JPH05232007A - Voif fraction measuring device - Google Patents
Voif fraction measuring deviceInfo
- Publication number
- JPH05232007A JPH05232007A JP3615792A JP3615792A JPH05232007A JP H05232007 A JPH05232007 A JP H05232007A JP 3615792 A JP3615792 A JP 3615792A JP 3615792 A JP3615792 A JP 3615792A JP H05232007 A JPH05232007 A JP H05232007A
- Authority
- JP
- Japan
- Prior art keywords
- detector
- integration
- radiation
- logarithmic conversion
- subjected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Radiation (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、放射線を利用したボイ
ド率測定装置に係り、特にボイド率の時間平均値を精度
よく測定する機能を有するボイド率測定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a void fraction measuring device using radiation, and more particularly to a void fraction measuring device having a function of accurately measuring a time average value of void fractions.
【0002】[0002]
【従来の技術】従来の放射線を利用したボイド率測定装
置としてはCT(Computed Tomography:断層撮影)装置
を利用したものがある。その構造は、特許からみたX線
CT、特許庁編(1986年)第81頁から第83頁に記
載のように、X線源にX線管を使用して連続してX線を
照射し、X線検出器は第160頁から第161頁に記載
のように、検出素子の後に増幅器、積分器、A/D変換
器を通った信号がLOG変換器を通る際に対数変換され
るようになったいた。このとき対数変換は専用の変換器
を用いる場合もあれば、計算機のソフトウエアで処理す
る場合もあった。2. Description of the Related Art As a conventional void fraction measuring apparatus utilizing radiation, there is one utilizing a CT (Computed Tomography) apparatus. The structure is such that X-ray CT from the viewpoint of patents, X-rays are continuously irradiated using an X-ray tube as an X-ray source, as described on pages 81 to 83 of the Japan Patent Office (1986). As described on pages 160 to 161, the X-ray detector is designed so that a signal passing through an amplifier, an integrator, and an A / D converter after a detection element is logarithmically converted when passing through a LOG converter. It was At this time, the logarithmic conversion may be performed by using a dedicated converter or may be processed by computer software.
【0003】[0003]
【発明が解決しようとする課題】上記従来技術は医療用
に普及している装置をボイド率測定に利用するものであ
るが、ボイドの動きが早く、一断面あたりの断層撮影時
間内では撮影部分の状態が変わるので測定精度が極めて
悪いという問題があった。一例として、配管内に流れる
二層流のボイド率を測定する場合で、ある特定の断面を
撮影しているときについて考える。始めに測定する瞬間
にボイドが撮影位置に存在しボイド率100%であり放射
線の計数値が1000カウントであったとする。そして
次に測定する瞬間にはボイドが撮影位置からずれてボイ
ド率0%になり放射線の計数値が10カウントになった
とする。以上のサイクルが連続して発生し測定間隔が等
間隔であれば、平均のボイド率は50%であり放射線の
計数値は100カウントになるはずであるが、実際の計
数値の平均は505カウントであり、この計数値をもと
に逆算したボイド率は85%となり実際の数値と大きく
ずれるという問題があった。The above-mentioned prior art utilizes a device which is widely used for medical purposes for measuring the void rate. However, the void moves quickly, and the imaged portion is taken within the tomographic imaging time per cross section. However, there was a problem that the measurement accuracy was extremely poor because the state of was changed. As an example, consider a case where a void ratio of a two-layer flow flowing in a pipe is measured and a specific cross section is photographed. It is assumed that a void exists at the imaging position at the first measurement time, the void ratio is 100%, and the radiation count value is 1000 counts. Then, at the moment of the next measurement, it is assumed that the void shifts from the imaging position, the void rate becomes 0%, and the radiation count value becomes 10 counts. If the above cycles occur continuously and the measurement intervals are equal, the average void ratio is 50% and the radiation count value should be 100 counts, but the actual count value average is 505 counts. Therefore, there is a problem that the void ratio calculated back based on this count value is 85%, which is largely different from the actual value.
【0004】本発明の目的は、ボイド率の時間平均を正
確に求めることにある。An object of the present invention is to accurately obtain the time average of the void fraction.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、パルス状にX線を発生するX線源と、電流型放射線
検出器,増幅器,対数変換器、及び積分又は平均回路で
装置を構成したものである。In order to achieve the above object, an apparatus including an X-ray source for generating X-rays in a pulse shape, a current type radiation detector, an amplifier, a logarithmic converter, and an integrating or averaging circuit is provided. It is composed.
【0006】また、連続的にX線又はγ線を発生する放
射線源と、電流型放射線検出器,増幅器,対数変換器、
及び積分又は平均回路で装置を構成したものである。Further, a radiation source for continuously generating X-rays or γ-rays, a current type radiation detector, an amplifier, a logarithmic converter,
And an integrating or averaging circuit.
【0007】さらに、連続的にX線又はγ線を発生する
放射線源と、パルス形放射線検出器,増幅器,ディスク
リ,カウンタ,対数変換器、及び積分又は平均回路で装
置を構成したものである。Further, the apparatus is composed of a radiation source for continuously generating X-rays or γ-rays, a pulse type radiation detector, an amplifier, a discriminator, a counter, a logarithmic converter, and an integrating or averaging circuit. ..
【0008】なお電流型放射線検出器を使用する場合、
増幅器の後にサンプルホ−ルド及びA/D変換器を設
け、デジタル信号を計算機処理で対数変換及び積分又は
平均処理するばあいも可である。When using a current type radiation detector,
It is also possible to provide a sample hold and an A / D converter after the amplifier and logarithmically transform and integrate or average the digital signal by computer processing.
【0009】[0009]
【作用】上記の放射線検出器以降の回路では、測定値を
対数変換した後に時間積分又は平均処理をすることによ
り、ボイド率の時間平均値を正確に求めることができ
る。In the circuit after the radiation detector, the time average value of the void ratio can be accurately obtained by logarithmically converting the measured value and then performing time integration or averaging.
【0010】[0010]
【実施例】以下、本発明の一実施例を第1図により説明
する。第1図において放射線源1は加速器等のパルス状
にX線を発生する装置である。被検体2はパイプに二層
流を流したものである。二層流は水や油等の液体に気体
が混ざったものであり、本装置は気体の割合(体積)を
測定するものである。検出器3は半導体検出器又はシン
チレ−タと光電変換素子を組み合わせたものであり、検
出器3からの出力電流は増幅器4で電圧に変換されると
共に増幅され、その信号は対数変換器5で対数変換され
る。対数変換された信号は積分又は平均処理回路6で時
間積分又は平均化処理される。本実施例によれば透過デ
−タの瞬時値を対数変換した後に時間積分することによ
り、ボイド率を精度よく求めることができる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, the radiation source 1 is an apparatus such as an accelerator that generates pulsed X-rays. The subject 2 is a pipe having a two-layer flow. The two-layer flow is a mixture of gas such as water and oil with gas, and this device measures the ratio (volume) of gas. The detector 3 is a combination of a semiconductor detector or a scintillator and a photoelectric conversion element. The output current from the detector 3 is converted into a voltage by the amplifier 4 and amplified, and the signal thereof is converted by the logarithmic converter 5. Logarithmically converted. The logarithmically converted signal is subjected to time integration or averaging processing by the integration or averaging processing circuit 6. According to the present embodiment, the void ratio can be accurately obtained by logarithmically converting the instantaneous value of the transmission data and then performing time integration.
【0011】本発明の第二の実施例を第2図に示す。第
2図で放射線源1はX線管又はγ線源等の放射線を一定
強度で発生する装置である。被検体2はパイプに二層流
を流したものであり、検出器3は半導体検出器又はシン
チレ−タと光電変換素子を組み合わせたものである。そ
して、検出器3からの出力電流は増幅器4で電圧に変換
されると共に増幅され、その信号は対数変換器5で対数
変換される。対数変換された信号は積分又は平均処理回
路6で時間積分又は平均化処理される。本実施例によれ
ば透過デ−タを対数変換した後に時間積分することによ
り、ボイド率を精度よく求めることができる。A second embodiment of the present invention is shown in FIG. In FIG. 2, the radiation source 1 is an apparatus such as an X-ray tube or a γ-ray source that generates radiation with a constant intensity. The subject 2 is a pipe in which a two-layer flow is applied, and the detector 3 is a combination of a semiconductor detector or scintillator and a photoelectric conversion element. The output current from the detector 3 is converted into a voltage by the amplifier 4 and amplified, and the signal is logarithmically converted by the logarithmic converter 5. The logarithmically converted signal is subjected to time integration or averaging processing by the integration or averaging processing circuit 6. According to this embodiment, the void ratio can be accurately obtained by logarithmically converting the transmission data and then performing time integration.
【0012】本発明の第三の実施例を第3図に示す。第
3図で放射線源1はγ線源等の放射線を一定強度で発生
する装置である。被検体2はパイプに二層流を流したも
のであり、検出器3はシンチレ−タと光電子像倍管等の
放射線のフォトンに対応してパルス状に信号を出す素子
を組み合わせたものである。そして、検出器3からの出
力電流は増幅器4で電圧に変換されると共に増幅され、
その信号はディスクリ7で特定の強度のもののみ選択さ
れカウンタ−8で計数される。計数値は対数変換器5で
対数変換され、対数変換された信号は積分又は平均処理
回路6で時間積分又は平均化処理される。本実施例によ
れば透過デ−タを対数変換した後に時間積分することに
より、ボイド率を精度よく求めることができる。A third embodiment of the present invention is shown in FIG. In FIG. 3, a radiation source 1 is an apparatus such as a γ-ray source that generates radiation with a constant intensity. The subject 2 is a pipe in which a two-layer flow is applied, and the detector 3 is a combination of a scintillator and an element such as a photoelectron multiplier which outputs a signal in pulses corresponding to photons of radiation. .. The output current from the detector 3 is converted into a voltage and amplified by the amplifier 4,
Only the signal having a specific intensity is selected by the discretion 7 and counted by the counter-8. The count value is logarithmically converted by the logarithmic converter 5, and the logarithmically converted signal is time-integrated or averaged by the integration or averaging circuit 6. According to the present embodiment, the void ratio can be accurately obtained by logarithmically converting the transmission data and then performing time integration.
【0013】本発明の第四の実施例を第4図に示す。第
4図は本発明を断層撮影装置に適用した場合を示す。第
4図で放射線源1は加速器、X線管、γ線源等の放射線
を発生する装置である。被検体2はパイプに二層流を流
したものであり、検出器3はシンチレ−タと光電変換素
子を組み合わせたもの又は半導体検出器等の放射線検出
器である。放射線源1と検出器3はCTスキャナ−9の
上に設置し、並進又は回転走査をする。そして、検出器
3からの出力は信号処理装置10内で増幅、A/D変換
された後演算装置11で対数変換処理及び積分又は平均
処理される。被検体2を通るあらゆる方向からの透過デ
−タを収集し、前記方法で処理の後演算装置11でCT
のアルゴリズムに基づいて演算することにより、二層流
の断層像を表示装置12上に求めることができる。本実
施例によれば透過デ−タを対数変換した後に時間積分す
ることにより、ボイド率を精度よく求めることができる
と共に、ア−チファクト等の画像上のエラ−を最小に押
さえた断層像を求めれる効果がある。A fourth embodiment of the present invention is shown in FIG. FIG. 4 shows a case where the present invention is applied to a tomography apparatus. In FIG. 4, the radiation source 1 is a device that generates radiation, such as an accelerator, an X-ray tube, a γ-ray source. The subject 2 is a pipe in which a two-layer flow is applied, and the detector 3 is a combination of a scintillator and a photoelectric conversion element or a radiation detector such as a semiconductor detector. The radiation source 1 and the detector 3 are installed on the CT scanner-9 and perform translational or rotational scanning. Then, the output from the detector 3 is amplified and A / D converted in the signal processing device 10 and then subjected to logarithmic conversion processing and integration or averaging processing in the arithmetic device 11. Transmission data from all directions passing through the subject 2 is collected, processed by the above-mentioned method, and then CT is calculated by the arithmetic unit 11.
The tomographic image of the two-layer flow can be obtained on the display device 12 by performing the calculation based on the algorithm. According to this embodiment, the void ratio can be accurately obtained by logarithmically converting the transmission data and then performing time integration, and a tomographic image in which an error such as an artifact on the image is suppressed to a minimum. There is a desired effect.
【0014】[0014]
【発明の効果】本発明によれば、放射線検出器出力を対
数変換した後に積分又は平均処理することにより、ボイ
ド率の時間平均を精度よく求めることができる効果があ
る。According to the present invention, there is an effect that the time average of the void fraction can be accurately obtained by logarithmically converting the radiation detector output and then performing integration or averaging.
【0015】また本発明を用いた断層撮影装置はア−チ
ファクト等の画像のエラ−の少ない品質の高い断層像を
求めることができる効果がある。Further, the tomography apparatus using the present invention is effective in obtaining a high-quality tomographic image with little error in images such as artifacts.
【図1】本発明の一実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.
【図2】本発明の他の実施例を示すブロック図。FIG. 2 is a block diagram showing another embodiment of the present invention.
【図3】本発明の他の実施例を示すブロック図。FIG. 3 is a block diagram showing another embodiment of the present invention.
【図4】本発明の他の実施例を示すブロック図。FIG. 4 is a block diagram showing another embodiment of the present invention.
1…放射線源、2…被検体、3…放射線検出器、4…増
幅器、5…対数変換器、6…積分および平均処理回路、
7…ディスクリ、8…椎名。1 ... Radiation source, 2 ... Subject, 3 ... Radiation detector, 4 ... Amplifier, 5 ... Logarithmic converter, 6 ... Integration and averaging circuit,
7 ... Discrete, 8 ... Shiina.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮井 裕史 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Miyai 1168 Moriyama-cho, Hitachi, Hitachi
Claims (4)
から成る装置において、検出器回路の構成を対数変換回
路の後に積分又は平均処理回路を設けたことを特徴とす
るボイド率測定装置。1. A void fraction measuring device comprising a radiation source, a radiation detector and a detector circuit, wherein a detector circuit is provided with an integration or averaging circuit after the logarithmic conversion circuit.
て、パルス状に放射線を発生する装置を用いたことを特
徴とするボイド率測定装置。2. A void fraction measuring device according to claim 1, wherein a device for generating radiation in a pulse shape is used.
いて、サンプルホ−ルド又はピ−クホ−ルド回路の後に
A/D変換器を設け、A/D変換器の出力を計算機に入
力し、計算機内で対数変換処理した後積分又は平均処理
することを特徴とするボイド率測定装置。3. The detector circuit according to claim 1, wherein an A / D converter is provided after the sample-hold or peak-hold circuit, and the output of the A / D converter is input to a computer. Then, the void fraction measuring device is characterized by performing logarithmic conversion processing in a computer and then performing integration or averaging processing.
の装置を断層撮影装置の放射線源及び検出器系に用いた
ことを特徴とする断層撮影装置型ボイド率測定装置。4. A tomography apparatus-type void fraction measuring apparatus, characterized in that the apparatus according to any one of claims 1 to 3 is used for a radiation source and a detector system of a tomography apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3615792A JPH05232007A (en) | 1992-02-24 | 1992-02-24 | Voif fraction measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3615792A JPH05232007A (en) | 1992-02-24 | 1992-02-24 | Voif fraction measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05232007A true JPH05232007A (en) | 1993-09-07 |
Family
ID=12461941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3615792A Pending JPH05232007A (en) | 1992-02-24 | 1992-02-24 | Voif fraction measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05232007A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999060387A3 (en) * | 1998-05-18 | 1999-12-29 | Schlumberger Ltd | Method and apparatus for measuring multiphase flows |
-
1992
- 1992-02-24 JP JP3615792A patent/JPH05232007A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999060387A3 (en) * | 1998-05-18 | 1999-12-29 | Schlumberger Ltd | Method and apparatus for measuring multiphase flows |
US6097786A (en) * | 1998-05-18 | 2000-08-01 | Schlumberger Technology Corporation | Method and apparatus for measuring multiphase flows |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7894576B2 (en) | Spectral computed tomography using correlated photon number and energy measurements | |
US20090304149A1 (en) | X-ray detector imaging with polychromatic spectra | |
Fujita et al. | A simple method for determining the modulation transfer function in digital radiography | |
US20100193700A1 (en) | Spectral photon counting detector | |
US9535167B2 (en) | High flux photon counting detector electronics | |
EP0261696B1 (en) | A method for processing pulses by applying the technique of weighted acquisition | |
JPH0798041B2 (en) | Overrange correction circuit and overrange correction method | |
US5517544A (en) | Afterglow artifact reduction | |
JP4114717B2 (en) | CT equipment | |
Cohen et al. | Contrast‐detail‐Dose and dose efficiency analysis of a scanning digital and a screen‐film‐grid radiographic system | |
US8611625B2 (en) | Tomographic apparatus | |
Aufrichtig et al. | Dose efficiency and low-contrast detectability of an amorphous silicon x-ray detector for digital radiography | |
Starck et al. | The use of detective quantum efficiency (DQE) in evaluating the performance of gamma camera systems | |
JPH05232007A (en) | Voif fraction measuring device | |
JPH05217689A (en) | Method and device for x-ray photographing | |
EP0589467B1 (en) | Nuclear medicine imaging apparatus | |
Wagner et al. | Noise measurements on rare-earth intensifying screen systems | |
US8005183B2 (en) | Computed tomography device with active adaptation of the measuring electronics | |
JPH05216141A (en) | Method for processing radiographic image and radiographic imaging device | |
JP7309385B2 (en) | Method for calibrating photon-counting detectors | |
WO2018030055A1 (en) | Image processing device, x-ray imaging device, and image processing method | |
JPH03246481A (en) | Gamma ray scattering component removing device | |
Beck et al. | Theory of optimum utilization of all detected radiation | |
JPH0723876B2 (en) | Radiation analyzer | |
Granfors | DQE methodology—step by step |