the 4 + calibration curve.

【図8】本発明装置を用いたF- 共存溶液中の微量NH
4 + の検量線の測定結果である。
FIG. 8: Trace NH in F coexisting solution using the device of the present invention
It is the measurement result of the 4 + calibration curve.

【図9】本発明装置を用いたCl - 共存溶液中の微量N
4 + の検量線の測定結果である。
FIG. 9: Trace N in Cl - coexisting solution using the device of the present invention
It is a measurement result of a calibration curve of H 4 + .

【図10】従来技術のイオンクロマトグラフ装置におけ
る構成要素のフロー図である。
FIG. 10 is a flow diagram of components in a conventional ion chromatograph device.

【符号の説明】[Explanation of symbols]

10 試料溶液 11 溶離液 12 再生液 13 純水 14〜16 送液ポンプ 17 陽イオン除去カラム 18 陰イオン濃縮カラム 19 陰イオン分離カラム 20 第1六方バルブ 21 第2六方バルブ 22 三方バルブ 23 検出部 24,25 ドレイン 10 Sample Solution 11 Eluent 12 Regeneration Liquid 13 Pure Water 14-16 Liquid Delivery Pump 17 Cation Removal Column 18 Anion Concentration Column 19 Anion Separation Column 20 First Six-way Valve 21 Second Six-way Valve 22 Three-way Valve 23 Detector 24 , 25 drain

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被測定イオンが陰イオンであり被測定イオ
ン以外のイオンが陽イオンである場合、または被測定イ
オンが陽イオンであり被測定イオン以外のイオンが陰イ
オンである場合における試料溶液中のイオンをイオンク
ロマトグラフィーにて測定する方法において、 被測定イオン以外のイオンを除去した後に被測定イオン
を測定することを特徴とするイオンクロマトグラフィー
測定方法。
1. A sample solution when the ion to be measured is an anion and an ion other than the ion to be measured is a cation, or when the ion to be measured is a cation and an ion other than the ion to be measured is an anion. A method for measuring ions in a sample by ion chromatography, which comprises measuring ions to be measured after removing ions other than the ions to be measured.
【請求項2】被測定イオン濃縮カラム及び被測定イオン
分離カラムの前段に被測定イオン以外のイオンを除去す
る除去カラムを設けると共に前記除去カラムに再生液を
流して再生する手段及び前記除去カラムに純水を流して
洗浄する手段とを具備することを特徴とする請求項1記
載の測定方法を実施するイオンクロマトグラフ装置。
2. A removal column for removing ions other than the ions to be measured is provided before the ion concentration column to be measured and the ion separation column to be measured, and a means for regenerating a regeneration liquid by flowing through the removal column and the removal column. An ion chromatograph device for carrying out the measuring method according to claim 1, further comprising a means for flowing pure water to wash.
JP6924892A 1992-02-18 1992-02-18 Ion chromatography measuring method and its device Withdrawn JPH05232094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6924892A JPH05232094A (en) 1992-02-18 1992-02-18 Ion chromatography measuring method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6924892A JPH05232094A (en) 1992-02-18 1992-02-18 Ion chromatography measuring method and its device

Publications (1)

Publication Number Publication Date
JPH05232094A true JPH05232094A (en) 1993-09-07

Family

ID=13397257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6924892A Withdrawn JPH05232094A (en) 1992-02-18 1992-02-18 Ion chromatography measuring method and its device

Country Status (1)

Country Link
JP (1) JPH05232094A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071836A (en) * 2008-09-19 2010-04-02 Yokogawa Electric Corp Method and device for measuring ion chromatograph
CN103394211A (en) * 2013-08-21 2013-11-20 利穗科技(苏州)有限公司 Apparatus for rapidly separating and purifying organic compounds and separation and purification method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071836A (en) * 2008-09-19 2010-04-02 Yokogawa Electric Corp Method and device for measuring ion chromatograph
CN103394211A (en) * 2013-08-21 2013-11-20 利穗科技(苏州)有限公司 Apparatus for rapidly separating and purifying organic compounds and separation and purification method

Similar Documents

Publication Publication Date Title
Aldstadt et al. Determination of uranium by flow injection inductively coupled plasma mass spectrometry
EP1924853B1 (en) Ion chromatography system including sample pretreatment and using a single pump
US5567307A (en) System and a method for using a small suppressor column in performing liquid chromatography
JPH05232094A (en) Ion chromatography measuring method and its device
JP2845698B2 (en) Method and apparatus for measuring anions contained in condensate in condensate circulation system
JP2007033232A (en) Enriched ion chromatograph measuring method and enriched ion chromatograph measuring device
JPH02141659A (en) Analysis of sample and liquid chromatography apparatus
JP3806343B2 (en) Boron automatic analyzer and method
JP3299362B2 (en) Method and apparatus for gradient analysis of liquid chromatography
Kocjan et al. Silica gel modified with methylthymol blue for separation and preconcentration of trace amounts of heavy metals from some salts
JP6315430B2 (en) Method and apparatus for analyzing target substance
KR101566400B1 (en) Analytical method of perchlorate in water with ion chromatography
JPS62255865A (en) Liquid chromatograph
JPH01299458A (en) Quantitative analysis method of alkaline earth metal by ion chromatography method
JP3956508B2 (en) Inorganic anion analysis method
KR101990556B1 (en) Analyzing method for chemical polishing solution
JP3470062B2 (en) Liquid chromatograph mass spectrometer
Morin‐Allory et al. Automatic sugar analysis in the beet industry. Part II: Apparatus and results
JP3312425B2 (en) Method and apparatus for analyzing metallic impurity elements in high-purity metallic materials
JP2001056326A (en) Method for refining and measuring serotonin and 5- hydroxyindole acetic acid
JPH0451800B2 (en)
JPH01292249A (en) Quantitative analysis of alkaline earth metal by ion chromatography
Karmarkar Quick ion chromatographic determination of sulfate alone in soil extracts and natural waters
JPH0820428B2 (en) Anion analyzer
JP2000187026A (en) Method for measuring impurity in air

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518