JPH05231605A - Feed water controller - Google Patents

Feed water controller

Info

Publication number
JPH05231605A
JPH05231605A JP4033490A JP3349092A JPH05231605A JP H05231605 A JPH05231605 A JP H05231605A JP 4033490 A JP4033490 A JP 4033490A JP 3349092 A JP3349092 A JP 3349092A JP H05231605 A JPH05231605 A JP H05231605A
Authority
JP
Japan
Prior art keywords
water supply
flow rate
control
recirculation
valve opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4033490A
Other languages
Japanese (ja)
Inventor
Yasuo Goshima
安生 五嶋
Yuichi Mitsutake
雄一 光武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4033490A priority Critical patent/JPH05231605A/en
Publication of JPH05231605A publication Critical patent/JPH05231605A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To permit smooth control of a feed water recirculation control valve by adopting the maximum algebraic difference in a predetermined period of time when the minimum suction flow amount difference of a feed water pump is negative. CONSTITUTION:A fuzzy controller 60 is constituted to a preprocessing unit 61, an post processing unit 62, a fuzzy rule base 63 and a fuzzy inference engine 64 while the post processing unit 62 is constituted of a limiter 65 and an integrator 66. The preprocessing unit 61 takes in a valve opening degree difference E to effect a predetermined preprocessing and outputs the valve opening degree difference E, the maximum valve opening degree difference E1 and a past valve opening degree difference E2. The fuzzy inference engine 64 reads the fuzzy rule base 63, in which control rules are described, and estimates inputs E, E1, E2 in accordance with a described control rule. The post processing unit 62 outputs a valve opening degree signal through the limiter 65 and the integrator 66. According to this method, smooth control of a feed water recirculation control valve can be effected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はボイラや原子炉へ供給さ
れる給水を制御する給水制御装置に係り、特にボイラ給
水流量を回転速度で制御する給水ポンプの給水制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water supply control device for controlling the water supply supplied to a boiler or a nuclear reactor, and more particularly to a water supply control device for a water supply pump which controls a boiler water supply flow rate by a rotation speed.

【0002】[0002]

【従来の技術】火力発電所や原子力発電所においては、
ボイラや原子炉へ供給される給水を制御するため給水制
御装置が設置されている。
2. Description of the Related Art In thermal power plants and nuclear power plants,
A water supply control device is installed to control the water supply to the boiler and reactor.

【0003】図7は、火力発電所における給水制御方式
の一例を示すもので、ボイラ1への給水は給水元管2よ
り流入し、吸込流量検出器3を経て、蒸気タービン4で
駆動される給水ポンプ5で昇圧された後、吐出流量調節
弁6、吐出流量検出器7およびボイラ給水管8を通り、
ボイラ1へ供給される。タービン4の回転数は、蒸気加
減弁9を操作することにより制御され、回転数検出器1
0で検出される。給水ポンプ5に最小吸込流量を確保さ
せるために、その吐出側と流入側との間には、給水再循
環調整弁11を備えた給水再循環配管12が接続され、
再循環系を構成している。また、吐出流量調節弁6には
バイパス弁13が並列して接続されている。
FIG. 7 shows an example of a water supply control system in a thermal power plant. Water supply to a boiler 1 flows in from a water supply source pipe 2, passes through a suction flow rate detector 3, and is driven by a steam turbine 4. After the pressure is increased by the water supply pump 5, it passes through the discharge flow rate control valve 6, the discharge flow rate detector 7 and the boiler water supply pipe 8,
It is supplied to the boiler 1. The rotation speed of the turbine 4 is controlled by operating the steam control valve 9, and the rotation speed detector 1
Detected at 0. In order to ensure a minimum suction flow rate in the water supply pump 5, a water supply recirculation pipe 12 having a water supply recirculation adjustment valve 11 is connected between the discharge side and the inflow side thereof.
It constitutes the recirculation system. A bypass valve 13 is connected in parallel to the discharge flow rate control valve 6.

【0004】この様な構成の給水制御装置は以下のよう
に制御される。即ち、マスタ自動制御系からの給水量要
求信号20は、加算器21において、給水ポンプ5の出
口側に設けられた吐出流量検出器7の実吐出流量信号と
の偏差を求められ、給水調節器22で比例積分処理され
た後、切替調節器23に入力される。この切替調節器に
は、最小回転数設定信号24と、タービン軸に設けられ
た回転数検出器10からの実回転数信号も入力される。
切替調節器23は、これらの信号により、タービンの回
転数が最小回転数に等しいか大きいかにより、それぞれ
出力信号を選択し、回転数調節器25と吐出流量調節器
26に信号を振り分ける。切替調節器23から出力され
る一方の信号は、回転数調節器25で比例処理された
後、蒸気タービン4の蒸気加減弁9に導かれ、蒸気ター
ビン4の速度、即ち給水ポンプ5の回転数を制御するこ
とにより、その吐出流量を制御する。また、切替調節器
23から出力されるもう一方の信号は、吐出流量調節器
26で比例積分処理された後、吐出流量調節弁6を制御
することにより、給水ポンプ5の吐出流量を制御する。
前記2つの吐出流量制御は、蒸気タービン4の回転数
が最小回転数を越えている場合は、給水ポンプ5の回転
数を制御して吐出流量を制御し、吐出流量調節器26か
らは全開信号を出力し、吐出流量調節弁6を全開とす
る。蒸気タービン4の回転数が最小回転数以下に移行し
ようとした場合は、タービン4の回転数が最小回転数と
なるよう蒸気加減弁9を制御し、吐出流量調節器26は
全閉から全開までの連続的な信号を出力し、吐出流量調
節弁6を制御して吐出流量を制御する。また、給水ポン
プ5の回転数などにより定まる最小吸込流量要求信号2
7は、加算器28において、給水ポンプ5の入口側に設
けられた吸込流量検出器3からの信号との偏差29を求
められ、給水再循環調節器30で比例積分処理された
後、給水再循環調整弁11の開度を制御することによ
り、給水ポンプ5の最小流量を確保し、給水ポンプ5が
過熱することを防止する。
The water supply control device having such a configuration is controlled as follows. That is, the water supply amount request signal 20 from the master automatic control system is obtained by the adder 21 with a deviation from the actual discharge flow rate signal of the discharge flow rate detector 7 provided on the outlet side of the water supply pump 5, and the water supply regulator is obtained. After being subjected to proportional-plus-integral processing at 22, it is input to the switching controller 23. The minimum rotation speed setting signal 24 and the actual rotation speed signal from the rotation speed detector 10 provided on the turbine shaft are also input to the switching regulator.
Based on these signals, the switching controller 23 selects an output signal depending on whether the turbine speed is equal to or greater than the minimum speed, and distributes the signals to the speed controller 25 and the discharge flow rate controller 26. One of the signals output from the switching controller 23 is proportionally processed by the rotation speed controller 25, and then guided to the steam control valve 9 of the steam turbine 4, and the speed of the steam turbine 4, that is, the rotation speed of the water supply pump 5. The discharge flow rate is controlled by controlling The other signal output from the switching controller 23 is proportional-integral-processed by the discharge flow rate controller 26, and then controls the discharge flow rate control valve 6 to control the discharge flow rate of the water supply pump 5.
In the two discharge flow rate control, when the rotation speed of the steam turbine 4 exceeds the minimum rotation speed, the discharge flow rate is controlled by controlling the rotation speed of the feed water pump 5, and the full-open signal is output from the discharge flow rate controller 26. Is output, and the discharge flow rate control valve 6 is fully opened. When the rotation speed of the steam turbine 4 is about to shift to the minimum rotation speed or less, the steam control valve 9 is controlled so that the rotation speed of the turbine 4 becomes the minimum rotation speed, and the discharge flow rate controller 26 is fully closed to fully opened. To output a continuous signal to control the discharge flow rate control valve 6 to control the discharge flow rate. In addition, the minimum suction flow rate request signal 2 determined by the number of revolutions of the water supply pump 5, etc.
In the adder 28, the deviation 29 from the signal from the suction flow rate detector 3 provided on the inlet side of the water supply pump 5 is obtained, and after the proportional integration processing is performed by the water supply recirculation controller 30, By controlling the opening degree of the circulation adjusting valve 11, the minimum flow rate of the water supply pump 5 is secured and the water supply pump 5 is prevented from overheating.

【0005】図8は、前記給水制御装置の詳細を、給水
再循環調節器30を中心として示したもので、関数発生
器40は蒸気タービンの回転数検出器10からの信号を
入力とし、この値に応じて必要な最小吸込流量要求信号
27を出力する。加算器28は前記したように、最小吸
込流量要求信号27と吸込流量検出器3からの信号の差
をとり、吸込流量偏差29を出力する。
FIG. 8 shows the details of the water supply control device centering on the water supply recirculation controller 30. The function generator 40 receives the signal from the rotation speed detector 10 of the steam turbine as input. A required minimum suction flow rate request signal 27 is output according to the value. As described above, the adder 28 takes the difference between the minimum suction flow rate request signal 27 and the signal from the suction flow rate detector 3, and outputs the suction flow rate deviation 29.

【0006】この吸込流量偏差29は、変換器31で回
転数から弁開度に変換され、給水再循環調整弁目標開度
信号32となる。この目標開度信号32は加算器33に
おいて弁開度設定信号36のフィードバック信号を差し
引かれた後、制御ゲイン34で比例リミット処理され、
積分器35の入力となる。積分器35は、この信号を積
分して弁開度設定信号36とする。この弁開度設定信号
36は、給水再循環調整弁11のアクチュエータによる
一時遅れ51とむだ時間52の影響を受け、弁開度53
となる。
This suction flow rate deviation 29 is converted from the number of rotations into a valve opening degree by a converter 31, and becomes a feed water recirculation adjusting valve target opening degree signal 32. This target opening signal 32 is subjected to proportional limit processing by the control gain 34 after subtracting the feedback signal of the valve opening setting signal 36 in the adder 33,
It is an input to the integrator 35. The integrator 35 integrates this signal to obtain a valve opening setting signal 36. This valve opening degree setting signal 36 is affected by the temporary delay 51 and dead time 52 due to the actuator of the water supply recirculation adjusting valve 11, and the valve opening degree 53.
Becomes

【0007】このようにして給水再循環調整弁11を操
作することによって、給水ポンプ5の吸込流量を最小必
要量以上に制御する。
By operating the water supply recirculation adjusting valve 11 in this manner, the suction flow rate of the water supply pump 5 is controlled to be the minimum necessary amount or more.

【0008】[0008]

【発明が解決しようとする課題】従来の制御装置では、
過熱防止を目的とする給水再循環調整弁11の制御ゲイ
ン34のゲインをある程度高くする必要がある。この場
合、ゲインを高くすると給水再循環調整弁11の制御が
不安定になるため、減方向にはリミットを設け、閉方向
の速度を遅くして発散しないようにしている。
In the conventional control device,
It is necessary to increase the gain of the control gain 34 of the feedwater recirculation adjusting valve 11 for the purpose of preventing overheating to some extent. In this case, if the gain is increased, the control of the water supply recirculation adjustment valve 11 becomes unstable. Therefore, a limit is set in the decreasing direction so that the speed in the closing direction is slowed to prevent divergence.

【0009】しかしながら、吐出流量と再循環流量が吸
込流量を介して影響しあうため、給水再循環調節器30
と回転数調節器25が干渉を起こし、各流量がハンチン
グを生ずる。これを避けるため、制御ゲイン34の下限
リミツトを小さくして閉速度を下げることが考えられる
が、閉速度を下げればハンチングはおさまっても、必要
な最小吸込流量要求信号27に対して過大な吸込流量を
長時間流すことになり、ポンプ駆動に要する動力が過大
となり、システムとして動力ロスが増加する結果とな
る。
However, since the discharge flow rate and the recirculation flow rate influence each other via the suction flow rate, the feed water recirculation controller 30
And the rotational speed adjuster 25 interfere with each other, and each flow rate causes hunting. In order to avoid this, it is conceivable to reduce the lower limit of the control gain 34 to reduce the closing speed. However, if the closing speed is reduced, hunting is suppressed, but an excessive suction against the required minimum suction flow rate request signal 27 is generated. Since the flow rate is long, the power required to drive the pump becomes excessive and the power loss of the system increases.

【0010】上述のように、従来技術では、給水再循環
調節器に速応性が求められため、流量がハンチングを起
こすという欠点があり、また、ハンチングを抑えるため
閉方向の速度を抑えると、閉方向の安定性は増すが制御
性が悪くなり、結果的に動力ロスが増大するという欠点
がある。
As described above, in the prior art, the feed water recirculation controller is required to have a high responsiveness, so that it has a drawback that the flow rate causes hunting. Further, if the speed in the closing direction is suppressed in order to suppress the hunting, it will be closed. The directional stability increases, but the controllability deteriorates, resulting in an increase in power loss.

【0011】本発明は給水再循環調整弁の開方向に対し
ては速応性が良好であり、かつ閉方向に対しては安定性
および制御性の良好な給水制御装置を提供することを目
的とする。
An object of the present invention is to provide a water supply control device which has a good quick response in the opening direction of the water supply recirculation control valve and a good stability and controllability in the closing direction. To do.

【0012】[0012]

【課題を解決するための手段】本発明の給水制御装置
は、可変速原動機と、この可変速原動機により駆動され
る給水ポンプと、この給水ポンプ出口側の水を入口側に
戻すための再循環系と、この再循環系上に設けられた給
水再循環調整弁と、この給水再循環調整弁を制御する給
水再循環調節器とを備えた給水系において、前記給水ポ
ンプのポンプ最小吸込流量偏差が負の場合に、所定時間
内における最大の代数偏差を採用するファジィコントロ
ーラを具備することを特徴とする。
The water supply control device of the present invention comprises a variable speed prime mover, a water supply pump driven by the variable speed prime mover, and recirculation for returning water on the outlet side of the water supply pump to the inlet side. In a water supply system including a system, a water supply recirculation adjustment valve provided on the recirculation system, and a water supply recirculation controller that controls the water supply recirculation adjustment valve, a pump minimum suction flow rate deviation of the water supply pump When is negative, a fuzzy controller that adopts the maximum algebraic deviation within a predetermined time is provided.

【0013】[0013]

【作用】上述のように構成した本発明の給水制御装置に
おいては、吸込流量偏差が正の場合、即ち吸込流量が足
りなくて再循環流量を増加させる必要がある場合は、従
来と同様に高速で応答し、給水再循環調整弁を高速に開
操作して過熱を防止する。一方、吸込流量偏差が負の場
合、即ち吸込流量が余分に流れており、再循環流量を減
少させてもよい場合は、最大偏差E1 、E2 の大きい方
の値で制御する。したがって、一旦、開指令が出ると、
ある時間は閉動作を行わない。閉指令がある時間継続す
ると、閉動作を開始する。こうすることによって、むだ
な開閉動作を抑制でき、なめらかな制御を行うことがで
きる。
In the water supply control apparatus of the present invention configured as described above, when the suction flow rate deviation is positive, that is, when the suction flow rate is insufficient and the recirculation flow rate needs to be increased, the high speed control is performed as in the conventional case. In response, open the feedwater recirculation control valve at high speed to prevent overheating. On the other hand, when the suction flow rate deviation is negative, that is, when the suction flow rate is excessive and the recirculation flow rate may be reduced, the maximum deviations E1 and E2 are controlled by the larger value. Therefore, once an open command is issued,
The closing operation is not performed for a certain time. When the closing command continues for a certain time, the closing operation is started. By doing so, wasteful opening / closing operations can be suppressed and smooth control can be performed.

【0014】[0014]

【実施例】以下、本発明の実施例を図1ないし図6を参
照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0015】図1は本発明装置における給水制御系の給
水再循環調節器30の構成例を示すもので、ファジィコ
ントローラ60の他は図8と同じ構成である。即ち、給
水再循環調節器30は、吸込流量偏差29を給水再循環
調整弁の目標開度信号32に変換するための変換器31
と、給水再循環調整弁の目標開度信号32と弁開度設定
信号36の差をとる加算器33と、弁開度設定信号36
を算出するファジィコントローラ60とから構成されて
いる。
FIG. 1 shows a constitutional example of a feedwater recirculation controller 30 of a feedwater control system in the apparatus of the present invention, which has the same constitution as that of FIG. 8 except for a fuzzy controller 60. That is, the water supply recirculation controller 30 is a converter 31 for converting the suction flow rate deviation 29 into the target opening signal 32 of the water supply recirculation adjustment valve.
And an adder 33 that takes the difference between the target opening signal 32 and the valve opening setting signal 36 of the feedwater recirculation adjusting valve, and the valve opening setting signal 36.
And a fuzzy controller 60 for calculating

【0016】ファジィコントローラ60は、入力の前処
理を行う前処理部61と、出力の後処理を行う後処理部
62と、ファジィ制御ルールを記述したファジィルール
ベース63と、ファジィ推論を行うファジィ推論エンジ
ン64とから構成されている。後処理部62はリミッタ
ー65と積分器66とからなる。
The fuzzy controller 60 includes a pre-processing unit 61 for pre-processing input, a post-processing unit 62 for post-processing output, a fuzzy rule base 63 describing fuzzy control rules, and a fuzzy inference for fuzzy inference. It is composed of an engine 64. The post-processing unit 62 includes a limiter 65 and an integrator 66.

【0017】このような構成の本発明装置において、吸
込流量偏差29は変換器31で回転数から弁開度に変換
され、給水再循環調整弁の目標開度信号32となる。こ
の目標開度信号32は、加算器33で弁開度設定信号3
6のフィードバック信号を差し引かれた後、ファジィコ
ントローラ60で制御演算を施され、弁開度信号36と
なる。以下、従来技術と同様にして給水ポンプ6の吸込
み流量を最小必要量以上に制御する。
In the device of the present invention having such a configuration, the suction flow rate deviation 29 is converted from the rotational speed into the valve opening degree by the converter 31, and becomes the target opening degree signal 32 of the feed water recirculation adjusting valve. This target opening degree signal 32 is supplied to the valve opening degree setting signal 3 by the adder 33.
After the feedback signal of No. 6 is subtracted, the fuzzy controller 60 performs a control calculation to obtain the valve opening signal 36. Hereinafter, the suction flow rate of the water supply pump 6 is controlled to be equal to or more than the minimum required amount in the same manner as the conventional technique.

【0018】ファジィコントローラ60の内部におい
て、入力された弁開度偏差Eは、図2に示すように、前
処理部61における一定時間(ΔT)毎の最大値E1 の
算出に用いられる。なお、最大値E2 は、更にΔT時間
前の値である。
Inside the fuzzy controller 60, the input valve opening deviation E is used for calculating a maximum value E1 for each constant time (ΔT) in the preprocessing section 61, as shown in FIG. The maximum value E2 is a value before ΔT time.

【0019】前処理部61は、弁開度偏差Eを取り込
み、上記した前処理を行って、弁開度偏差E、最大弁開
度偏差E1 および過去の弁開度偏差E2 を出力する。フ
ァジィ推論エンジン64は、制御ルールを記述したファ
ジィルールベース63を解読し、記述された制御ルール
に則って前記入力E ,E1,E2 を推論し、弁開度設定信
号36の変化分ΔUを出力する。また後処理部62は、
リミッター65と積分器66により弁開度設定信号36
を算出する。
The preprocessing unit 61 takes in the valve opening deviation E, performs the above-mentioned preprocessing, and outputs the valve opening deviation E, the maximum valve opening deviation E1 and the past valve opening deviation E2. The fuzzy inference engine 64 deciphers the fuzzy rule base 63 describing the control rules, infers the inputs E 1, E1, E2 according to the described control rules, and outputs the variation ΔU of the valve opening setting signal 36. To do. Further, the post-processing unit 62 is
The limiter 65 and the integrator 66 enable the valve opening setting signal 36
To calculate.

【0020】ファジィ推論エンジン64のメンバーシッ
プ関数は、入力については図3に、出力については図4
に示すとおりである。またファジィルールベース63に
記述された制御ルールの一例を図5に示す。
The membership function of the fuzzy inference engine 64 is shown in FIG. 3 for inputs and FIG. 4 for outputs.
As shown in. An example of the control rule described in the fuzzy rule base 63 is shown in FIG.

【0021】本発明装置において、給水再循環調整弁を
開く時は、従来と同様に高速で開き、閉める時は、ある
一定期間内の偏差の代数的最大値によって制御する。従
って、吸込流量を増やす必要がある時は、高ゲインで制
御して高速で追従する。一方、吸込流量を減ずる必要が
ある時は、しばらく様子をみて、ある時間減信号が継続
した場合にはじめて、一定時間の偏差の代数的最大値、
即ち負の最小の偏差を用いて減操作を行うため、滑らか
で安定な制御ができる。しかも、ある時間、様子をみる
ため、減速度を従来に比べて高速化でき、結果的に吸込
流量を最小必要量により近い制御が実現でき、ポンプ駆
動動力も少なくてすむ。
In the apparatus of the present invention, when the feed water recirculation regulating valve is opened, it is opened at a high speed as in the conventional case, and when it is closed, it is controlled by the algebraic maximum value of the deviation within a certain period. Therefore, when it is necessary to increase the suction flow rate, control is performed with a high gain to follow at high speed. On the other hand, when it is necessary to reduce the suction flow rate, look at the situation for a while, and only after a certain time reduction signal continues, the maximum algebraic value of the deviation for a certain time,
That is, since the reduction operation is performed using the smallest negative deviation, smooth and stable control can be performed. Moreover, since the state is observed for a certain period of time, the deceleration can be made faster than in the conventional case, and as a result, the suction flow rate can be controlled closer to the minimum required amount, and the pump driving power can be reduced.

【0022】図6(a)は、従来技術による制御結果の
シミュレーションを示すもので、長時間に亘って、余分
な流量が流れており、また弁の全閉付近でハンチングが
認められる。一方、図6(b)は本発明による制御結果
のシミュレーションを示すもので、余分な流量も少なく
ハンチングも認められない。
FIG. 6 (a) shows a simulation of the control result according to the prior art, in which an excessive flow rate flows for a long time, and hunting is recognized near the fully closed position of the valve. On the other hand, FIG. 6B shows a simulation of the control result according to the present invention, in which the excess flow rate is small and hunting is not recognized.

【0023】上記の如く、本発明によれば、ポンプ最小
吸込流量の制御が安全かつ安定で、しかも動力ロスを少
なくできる給水制御装置を提供することができる。
As described above, according to the present invention, it is possible to provide a water supply control device in which control of the pump minimum suction flow rate is safe and stable, and power loss can be reduced.

【0024】[0024]

【発明の効果】本発明によれば、ポンプの最小吸込量を
高速かつ安定に制御でき、結果的に無駄な再循環流量を
抑制できるため、ポンプの動力ロスの少ない給水制御装
置が実現できる。
According to the present invention, the minimum suction amount of the pump can be controlled rapidly and stably, and the wasteful recirculation flow rate can be suppressed as a result, so that a water supply control device with less power loss of the pump can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置における給水再循環調節器の実施例
を示すブロック図。
FIG. 1 is a block diagram showing an embodiment of a feedwater recirculation controller in a device of the present invention.

【図2】本発明装置におけるファジィコントローラの入
力処理を示す説明図。
FIG. 2 is an explanatory diagram showing an input process of a fuzzy controller in the device of the present invention.

【図3】本発明装置における入力用メンバーシップ関数
を例示する説明図。
FIG. 3 is an explanatory diagram illustrating an input membership function in the device of the present invention.

【図4】本発明装置における出力用メンバ−シップ関数
を例示する説明図。
FIG. 4 is an explanatory diagram illustrating an output membership function in the device of the present invention.

【図5】本発明装置におけるファジィ制御ルールを例示
する説明図。
FIG. 5 is an explanatory diagram illustrating a fuzzy control rule in the device of the present invention.

【図6】(a)は従来装置のシュミレーション結果を例
示する説明図、(b)は本発明装置のシュミレーション
結果を例示する説明図。
6A is an explanatory view illustrating a simulation result of a conventional device, and FIG. 6B is an explanatory view illustrating a simulation result of the present invention device.

【図7】従来の給水制御システムの系統図。FIG. 7 is a system diagram of a conventional water supply control system.

【図8】従来装置における給水再循環調節器を示す説明
図。
FIG. 8 is an explanatory view showing a water supply recirculation controller in a conventional device.

【符号の説明】[Explanation of symbols]

1…ボイラ、2…給水元管、3…吸込流量検出器、4…
蒸気タービン、5…給水ポンプ、6…吐出流量調節弁、
7…吐出流量検出器、8…ボイラ給水管、9…蒸気加減
弁、10…回転数検出器、11…給水再循環調整弁、1
2…給水再循環配管、13…バイパス弁、22…給水調
節器、23…切替調節器、25…回転数調節器、26…
吐出流量調節器、29…吸込流量偏差、30…給水再循
環調節器、36…弁開度設定信号、60…ファジィコン
トローラ、62…後処理部、65…リミッター、66…
積分器、
1 ... Boiler, 2 ... Water supply source pipe, 3 ... Suction flow rate detector, 4 ...
Steam turbine, 5 ... water supply pump, 6 ... discharge flow control valve,
7 ... Discharge flow rate detector, 8 ... Boiler water supply pipe, 9 ... Steam control valve, 10 ... Rotation speed detector, 11 ... Water supply recirculation adjusting valve, 1
2 ... Water supply recirculation pipe, 13 ... Bypass valve, 22 ... Water supply regulator, 23 ... Switching regulator, 25 ... Rotation speed regulator, 26 ...
Discharge flow rate controller, 29 ... Suction flow rate deviation, 30 ... Water supply recirculation controller, 36 ... Valve opening setting signal, 60 ... Fuzzy controller, 62 ... Post-processing section, 65 ... Limiter, 66 ...
Integrator,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 可変速原動機と、この可変速原動機によ
り駆動される給水ポンプと、この給水ポンプ出口側の水
を入口側に戻すための再循環系と、この再循環系上に設
けられた給水再循環調整弁と、この給水再循環調整弁を
制御する給水再循環調節器とを備えた給水系において、
前記給水ポンプのポンプ最小吸込流量偏差が負の場合
に、所定時間内における最大の代数偏差を採用するファ
ジィコントローラを具備することを特徴とする給水制御
装置。
1. A variable speed prime mover, a feed water pump driven by the variable speed prime mover, a recirculation system for returning water on the outlet side of the water feed pump to the inlet side, and a recirculation system provided on the recirculation system. In a water supply system including a water supply recirculation adjustment valve and a water supply recirculation controller that controls the water supply recirculation adjustment valve,
A water supply controller comprising a fuzzy controller that adopts a maximum algebraic deviation within a predetermined time period when the pump minimum suction flow rate deviation is negative.
JP4033490A 1992-02-20 1992-02-20 Feed water controller Withdrawn JPH05231605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4033490A JPH05231605A (en) 1992-02-20 1992-02-20 Feed water controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4033490A JPH05231605A (en) 1992-02-20 1992-02-20 Feed water controller

Publications (1)

Publication Number Publication Date
JPH05231605A true JPH05231605A (en) 1993-09-07

Family

ID=12388002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4033490A Withdrawn JPH05231605A (en) 1992-02-20 1992-02-20 Feed water controller

Country Status (1)

Country Link
JP (1) JPH05231605A (en)

Similar Documents

Publication Publication Date Title
JPH0333495A (en) Control device for condensate pump
JPH05231605A (en) Feed water controller
JPS5946373A (en) Controller for speed of water wheel
CN116839005A (en) Thermal power unit control method and system in machine-following furnace mode
Effendie et al. Study and Design of Self-Adaptive Pid-Fuzzy Control on Multistage Steam Turbine Rotation Setting
JPH05296402A (en) Steam cycle control device
JP2000161194A (en) Speed governing control device for hydraulic turbine or reversible pump-turbine
JPH03267512A (en) Steam turbine controller
JPH0339202B2 (en)
JP2585204B2 (en) Feed water pump recirculation valve controller
JP2535740B2 (en) Speed control method of underwater vehicle
JPH01257704A (en) Load controller for single shaft type compound cycle generating plant and method therefor
JP2811662B2 (en) Alkali metal engine control device
JPH03241206A (en) Water supplying control device
JP2511908B2 (en) Turbine controller
JPS6337355B2 (en)
JP2645129B2 (en) Condensate recirculation flow control device
JPS623287B2 (en)
JPS61134699A (en) Load follow-up controller for boiling water type nuclear power plant
JPH0816718B2 (en) Fuzzy control method of steam drum water level
JPS6239654B2 (en)
JPH052277B2 (en)
JPS6032002B2 (en) Turbine control device
JPH0743084B2 (en) Main steam pressure controller
JPS6329082B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518