JPH05231946A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH05231946A
JPH05231946A JP3810592A JP3810592A JPH05231946A JP H05231946 A JPH05231946 A JP H05231946A JP 3810592 A JP3810592 A JP 3810592A JP 3810592 A JP3810592 A JP 3810592A JP H05231946 A JPH05231946 A JP H05231946A
Authority
JP
Japan
Prior art keywords
film
layer
infrared
thermistor
narrow width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3810592A
Other languages
Japanese (ja)
Other versions
JP3129504B2 (en
Inventor
Takayoshi Awai
崇善 粟井
Atsushi Sakai
淳 阪井
Koichi Aizawa
浩一 相澤
Takuo Ishida
拓郎 石田
Keiji Kakinote
啓治 柿手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP04038105A priority Critical patent/JP3129504B2/en
Publication of JPH05231946A publication Critical patent/JPH05231946A/en
Application granted granted Critical
Publication of JP3129504B2 publication Critical patent/JP3129504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To obtain an infrared detector wherein a strain and a breakdown are not caused by an internal stress even when a heat insulation film is thinned, of which a manufacture yield is high and which shows high sensitivity and durability in use. CONSTITUTION:An infrared detector has a film-form body of a plurality of layers comprising a pair of electrode layers 30 and 50 and a thermistor layer 40 held between the two electrode layers 30 and 50, on a heat insulation film 20. The film-form body of at least one layer is formed in separation in a narrow width in a pattern wherein strip-shaped narrow-width parts separated by a break are juxtaposed in a folded and continuous manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、赤外線検出素子に関
し、くわしくは、温度変化に伴う抵抗が変化するサーミ
スタを利用して、赤外線を検出する赤外線検出素子に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared detecting element, and more particularly to an infrared detecting element for detecting infrared rays by using a thermistor whose resistance changes with temperature change.

【0002】[0002]

【従来の技術】従来、サーミスタを利用した赤外線検出
素子の一般的な構造としては、基板上に形成された熱絶
縁膜の上に、サーミスタと、サーミスタの両面を挟む一
対の電極とを重ねて形成しており、赤外線が当たって、
サーミスタの温度が上昇すると、サーミスタの抵抗が変
化するので、この抵抗変化を一対の電極で検出して、赤
外線が検知できるようになっている。検出感度を高める
ために、表面に赤外線吸収膜を設けて、サーミスタの温
度上昇および抵抗変化が迅速に行われるようにしたもの
もある。
2. Description of the Related Art Conventionally, as a general structure of an infrared detecting element using a thermistor, a thermistor and a pair of electrodes sandwiching both sides of the thermistor are superposed on a heat insulating film formed on a substrate. Is being formed and is hit by infrared rays,
When the temperature of the thermistor rises, the resistance of the thermistor changes. Therefore, it is possible to detect infrared rays by detecting this resistance change with a pair of electrodes. In some cases, an infrared absorption film is provided on the surface of the thermistor in order to increase the detection sensitivity so that the temperature rise and resistance change of the thermistor can be performed quickly.

【0003】赤外線検出素子は、物体や人体から放出さ
れる微弱な赤外線を検出するのに用いられることが多
く、このような用途では特に高感度が要求される。そこ
で、従来の赤外線検出素子では、基板の1部を堀り抜
き、この掘り抜いた中空部分を渡すように熱絶縁膜を形
成し、その上に電極およびサーミスタからなる赤外線検
出部を設置した、いわゆるダイアフラム構造のものがあ
る。この構造では、赤外線検出部で発生した熱が、基板
側に逃げ難くなるので、サーミスタの温度上昇および抵
抗変化が敏感に起こり、赤外線の検出感度が上昇する。
The infrared detecting element is often used for detecting the weak infrared rays emitted from an object or a human body, and particularly high sensitivity is required for such an application. Therefore, in the conventional infrared detection element, a part of the substrate is dug out, a heat insulating film is formed so as to pass through the hollowed out part, and an infrared detection part composed of an electrode and a thermistor is installed on the heat insulating film. There is a so-called diaphragm structure. In this structure, the heat generated in the infrared detecting section is unlikely to escape to the substrate side, so that the temperature rise and resistance change of the thermistor are sensitively performed, and the infrared detection sensitivity is increased.

【0004】このような赤外線検出素子は、静止物体や
静止人体から放射する赤外線を検出することも可能であ
り、振動により誤動作することもなく、衝撃にも強いと
いう利点を有している。また、半導体プロセスを利用し
て製造するので、大量生産が可能で、低コスト化を図る
こともできる。上記のような赤外線検出素子において
は、熱絶縁膜の熱抵抗をR、単位時間当たり単位面積に
入射する赤外線のエネルギーをI、赤外線吸収膜の面積
をSとすれば、赤外線検出部の温度上昇ΔTは、ΔT=
RISで表される。この式において、熱抵抗Rは、熱絶
縁膜の熱伝導率が小さい程、また、膜厚が薄い程大きく
なるので、温度上昇ΔTすなわち検出感度を高めるに
は、熱絶縁膜の熱伝導率が小さく、膜厚が薄いほど好ま
しいことになる。
Such an infrared detecting element is also capable of detecting infrared rays emitted from a stationary object or a stationary human body, and has the advantage that it does not malfunction due to vibration and is strong against shock. Further, since the semiconductor process is used for manufacturing, mass production is possible and cost reduction can be achieved. In the infrared detecting element as described above, if the thermal resistance of the heat insulating film is R, the energy of the infrared light incident on a unit area per unit time is I, and the area of the infrared absorbing film is S, the temperature rise of the infrared detecting portion will occur. ΔT is ΔT =
It is represented by RIS. In this equation, the thermal resistance R increases as the thermal conductivity of the thermal insulating film becomes smaller and as the film thickness becomes thinner. Therefore, in order to increase the temperature rise ΔT, that is, the detection sensitivity, the thermal conductivity of the thermal insulating film is The smaller and thinner the film, the more preferable.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記のよう
な従来の赤外線検出素子では、熱絶縁膜の歪みや破壊が
生じ易いという問題があった。これは、前記したような
構造の赤外線検出素子は、電極、サーミスタあるいは赤
外線吸収膜などの熱絶縁膜上に形成される構造体が、何
れも一定面積を有する矩形の膜状もしくは面状をなすの
で、素子の製造工程あるいは使用環境で、熱による膨張
収縮があると、各層毎の熱膨張率の違いによって、大き
な内部応力が発生し、この内部応力で、熱絶縁膜の歪み
や破壊が生じるのであった。前記したように、赤外線検
出素子の検出感度を高めるために、熱絶縁膜の下方の基
板を大きく掘り込んでいたり、熱絶縁膜の厚みを薄くし
ているほど、熱の吸収に伴う内部応力が大きくなり、熱
絶縁膜に歪みや破壊が生じる可能性が高くなってしま
う。したがって、検出感度を高めるために薄い熱絶縁膜
を設けた赤外線検出素子ほど、製造歩留りが低く、使用
時の耐久性にも劣ることになっていた。
However, the conventional infrared detecting element as described above has a problem that the thermal insulating film is apt to be distorted or broken. In the infrared detecting element having the above-mentioned structure, the structure formed on the heat insulating film such as the electrode, thermistor or infrared absorbing film is a rectangular film or a plane having a certain area. Therefore, if there is expansion and contraction due to heat in the element manufacturing process or the operating environment, a large internal stress is generated due to the difference in the coefficient of thermal expansion of each layer, and this internal stress causes distortion and destruction of the thermal insulation film. It was. As described above, in order to increase the detection sensitivity of the infrared detection element, the deeper the substrate under the heat insulating film is digged or the thinner the heat insulating film is, the more internal stress due to heat absorption is generated. As a result, the thermal insulation film becomes larger and is likely to be distorted or broken. Therefore, the infrared detection element provided with a thin thermal insulation film to increase the detection sensitivity has a lower manufacturing yield and is inferior in durability during use.

【0006】そこで、この発明の課題は、このような従
来技術の問題点を解消し、熱絶縁膜を薄くしても、内部
応力による歪みや破壊が生じず、製造歩留りが高く、使
用時には高い感度および耐久性を示すことのできる赤外
線検出素子を提供することにある。
Therefore, the object of the present invention is to solve the above problems of the prior art, and even if the thermal insulation film is thinned, distortion or breakage due to internal stress does not occur, the manufacturing yield is high, and it is high in use. An object of the present invention is to provide an infrared detection element capable of exhibiting sensitivity and durability.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する、こ
の発明にかかる赤外線検出素子は、熱絶縁膜上に、一対
の電極層および両電極層の間に挟まれたサーミスタ層を
含む複数層の膜状体を備えた赤外線検出素子において、
少なくとも1層の膜状体が、細幅に分離形成されてい
る。
In order to solve the above-mentioned problems, an infrared detecting element according to the present invention has a plurality of layers including a pair of electrode layers and a thermistor layer sandwiched between the electrode layers on a heat insulating film. In the infrared detection element provided with the film body of
At least one layer of film-like body is formed in a narrow width.

【0008】赤外線検出素子の基本的な構造は、従来の
サーミスタを利用した赤外線検出素子と同様の構造が採
用される。赤外線検出素子の赤外線検出部には、少なく
とも1層のサーミスタ層と、このサーミスタ層を挟む一
対の電極層が、基板上に形成された熱絶縁膜の上に設け
られる。熱絶縁膜の下方で基板を堀り込んでおいたり、
赤外線検出部を基板に支持する熱絶縁膜の幅を狭くして
おくなど、赤外線検出部の熱が外部に逃げ難い構造にし
ておいたり、サーミスタ層の上に、赤外線の吸収率が高
い赤外線吸収層や、特定の波長のみを選択的に吸収する
フィルタ層を形成しておくなど、通常の赤外線検出素子
に採用されている各種の構造を組み合わせて構成され
る。
As the basic structure of the infrared detecting element, the same structure as the infrared detecting element using a conventional thermistor is adopted. In the infrared detecting portion of the infrared detecting element, at least one thermistor layer and a pair of electrode layers sandwiching the thermistor layer are provided on the heat insulating film formed on the substrate. The substrate is dug under the thermal insulation film,
The width of the thermal insulation film that supports the infrared detection part on the substrate is made narrower so that the heat of the infrared detection part does not easily escape to the outside, or the infrared absorption with high infrared absorption rate on the thermistor layer A layer or a filter layer that selectively absorbs only a specific wavelength is formed in advance, and various structures adopted in a usual infrared detection element are combined.

【0009】複数層の膜状体とは、上記したサーミスタ
層、電極層、赤外線吸収層など、熱絶縁膜の上に順次積
み重ねるように形成されて、一定の面積を必要とする薄
層構造部分を意味している。その材質や層の厚さなど
は、それぞれの層の目的や要求性能に合わせて任意に設
定できる。膜状体の外形状は、矩形や多角形、円形その
他の任意の図形状であり、複数層の膜状体は、全てが同
じ外形状であってもよいし、外形状の異なる膜状体が組
み合わせられていてもよい。膜状体のうち、電極層に
は、外部回路への接続構造が付加されているなど、個々
の膜状体によって、細部の構造は違っていてもよい。
The multi-layered film-like body is a thin layer structure portion which is formed so as to be sequentially stacked on the thermal insulation film such as the thermistor layer, the electrode layer and the infrared absorption layer, and which requires a certain area. Means The material, layer thickness, etc. can be arbitrarily set according to the purpose and required performance of each layer. The outer shape of the membranous body may be a rectangle, a polygon, a circle, or any other figure shape, and the multi-layered membranous body may have the same outer shape or may have different outer shapes. May be combined. Among the film-like bodies, the electrode layer may have a detailed structure, such as a structure for connecting to an external circuit added thereto.

【0010】このような複数層の膜状体のうち、少なく
とも1層の膜状体が、細幅に分離形成されている。細幅
に分離形成とは、膜状体の全体が、互いに分離された細
い幅の帯状あるいは紐状部分の集合体で構成されている
ということである。具体的には、膜状体に、複数のスリ
ットや切れ目を形成することによって、細幅に分離形成
することができる。さらに具体的には、膜状体を、折り
返し帯状あるいは渦巻き状をなす連続した1本の細幅部
分で構成したものや、膜状体の内部に多数の平行なスリ
ットを形成して、帯状の細幅部分が多数並び、その両端
が一体に連設されたものなどが例示できる。分離形成す
る細幅部分の幅、および、細幅部分同士の間に形成され
る隙間の幅は、内部応力の緩和効果が挙げられるとと
も、各膜状体の本来の機能を阻害しない範囲であれば、
任意の幅に設定できる。
At least one layer of the multi-layered film is separated and formed in a narrow width. The term “separately formed into a narrow width” means that the entire film-shaped body is composed of an assembly of strip-shaped or string-shaped portions having a narrow width and separated from each other. Specifically, by forming a plurality of slits or cuts in the film-like body, it is possible to separately form the film-like body in a narrow width. More specifically, the film-shaped body is composed of one continuous narrow portion in the shape of a folded belt or a spiral, or a large number of parallel slits are formed inside the film-shaped body to form a strip-shaped body. An example is one in which a large number of narrow width portions are arranged and both ends thereof are integrally connected. The width of the narrow portion to be formed separately and the width of the gap formed between the narrow portions are such that the internal stress relaxation effect can be mentioned and the original function of each film body is not hindered. if there is,
Can be set to any width.

【0011】膜状体を細幅に分離形成するための手段
は、通常の半導体加工などにおける薄層形成技術、微細
加工技術、あるいは、写真製版によるマスキングや選択
エッチングなどによるパターン形成手段を適用すること
ができ、このような通常のパターン形成技術を組み合わ
せれば、膜状体を任意のパターンで細幅に分離形成する
ことができる。
As means for separating and forming the film-like body into a narrow width, a thin layer forming technique in ordinary semiconductor processing or the like, a fine processing technique, or pattern forming means by masking by photolithography or selective etching is applied. By combining such ordinary pattern forming techniques, it is possible to separate and form the film-like body into a narrow width in an arbitrary pattern.

【0012】細幅に分離形成する膜状体の層数は、最低
限1層であってもよいし、複数層の膜状体を細幅に分離
形成しておいてもよい。通常は、上下に積み重ねる膜状
体のうち、一方を細幅に分離形成しておけば、他方は一
様な膜状体であっても、互いの間に生じる内部応力を、
細幅に分離形成されたほうの膜状体で吸収して緩和する
ことができる。具体的には、一対の電極層を細幅に分離
形成して、その間のサーミスタ層は分離形成しないでお
いたり、その逆に、サーミスタ層を細幅に分離形成し
て、電極層は分離形成しないでおくことができる。ま
た、熱の吸収すなわち温度上昇による膨張が大きくなり
易い赤外線吸収層を細幅に分離形成しておけば、内部応
力の緩和に有効である。
The number of layers of the film-like body separated and formed in the narrow width may be at least one layer, or a plurality of layers of the film-like body may be separately formed in the narrow width. Usually, if one of the film bodies stacked vertically is separated and formed into a narrow width, even if the other is a uniform film body, the internal stress generated between them is
It can be absorbed and relaxed by the film-shaped body which is separated and formed into a narrow width. Specifically, the pair of electrode layers may be separated and formed in a narrow width, and the thermistor layer between them may not be formed separately, or conversely, the thermistor layer may be formed in a narrow width and the electrode layer may be formed separately. You can leave it. Further, if the infrared absorption layer, which is likely to expand heat absorption, that is, expansion due to temperature rise, is separately formed in a narrow width, it is effective in relaxing internal stress.

【0013】細幅に分離形成された膜状体は、細幅部分
の幅方向、すなわち、細幅部分同士の間に隙間があいて
いる方向に変形し易く、内部応力の緩和能力が高いの
で、内部応力の発生し易い方向に、細幅部分が並ぶよう
にしておくのが好ましい。複数層の膜状体に細幅部分を
形成する場合、層によって、細幅部分の分離パターンを
変えれば、何れの方向に対しても均等に内部応力の緩和
能力を発揮するようにできる。
Since the film-like body separated and formed into a narrow width is easily deformed in the width direction of the narrow width portion, that is, in the direction in which a gap is formed between the narrow width portions, the ability to relieve internal stress is high. It is preferable that the narrow portions are arranged in a direction in which internal stress is likely to occur. When forming a narrow portion in a film body having a plurality of layers, by changing the separation pattern of the narrow portion depending on the layer, it is possible to uniformly exert the internal stress relaxing ability in any direction.

【0014】[0014]

【作用】赤外線検出素子の赤外線検出部は、サーミスタ
層、電極層、赤外線吸収層などの、様々な材料からな
り、それぞれに熱膨張特性の異なる複数層の膜状体が、
熱絶縁膜の上に積み重ねられた構造になっている。この
ような赤外線検出素子を製造する際には、各種の薄膜形
成技術やパターン形成技術が適用されるので、製造工程
中に加熱されて熱膨張が生じる。また、使用時には、赤
外線を吸収させて温度上昇を起こさせるのであるから、
当然、熱膨張が起こる。
The infrared detecting portion of the infrared detecting element is made of various materials such as a thermistor layer, an electrode layer, and an infrared absorbing layer, and each has a plurality of layers of film-shaped bodies having different thermal expansion characteristics.
It has a structure of being stacked on the heat insulating film. Since various thin film forming techniques and pattern forming techniques are applied when manufacturing such an infrared detecting element, they are heated during the manufacturing process to cause thermal expansion. Also, when used, it absorbs infrared rays and raises the temperature,
Naturally, thermal expansion occurs.

【0015】上下の膜状体同士が、全面で接合一体化さ
れていると、熱膨張に伴う変形の違いは、そのまま内部
応力になって、膜状体同士あるいは膜状体と熱絶縁膜の
間に加わることになる。これに対し、膜状体が、細幅に
分離形成されていれば、この膜状体は、細幅部分の幅方
向については、比較的自由に移動変形することができる
ので、上下に積層された他の膜状体の熱変形に合わせて
細幅部分が移動変形し、両者の間に発生する内部応力を
吸収もしくは緩和することができる。
When the upper and lower film-like bodies are integrally bonded to each other over the entire surface, the difference in deformation due to thermal expansion becomes an internal stress as it is, and the film-like bodies or the film-like body and the heat insulating film are combined. I will join you in the meantime. On the other hand, if the film-like body is formed separately in a narrow width, the film-like body can be relatively freely moved and deformed in the width direction of the narrow width portion, so that the film-like body is laminated vertically. In addition, the narrow portion is moved and deformed in accordance with the thermal deformation of the other film-shaped body, and the internal stress generated between the two can be absorbed or relieved.

【0016】したがって、赤外線検出部を構成する複数
層の膜状体のうち、1層でも、細幅に分離形成された層
が存在すれば、その分だけ内部応力が緩和される。その
結果、内部応力による熱絶縁膜の歪みや破壊が防止でき
ることになる。各膜状体は、細幅に分離形成されてあっ
ても、全体として一定の面積を有していれば、それぞれ
の機能は十分に発揮できるので、赤外線検出素子として
の機能や特性には影響を与えることは少ない。
Therefore, if even one of the plural layers of the film-like body forming the infrared detecting section has a thinly separated layer, the internal stress is alleviated by that much. As a result, distortion or breakage of the thermal insulation film due to internal stress can be prevented. Even if each film-like body is separated and formed into a narrow width, if it has a certain area as a whole, each function can be sufficiently exerted, so that the function and characteristics as an infrared detection element are not affected. Is rarely given.

【0017】この構造では、各膜状体や熱絶縁膜の厚み
が薄くても、内部応力による歪みや破壊の発生を確実に
防止できるので、赤外線検出素子の感度向上あるいは小
型化や製造能率の向上を図ることもできる。
With this structure, even if the thickness of each film or the heat insulating film is thin, it is possible to surely prevent the occurrence of distortion or destruction due to internal stress, so that the sensitivity of the infrared detecting element is improved, or the size and manufacturing efficiency are improved. It can also be improved.

【0018】[0018]

【実施例】ついで、この発明の実施例について、図面を
参照しながら以下に説明する。図2は、赤外線検出素子
の全体構造を表している。シリコンなどからなる基板1
0の表面に、酸化窒化シリコンなどからなる熱絶縁膜2
0が形成されている。熱絶縁膜20の中央部分では、基
板10が下方側からエッチングなどで掘り込まれて欠除
空間12となっている。欠除空間12の中央で熱絶縁膜
20の上には、クロムなどの導体金属からなる電極層3
0、サーミスタ層40、電極層50および赤外線吸収層
60が順番に積み重ねて形成されている。電極層30
は、外側に延長されていて、この延長部31の端部に、
基板10の上部で接続用パッド32が設けられている。
電極層50も、電極層30とは別の方向に延びる延長部
51を備え、同様の接続用パッド52が設けられてい
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows the entire structure of the infrared detection element. Substrate 1 made of silicon, etc.
The thermal insulation film 2 made of silicon oxynitride, etc.
0 is formed. In the central portion of the thermal insulation film 20, the substrate 10 is dug from the lower side by etching or the like to form a cutout space 12. An electrode layer 3 made of a conductive metal such as chromium is formed on the heat insulating film 20 in the center of the void space 12.
0, the thermistor layer 40, the electrode layer 50, and the infrared absorption layer 60 are sequentially stacked and formed. Electrode layer 30
Is extended to the outside, and at the end of this extension 31,
A connection pad 32 is provided on the substrate 10.
The electrode layer 50 also includes an extension portion 51 extending in a direction different from that of the electrode layer 30, and a similar connection pad 52 is provided.

【0019】図1は、電極層30、サーミスタ層40、
電極層50の平面構造を表している。何れも、基本的に
は、同じ寸法の正方形状をなす膜状体である。そして、
図1(a) に示すように、上側の電極層50は、一辺に帯
状の延長部51を備えているとともに、電極層50全体
は、図の左右に延びる帯状の細幅部分55が、上方から
下方へと折り返して連続している。隣接する細幅部分5
5同士は、電極層50の外縁から切り込んだ切れ目54
で互いに分離されている。前記延長部51は、細幅部分
55の一部につながっている。図1(b) に示すように、
サーミスタ層40は、全体が一様な面になっている。図
1(c) に示すように、電極層30は、前記電極層50と
同じパターンの細幅部分35および切れ目54が形成さ
れている。但し、延長部31は、電極層50とは逆の方
向に延びている。図示しないが、赤外線吸収層60は、
サーミスタ層40と同様に、全体が一様な面になってい
る。
FIG. 1 shows an electrode layer 30, a thermistor layer 40,
The planar structure of the electrode layer 50 is shown. Each of them is basically a film-like body having a square shape with the same size. And
As shown in FIG. 1A, the upper electrode layer 50 has a strip-shaped extension 51 on one side, and the entire electrode layer 50 has a strip-shaped narrow portion 55 extending in the left-right direction in the drawing. It folds downward from and continues. Adjacent narrow part 5
5 are notches 54 cut from the outer edge of the electrode layer 50.
Are separated from each other. The extension portion 51 is connected to a part of the narrow width portion 55. As shown in Figure 1 (b),
The thermistor layer 40 has a uniform surface as a whole. As shown in FIG. 1 (c), the electrode layer 30 is formed with a narrow portion 35 and a cut 54 having the same pattern as the electrode layer 50. However, the extension portion 31 extends in the opposite direction to the electrode layer 50. Although not shown, the infrared absorption layer 60 is
Similar to the thermistor layer 40, the entire surface has a uniform surface.

【0020】このような構造の赤外線検出素子では、製
造工程における加熱処理、あるいは、使用時に赤外線検
出部に赤外線が照射されたりして、温度変化が生じた場
合、赤外線吸収層60およびサーミスタ層40は、従来
の赤外線検出素子の場合と同様に熱膨張を起こす。しか
し、電極層30、50は、細幅部分55の幅方向、すな
わち、図1の上下方向については、互いに分離されてい
るので、ある程度は自由に移動変形できる。そのため、
電極層30、50が、それに隣接する赤外線吸収層6
0、サーミスタ層40の熱膨張に合わせて変形すること
ができ、内部応力が吸収もしくは緩和される。
In the infrared detecting element having such a structure, if a temperature change occurs due to heat treatment in the manufacturing process, or when the infrared detecting portion is irradiated with infrared rays during use, the infrared absorbing layer 60 and the thermistor layer 40 are formed. Causes thermal expansion as in the case of the conventional infrared detecting element. However, since the electrode layers 30 and 50 are separated from each other in the width direction of the narrow width portion 55, that is, in the vertical direction in FIG. 1, they can be freely moved and deformed to some extent. for that reason,
Infrared absorbing layer 6 adjacent to the electrode layers 30, 50
0, it can be deformed according to the thermal expansion of the thermistor layer 40, and internal stress is absorbed or relaxed.

【0021】図3は、上記実施例と一部構造が異なる実
施例を表している。この実施例が、前記実施例と異なる
のは、上下の電極層30と50で、細幅に分離形成する
パターンを変えていることである。すなわち、上側の電
極層50は、細幅部分55および切れ目54が、図の上
から下に延びるように形成されている。下側の電極層3
0は、細幅部分55および切れ目54が、図の左右に延
びるように形成されている。
FIG. 3 shows an embodiment which is partially different in structure from the above embodiment. This embodiment is different from the above-mentioned embodiment in that the upper and lower electrode layers 30 and 50 have different patterns to be formed separately in a narrow width. That is, the upper electrode layer 50 is formed so that the narrow portion 55 and the cut 54 extend from the top to the bottom of the drawing. Lower electrode layer 3
0 is formed so that the narrow width portion 55 and the break 54 extend in the left and right directions in the drawing.

【0022】したがって、この実施例では、電極層30
では、図の上下方向の内部応力を緩和する能力が高く、
電極層50では、図の左右方向の内部応力を緩和する能
力が高くなり、両者の機能を合わせれば、上下左右の何
れの方向に対しても、内部応力を緩和する機能が発揮で
きることになる。つぎに、図4の実施例では、図4(a)
(c) に示すように、電極層30、50は、全体が一様な
面になっている。そして、図4(b) に示すように、サー
ミスタ層40には、図の上下に延びる多数のスリット4
4が形成されており、スリット44の間に形成される帯
状の細幅部分45が、上下辺で一体につながった構造に
なっている。この実施例では、サーミスタ層40の細幅
部分45が、上下の電極層30、50の熱膨張に合わせ
て、移動変形することで、内部応力を吸収もしくは緩和
する。
Therefore, in this embodiment, the electrode layer 30
So, the ability to relieve the vertical stress in the figure is high,
In the electrode layer 50, the ability to relieve the internal stress in the left-right direction in the figure is enhanced, and if the functions of both are combined, the function of relieving the internal stress can be exerted in any of the up, down, left, and right directions. Next, in the embodiment of FIG. 4, FIG.
As shown in (c), the electrode layers 30 and 50 have a uniform surface as a whole. Then, as shown in FIG. 4B, the thermistor layer 40 has a large number of slits 4 extending vertically in the drawing.
4 is formed, and the strip-shaped narrow width portion 45 formed between the slits 44 is integrally connected at the upper and lower sides. In this embodiment, the narrow portion 45 of the thermistor layer 40 moves and deforms in accordance with the thermal expansion of the upper and lower electrode layers 30 and 50, thereby absorbing or relaxing the internal stress.

【0023】図5の実施例では、図5(a) に示すよう
に、サーミスタ層40は、全体が一様な面になっている
が、図5(b) に示すように、赤外線吸収層60が、上下
方向の多数のスリット64で分離形成されて、上下方向
の帯状をなす細幅部分65が上下辺でつながった構造に
なっている。この場合には、サーミスタ層40および両
電極層30、50の熱膨張に対して、赤外線吸収層60
の細幅部分65が移動変形することによって、内部応力
を吸収緩和する。
In the embodiment shown in FIG. 5, the thermistor layer 40 has a uniform surface as a whole as shown in FIG. 5 (a), but as shown in FIG. 60 is separated and formed by a large number of vertical slits 64, and a vertically narrow strip-shaped portion 65 is connected at the upper and lower sides. In this case, the infrared absorption layer 60 is protected against thermal expansion of the thermistor layer 40 and both electrode layers 30 and 50.
By moving and deforming the narrow width portion 65, the internal stress is absorbed and relaxed.

【0024】図6の実施例は、膜状体を細幅に分離形成
する際のパターンの別の例を示している。すなわち、膜
状体Sが、中心から外周へと渦巻き状に連続してつなが
った細幅部分5と、その間を分離する隙間部分4とで構
成されている。膜状体Sとしては、前記した電極層3
0、50やサーミスタ層40、赤外線吸収層60などの
何れの層に適用することもできる。
The embodiment of FIG. 6 shows another example of the pattern when the film-like body is formed in a narrow width. That is, the film body S is composed of a narrow width portion 5 which is continuously connected in a spiral shape from the center to the outer circumference, and a gap portion 4 which separates the narrow width portion 5. The film-shaped body S includes the electrode layer 3 described above.
It can be applied to any layer such as 0, 50, the thermistor layer 40, and the infrared absorption layer 60.

【0025】この実施例では、細幅部分5の分離方向
が、上下左右の何れにも存在するので、上下左右の何れ
の方向の内部応力をも吸収緩和する能力がある。つぎ
に、より具体的な実施例について説明する。 −実施例1− 図1および図2に示す構造の赤外線検出素子を製造し
た。
In this embodiment, since the separating direction of the narrow portion 5 exists in any of the upper, lower, left and right directions, there is an ability to absorb and relax internal stress in any of the upper, lower, left and right directions. Next, more specific examples will be described. -Example 1- An infrared detection element having the structure shown in FIGS. 1 and 2 was manufactured.

【0026】シリコン基板10上に、グロー放電分解法
で、厚さ5000Åの酸化窒化シリコンを積層して熱絶
縁膜20を形成した。成膜条件は、モノシラン、アンモ
ニア、窒素、一酸化炭素の混合ガスを使用し、アンモニ
ア、窒素、一酸化炭素の総量に対する一酸化二窒素の割
合を30%、基板温度20℃、圧力1Torr、周波数1
3.56MHz 、放電電力30Wとした。
A thermal insulation film 20 was formed by stacking 5000 Å-thick silicon oxynitride on the silicon substrate 10 by the glow discharge decomposition method. The film forming conditions are a mixed gas of monosilane, ammonia, nitrogen and carbon monoxide, the ratio of dinitrogen monoxide to the total amount of ammonia, nitrogen and carbon monoxide is 30%, the substrate temperature is 20 ° C., the pressure is 1 Torr, and the frequency. 1
The discharge power was 30 W at 3.56 MHz.

【0027】熱絶縁膜20の上に、電子ビーム蒸着法に
より、基板温度200℃で厚さ500Åのクロムを成膜
した。ついで、フォトリソ工程で、図1(c) に示す形状
にパターン化して、下部側の電極層30を形成した。つ
ぎに、グロー放電分解法で、厚さ1μmのp型a−Si
Cを成膜し、フォトリソ工程で、図1(b) に示すよう
に、2×2mmの正方形にパターン化して、サーミスタ層
40を形成した。成膜条件は、900モル%のメタン、
0.25モル%のジボランを加えた水素希釈のモノシラ
ンを用い、基板温度180℃、圧力0.9Torr、周波数
13.56KHz 、放電電力20Wとした。ついで、電子
ビーム蒸着法により、基板温度200℃で厚さ500Å
のクロムを成膜し、フォトリソ工程により、図1(a) に
示すように、前記下部側の電極層30の細幅部分35と
平行に細幅部分55が並ぶようにパターン化を行って、
上部側の電極層50を形成した。なお、この上部側電極
層50および下部側電極層30の寸法は、何れも1.9
×1.9mmであった。
On the heat insulating film 20, a chromium film having a thickness of 500 Å was formed at a substrate temperature of 200 ° C. by an electron beam evaporation method. Then, in a photolithography process, the electrode layer 30 on the lower side was formed by patterning into the shape shown in FIG. Next, by a glow discharge decomposition method, a p-type a-Si layer having a thickness of 1 μm was used.
A film of C was formed, and a thermistor layer 40 was formed by patterning into a square of 2 × 2 mm as shown in FIG. 1 (b) in a photolithography process. The film forming conditions are 900 mol% methane,
Using hydrogen-diluted monosilane to which 0.25 mol% of diborane was added, the substrate temperature was 180 ° C., the pressure was 0.9 Torr, the frequency was 13.56 KHz, and the discharge power was 20 W. Then, by electron beam evaporation method, the substrate temperature is 200 ° C and the thickness is 500Å
Then, a chromium film is formed, and patterning is performed by a photolithography process so that the narrow portions 55 are arranged in parallel with the narrow portions 35 of the lower electrode layer 30 as shown in FIG. 1 (a).
The electrode layer 50 on the upper side was formed. The dimensions of the upper electrode layer 50 and the lower electrode layer 30 are both 1.9.
It was × 1.9 mm.

【0028】なお、電極層30、50の材料であるクロ
ムは、不純物が添加されているほうが、熱伝導率が小さ
くなり、検出感度が向上するので、前記材料の代わり
に、熱伝導率の小さいニッケルクロムを用いることもで
きる。つぎに、グロー放電分解法で、厚さ1μmの酸化
シリコンを成膜し、フォトリソ工程で2×2mmの正方形
にパターン化して、赤外線吸収層60を形成した。成膜
条件は、700モル%の一酸化窒素を用い、基板温度2
50℃、圧力1Torr、周波数13.56KHz 、放電電力
30Wとした。つづいて、電子ビーム蒸着法で、アルミ
を成膜しパターン化して、接続用パッド52を形成し
た。
It should be noted that chromium, which is the material of the electrode layers 30 and 50, has a smaller thermal conductivity and a higher detection sensitivity when impurities are added, so that the thermal conductivity is small instead of the above-mentioned materials. Nickel chrome can also be used. Next, a silicon oxide film having a thickness of 1 μm was formed by a glow discharge decomposition method and patterned into a square of 2 × 2 mm by a photolithography process to form an infrared absorption layer 60. The film forming conditions are 700 mol% of nitric oxide, and the substrate temperature is 2
The temperature was 50 ° C., the pressure was 1 Torr, the frequency was 13.56 KHz, and the discharge power was 30 W. Subsequently, an aluminum film was formed and patterned by the electron beam evaporation method to form the connection pad 52.

【0029】最後に、シリコン基板10のうち、熱絶縁
膜20とは反対側から、酸化窒化シリコンからなる熱絶
縁膜20を残すようにして、水酸化カリウムで異方性エ
ッチングを行って、欠除空間12を形成し、いわゆるダ
イアフラム構造の赤外線検出素子を製造した。製造され
た赤外線検出素子の寸法は、2.5×2.5mmの正方形
であった。
Finally, anisotropic etching is performed with potassium hydroxide so that the thermal insulating film 20 made of silicon oxynitride is left from the side of the silicon substrate 10 opposite to the thermal insulating film 20, and the thermal insulating film 20 is removed. The removal space 12 was formed, and an infrared detection element having a so-called diaphragm structure was manufactured. The size of the manufactured infrared detection element was a square of 2.5 × 2.5 mm.

【0030】赤外線検出素子を使用したところ、熱絶縁
膜20の歪みや破壊は全く生じず、検出感度も良好で優
れた品質性能を有することが確かめられた。
When the infrared detecting element was used, it was confirmed that the thermal insulating film 20 was not distorted or broken at all, the detection sensitivity was good, and the quality performance was excellent.

【0031】[0031]

【発明の効果】以上に述べた、この発明にかかる赤外線
検出素子は、電極層やサーミスタ層などの膜状体が細幅
に分離形成されていることにより、この細幅に分離形成
された膜状体で、複数の膜状体間に生じる内部応力を吸
収もくしは緩和することができる。
As described above, in the infrared detecting element according to the present invention, since the film-like bodies such as the electrode layer and the thermistor layer are separately formed in a narrow width, the film formed in the narrow width is formed. The sheet-like body can absorb or relax internal stress generated between a plurality of film-like bodies.

【0032】その結果、熱絶縁膜の歪みや破壊を防止し
て、製造歩留りを向上させ、使用時の耐久性を高めるこ
とができる。しかも、製造工程は、従来の方法に比べ
て、膜状体の形成パターンを変更するだけでよいので、
全体の工程数を増やしたり、作業時間を増大させること
なく、技術的にも比較的簡単に製造でき、生産性に優
れ、コスト的にも安価である。さらに、熱絶縁膜が歪み
や破壊を起こし難ければ、従来よりも、熱絶縁膜の厚み
を薄くして、温度変化に敏感な、赤外線検出感度の高い
素子を製造することも可能になる。
As a result, distortion and breakage of the heat insulating film can be prevented, the manufacturing yield can be improved, and the durability during use can be increased. Moreover, in the manufacturing process, as compared with the conventional method, it is only necessary to change the formation pattern of the film-shaped body,
It is relatively technically easy to manufacture without increasing the total number of steps or working time, is excellent in productivity, and is low in cost. Further, if the heat insulating film is less likely to be distorted or broken, the thickness of the heat insulating film can be made thinner than in the prior art to manufacture an element sensitive to temperature changes and having high infrared detection sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例を示す赤外線検出素子の上
部側電極層(a) 、サーミスタ層(b) 、下部側電極層(c)
のそれぞれの平面図
FIG. 1 is an upper side electrode layer (a), a thermistor layer (b), a lower side electrode layer (c) of an infrared detection element showing an embodiment of the present invention.
Each plan view of

【図2】 同上の赤外線検出素子の断面図FIG. 2 is a sectional view of the infrared detection element of the above.

【図3】 別の実施例を表す、上部側電極層(a) 、サー
ミスタ層(b) 、下部側電極層(c) のそれぞれの平面図
FIG. 3 is a plan view of an upper electrode layer (a), a thermistor layer (b), and a lower electrode layer (c) showing another embodiment.

【図4】 別の実施例を表す、上部側電極層(a) 、サー
ミスタ層(b) 、下部側電極層(c) のそれぞれの平面図
FIG. 4 is a plan view of an upper electrode layer (a), a thermistor layer (b), and a lower electrode layer (c) showing another embodiment.

【図5】 別の実施例を表す、サーミスタ層(a) 、赤外
線吸収層(b) のそれぞれの平面図
FIG. 5 is a plan view of a thermistor layer (a) and an infrared absorption layer (b) showing another embodiment.

【図6】 別の実施例における膜状体のパターンを示す
平面図
FIG. 6 is a plan view showing a pattern of a film-like body according to another embodiment.

【符号の説明】[Explanation of symbols]

10 基板 20 熱絶縁膜 30 、50 電極層 40 サーミスタ層 60 赤外線吸収層 35、45、55、65、5 細幅部分 34、54、4 切れ目 64 スリット 10 Substrate 20 Thermal Insulation Film 30, 50 Electrode Layer 40 Thermistor Layer 60 Infrared Absorption Layer 35, 45, 55, 65, 5 Narrow Part 34, 54, 4 Cut 64 Slit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石田 拓郎 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 柿手 啓治 大阪府門真市大字門真1048番地松下電工株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takuro Ishida 1048, Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works Co., Ltd. (72) Keiji Kakite, 1048, Kadoma, Kadoma City, Osaka Matsushita Electric Works Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱絶縁膜上に、一対の電極層および両電
極層の間に挟まれたサーミスタ層を含む複数層の膜状体
を備えた赤外線検出素子において、少なくとも1層の膜
状体が、細幅に分離形成されていることを特徴とする赤
外線検出素子。
1. An infrared detection element comprising a plurality of film-like bodies including a pair of electrode layers and a thermistor layer sandwiched between the electrode layers on a heat insulating film, and at least one film-like body. The infrared detecting element is characterized in that it is formed separately in a narrow width.
JP04038105A 1992-02-25 1992-02-25 Infrared detector Expired - Lifetime JP3129504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04038105A JP3129504B2 (en) 1992-02-25 1992-02-25 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04038105A JP3129504B2 (en) 1992-02-25 1992-02-25 Infrared detector

Publications (2)

Publication Number Publication Date
JPH05231946A true JPH05231946A (en) 1993-09-07
JP3129504B2 JP3129504B2 (en) 2001-01-31

Family

ID=12516195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04038105A Expired - Lifetime JP3129504B2 (en) 1992-02-25 1992-02-25 Infrared detector

Country Status (1)

Country Link
JP (1) JP3129504B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065841A (en) * 2001-08-29 2003-03-05 Ihi Aerospace Co Ltd Method of forming infrared-ray absorbing layer
US6870086B2 (en) 2001-06-11 2005-03-22 Denso Corporation Thermo pile infrared ray sensor manufactured with screen print and method thereof
JP2008051522A (en) * 2006-08-22 2008-03-06 Nec Tokin Corp Thermal type infrared detector and manufacturing method therefor
US12007283B2 (en) 2019-02-28 2024-06-11 Panasonic Intellectual Property Management Co., Ltd. Infrared sensor and infrared sensor array

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101809233B1 (en) 2017-01-13 2017-12-14 정인성 Method to manufacture actual drawing figures using 3D printer and mold

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870086B2 (en) 2001-06-11 2005-03-22 Denso Corporation Thermo pile infrared ray sensor manufactured with screen print and method thereof
JP2003065841A (en) * 2001-08-29 2003-03-05 Ihi Aerospace Co Ltd Method of forming infrared-ray absorbing layer
JP2008051522A (en) * 2006-08-22 2008-03-06 Nec Tokin Corp Thermal type infrared detector and manufacturing method therefor
US12007283B2 (en) 2019-02-28 2024-06-11 Panasonic Intellectual Property Management Co., Ltd. Infrared sensor and infrared sensor array

Also Published As

Publication number Publication date
JP3129504B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
JPH05231946A (en) Infrared detector
JPH09133578A (en) Infrared detection element
JP2009031197A (en) Infrared detection element and manufacturing method therefor
JP2994881B2 (en) Thermal insulation film for diaphragm structure and method of manufacturing the same
WO2018110309A1 (en) Light detector
JPH05164605A (en) Infrared-ray sensor
WO2017077996A1 (en) Bolometer type terahertz wave detector
JP2737597B2 (en) Infrared detector
JP7512273B2 (en) Absorber structures for thermal detectors.
JPH11258039A (en) Infrared ray detecting element, and manufacture thereof
JP3195441B2 (en) Infrared detector
JP3594923B2 (en) Manufacturing method of thermopile infrared sensor
JPH05231947A (en) Infrared detector
JP3124815B2 (en) Thermal insulation film for diaphragm structure and method of manufacturing the same
JPH07120307A (en) Infrared detector
JPH0637722U (en) Infrared detector
JP3195443B2 (en) Infrared detector
JPH0894434A (en) Infrared detection element
JP3006364B2 (en) Semiconductor device
JP2000346704A (en) Bolometer type infrared detection element
TWI836324B (en) Microelectromechanical infrared sensing appartus and fabrication method thereof
JP2665116B2 (en) Semiconductor thin film thermistor
JPH04158586A (en) Infrared-ray detecting element
JPH05172629A (en) Infrared detection element
JPH04342177A (en) Thermopile

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12