JPH05231302A - Piston pump - Google Patents

Piston pump

Info

Publication number
JPH05231302A
JPH05231302A JP7543792A JP7543792A JPH05231302A JP H05231302 A JPH05231302 A JP H05231302A JP 7543792 A JP7543792 A JP 7543792A JP 7543792 A JP7543792 A JP 7543792A JP H05231302 A JPH05231302 A JP H05231302A
Authority
JP
Japan
Prior art keywords
piston
heating element
tube
cylinder
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7543792A
Other languages
Japanese (ja)
Inventor
Hironobu Sonoda
広信 園田
Tadashi Sumimoto
正 住本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP7543792A priority Critical patent/JPH05231302A/en
Publication of JPH05231302A publication Critical patent/JPH05231302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

PURPOSE:To provide a piston pump which is of a small type and free from vibration and noise generation. CONSTITUTION:A bellows 21 is provided on a part of a piston 6 in a piston pump which has a cylinder 1 provided with an intake valve 4 and an exhaust valve 5, and the piston 6 which slides along the inner wall of the cylinder 1. The piston 6 is fixed to one end of a tube 14 in which high volatile refrigerant 16 and its vapour 17 are stored inside gastightly, and the other end of the tube 14 is connected vent free to a vessel 15 in which the refrigerant 16, its vapour 17 and a heating element 18 are stored, through a tube 22 fixed to the bottom of the cylinder 1. A cooler 19 is mounted outside the tube 22 and on.off of the heating element 18 and the cooler 19, calorific value of the heating element and cooler performance, are controlled by a controller 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気体や液体を搬送する
ピストンポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piston pump for conveying gas or liquid.

【0002】[0002]

【従来の技術】従来の気体や液体を搬送するピストンポ
ンプでは、モータでクランクシャフトを回転し、クラン
クに連結したロッドによりピストンを上下している。図
3に従来のピストンポンプの例を示す。シリンダ1の上
部に吸気口2と排気口3があり、それぞれに吸気弁4と
排気弁5が設けてある。シリンダ1の中にはピストン6
がシリンダ1の中を上下に摺動できるように設置されて
いる。シリンダ1の下部には軸受7で支持されたクラン
ク軸8があって、ピストン6とクランク軸8をロッド9
がつないでいる。クランク軸8はモータ10の出力軸1
1と連結している。モータ10にはコントローラ12が
接続されている。このような構成において、コントロー
ラ12から始動の指令が出るとモータ10が回転を始
め、出力軸11と連結しているクランク軸8が回りだ
す。クランク軸8とロッド9で構成するリンク機構によ
って、クランク軸8の回転運動は、ロッド9でつながっ
ているピストン6のシリンダ1内での、往復直線運動に
換えられる。ピストン6が下降するときは、空気室13
の中の圧力が低下するため、吸気弁4が開いて吸気口2
から空気が流入し、ピストン6が上昇するときは、空気
室13の中の圧力が高くなるため、排気弁5が開いて吸
気口3から空気が排出される。モータ10の連続回転に
よってこの動作が繰り返され、ピストンポンプとして機
能する。
2. Description of the Related Art In a conventional piston pump for conveying gas or liquid, a motor rotates a crankshaft and a rod connected to the crank moves the piston up and down. FIG. 3 shows an example of a conventional piston pump. An intake port 2 and an exhaust port 3 are provided above the cylinder 1, and an intake valve 4 and an exhaust valve 5 are provided in each. In the cylinder 1 there is a piston 6
Is installed so that it can slide up and down in the cylinder 1. At the bottom of the cylinder 1 is a crankshaft 8 supported by bearings 7, which connects the piston 6 and the crankshaft 8 to a rod 9
It is connected. The crankshaft 8 is the output shaft 1 of the motor 10.
It is connected to 1. A controller 12 is connected to the motor 10. In such a configuration, when the controller 12 issues a start command, the motor 10 starts to rotate and the crankshaft 8 connected to the output shaft 11 starts to rotate. By the link mechanism composed of the crankshaft 8 and the rod 9, the rotational movement of the crankshaft 8 is converted into the reciprocating linear movement of the piston 6 connected by the rod 9 in the cylinder 1. When the piston 6 descends, the air chamber 13
Since the pressure in the inside decreases, the intake valve 4 opens and the intake port 2
When the air flows in through the piston 6 and the piston 6 rises, the pressure in the air chamber 13 increases, so that the exhaust valve 5 opens and the air is exhausted from the intake port 3. This operation is repeated by the continuous rotation of the motor 10 to function as a piston pump.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来技術で
は、 (1)駆動源としてモータを使用しているため全体の構
造が大形になる。 (2)クランク軸やロッドのようなアンバランスな運動
をする部材があるため、振動や騒音が出る。 という問題点があった。そこで本発明は上記の問題点を
解決したピストンポンプを提供することを目的とする。
However, in the prior art, (1) since the motor is used as the drive source, the overall structure becomes large. (2) Vibration and noise are generated because there are unbalanced members such as the crankshaft and rod. There was a problem. Therefore, an object of the present invention is to provide a piston pump that solves the above problems.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、吸気弁と排気弁を設けたシリンダとシリンダ内壁に
沿って摺動するピストンとを供えたピストンポンプにお
いて、ピストンの端部を、一部に蛇腹を設けた、内部に
揮発性の強い冷媒液とその蒸気を気密に収納したチュー
ブの一端に固着し、前記チューブの他端に冷媒液とその
蒸気および発熱体を収納した容器を通気自在に接続し、
前記容器の外部には冷却器を装着し、発熱体と冷却器の
on・off、発熱体の発熱量、および冷却器の能力を
制御をコントローラによって行なう。
In order to solve the above problems, in a piston pump provided with a cylinder provided with an intake valve and an exhaust valve and a piston sliding along an inner wall of the cylinder, one end of the piston is It is fixed to one end of a tube with a highly volatile refrigerant liquid and its vapor inside that has a bellows inside, and the other end of the tube is vented with a container containing the refrigerant liquid and its vapor and heating element. Connect freely,
A cooler is attached to the outside of the container, and a controller controls on / off of the heat generating element and the cooler, the amount of heat generated by the heat generating element, and the capacity of the cooler.

【0005】[0005]

【作用】上記手段により、発熱体の発熱量と冷却器の冷
却能力とをコントロールして容器内の蒸気量を操作し、
容器内圧力とシリンダ内圧力とのバランスをサイクリッ
クに変えることによってシリンダ内のピストンを往復運
動させ、吸入,排出弁との連動でポンプ作用をおこさせ
る。
By the above means, the amount of steam in the container is controlled by controlling the amount of heat generated by the heating element and the cooling capacity of the cooler.
By cyclically changing the balance between the pressure in the container and the pressure in the cylinder, the piston in the cylinder reciprocates, and the pump action is made in conjunction with the intake and exhaust valves.

【0006】[0006]

【実施例】以下、本発明の実施例を、空気ポンプを例に
とり、図1に示して説明する。シリンダ1の上部に吸気
口2と排気口3があり、それぞれに吸気弁4と排気弁5
が設けてある。シリンダ1の中にはピストン6がシリン
ダ1の中を上下に摺動できるように設置されている。ピ
ストン6の下部には一部に蛇腹21を設けたチューブ1
4を固着しており、チューブ14は、シリンダ1の底部
に固定したチューブ22を介し、容器15と通気自在に
接続してある。容器15の中には、揮発性の高い冷媒液
16(例えば、フロリナート:商品名)とその冷媒蒸気
17および発熱体18が収納されており、チューブ22
の外壁の一部には冷却器19が装着されている。さら
に、発熱体18のon・offタイミングおよび加熱量
と冷却器19の冷却能力を制御するコントローラ20が
設置されている。なお、チューブ14、蛇腹21とチュ
ーブ22を一体に形成し、冷却器19と容器15をシリ
ンダ1の底部に一体に固定してもよい。このような構成
において、冷却器19をoffにして発熱体18を発熱
させると、冷媒液16と冷媒蒸気17の温度が上昇する
とともに発熱体18の表面で沸騰現象が生じて冷媒液1
6が気化し蒸気が発生する。そのため、冷媒個有の温度
−蒸気圧特性にしたがって容器15とチューブ14の内
圧が上昇する。(図4、フロリナートの温度−蒸気圧特
性のグラフを参照) この蒸気圧がシリンダ1内の空気室13の圧力よりも大
きくなると、チューブ14の一部に設けた蛇腹21が伸
びてピストン6が上に移動する。このため、空気室13
の圧力が外部よりも上昇して排気弁5が開き、排気口3
から空気室13にあった空気が排出される。ピストン6
が予め設定された上死点付近まで達したら発熱体18を
offにし、冷却器19をonにして冷媒液16と冷媒
蒸気17を冷却する。すると、容器15とチューブ14
内の冷媒蒸気17が凝縮して蒸気量が減少するとともに
冷媒液16と冷媒蒸気17の温度が低下し、温度−蒸気
圧特性にしたがって容器15とチューブ14の内圧が下
がる。この蒸気圧が空気室13の圧力よりも小さくなる
と、チューブ14の一部に設けた蛇腹21が縮んでピス
トン6が下に移動する。このため、空気室13の圧力が
外部よりも下がって吸気弁4が開き、空気が吸気口2か
ら空気室13に吸入される。冷媒蒸気の圧力変化の速度
は冷媒の温度変化速度と蒸気量の増減速度で決まり、そ
れぞれ次式で表される。 冷媒の温度変化速度=加熱または吸熱量/[冷媒体積×
比重量×比熱] 蒸気量(体積)の増減速度=加熱または吸熱量/[比重
量×潜熱] 従って、発熱体の加熱量と冷却器の冷却能力を操作する
ことによって冷媒蒸気の圧力変化、すなわち、ピストン
6の速度をコントロールできることがわかる。即ち、コ
ントローラ20で発熱体と冷却器のon・offのタイ
ミングおよび加熱量、冷却能力の制御を行って前述の動
作を繰り返せば、ピストン6がシリンダ1内の往復運動
を続けるのでピストンポンプとして機能する。なお、冷
媒としては比重量、比熱、潜熱の小さいものを選び、使
用量をできるだけ少なくすると制御に対する時定数が短
くなって、わずかな加熱、吸熱量でピストンの動きをコ
ントロールできる。ちなみに、本実施例に挙げたフロリ
ナートでは、比熱は水の1/4、潜熱は1/27であ
る。 図2に他の実施例を示す。前述の図1の実施例で
は発熱体18が容器15の中に密閉されているため、故
障に対する保守点検が行いにくいという欠点がある。そ
こで、発熱体18を容器15の外部に装着して容器15
を介して冷媒液16と冷媒蒸気17を加熱する構造にす
る。こうすることによって、発熱体18の保守点検が容
易にできるようになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. 1 by taking an air pump as an example. An intake port 2 and an exhaust port 3 are provided above the cylinder 1, and an intake valve 4 and an exhaust valve 5 are provided respectively.
Is provided. A piston 6 is installed in the cylinder 1 so that it can slide up and down in the cylinder 1. A tube 1 in which a bellows 21 is partially provided at the bottom of the piston 6.
4 is fixed, and the tube 14 is connected to the container 15 through the tube 22 fixed to the bottom of the cylinder 1 so as to be freely ventilated. In the container 15, a highly volatile refrigerant liquid 16 (for example, Fluorinert: trade name), its refrigerant vapor 17 and a heating element 18 are stored.
A cooler 19 is attached to a part of the outer wall of the. Further, a controller 20 for controlling the on / off timing and heating amount of the heating element 18 and the cooling capacity of the cooler 19 is installed. The tube 14, the bellows 21 and the tube 22 may be integrally formed, and the cooler 19 and the container 15 may be integrally fixed to the bottom of the cylinder 1. In such a configuration, when the cooler 19 is turned off and the heating element 18 is caused to generate heat, the temperatures of the refrigerant liquid 16 and the refrigerant vapor 17 rise and a boiling phenomenon occurs on the surface of the heating element 18 so that the refrigerant liquid 1
6 is vaporized and steam is generated. Therefore, the internal pressure of the container 15 and the tube 14 rises according to the temperature-vapor pressure characteristic of the refrigerant. (See FIG. 4, a graph of Fluorinert temperature-vapor pressure characteristics) When the vapor pressure becomes higher than the pressure of the air chamber 13 in the cylinder 1, the bellows 21 provided in a part of the tube 14 extends and the piston 6 moves. Move up. Therefore, the air chamber 13
Pressure rises from the outside, the exhaust valve 5 opens, and the exhaust port 3
The air in the air chamber 13 is discharged from. Piston 6
When the temperature reaches near the top dead center set in advance, the heating element 18 is turned off and the cooler 19 is turned on to cool the refrigerant liquid 16 and the refrigerant vapor 17. Then, the container 15 and the tube 14
The refrigerant vapor 17 therein condenses to reduce the amount of vapor, the temperatures of the refrigerant liquid 16 and the refrigerant vapor 17 decrease, and the internal pressures of the container 15 and the tube 14 decrease according to the temperature-vapor pressure characteristics. When this vapor pressure becomes lower than the pressure of the air chamber 13, the bellows 21 provided in a part of the tube 14 contracts and the piston 6 moves downward. Therefore, the pressure in the air chamber 13 becomes lower than the outside, the intake valve 4 opens, and air is sucked into the air chamber 13 from the intake port 2. The rate of pressure change of the refrigerant vapor is determined by the temperature change rate of the refrigerant and the rate of increase / decrease of the vapor amount, and each is represented by the following equation. Refrigerant temperature change rate = heating or endotherm / [refrigerant volume x
Specific weight × specific heat] Rate of increase / decrease of vapor amount (volume) = heating or endothermic amount / [specific weight × latent heat] Therefore, the pressure change of the refrigerant vapor by manipulating the heating amount of the heating element and the cooling capacity of the cooler, that is, It can be seen that the speed of the piston 6 can be controlled. That is, if the controller 20 controls the on / off timing of the heating element and the cooler, the heating amount, and the cooling capacity and repeats the above operation, the piston 6 continues the reciprocating motion in the cylinder 1 and functions as a piston pump. To do. If a refrigerant having a small specific weight, specific heat, and latent heat is selected and the usage amount is reduced as much as possible, the time constant for control is shortened, and the movement of the piston can be controlled by slight heating and heat absorption. By the way, in the Fluorinert described in this embodiment, the specific heat is 1/4 of water and the latent heat is 1/27. FIG. 2 shows another embodiment. In the embodiment shown in FIG. 1 described above, since the heating element 18 is hermetically sealed in the container 15, there is a drawback in that it is difficult to perform maintenance inspection for a failure. Therefore, the heating element 18 is attached to the outside of the container 15 and
The structure is such that the refrigerant liquid 16 and the refrigerant vapor 17 are heated via. By doing so, maintenance and inspection of the heating element 18 can be easily performed.

【0007】[0007]

【発明の効果】以上述べたように、本発明によればピス
トンの駆動力として温度変化に対する冷媒蒸気の圧力変
化を利用しているため機械的な可動部分がなく、音や振
動が発生せずに構成も小形になるという効果がある。さ
らに、下記に示すように発熱体と冷却器を制御してポン
プの性能を自在に変えることができるという効果もでて
くる。 (1)発熱体と冷却器のon・offのタイミングを変
えることでピストンのストロークを、発熱量や冷却器の
能力を変えることで速度をそれぞれ制御できるので流体
の搬送量を変化させることができる。 (2)発熱量と冷却能力のバランスを変えることで冷媒
蒸気の温度、すなわち蒸気の圧力レベルを制御できるの
で、搬送しようとする流体の圧力変化に対応することが
できる。
As described above, according to the present invention, since the pressure change of the refrigerant vapor with respect to the temperature change is used as the driving force of the piston, there are no mechanically movable parts, and no sound or vibration is generated. The effect is that the structure is also small. Further, as shown below, there is an effect that the performance of the pump can be freely changed by controlling the heating element and the cooler. (1) The stroke of the piston can be controlled by changing the on / off timing of the heating element and the cooler, and the speed can be controlled by changing the amount of heat generation and the capacity of the cooler, so that the amount of fluid transfer can be changed. .. (2) Since the temperature of the refrigerant vapor, that is, the pressure level of the vapor can be controlled by changing the balance between the heat generation amount and the cooling capacity, it is possible to respond to the pressure change of the fluid to be conveyed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す側断面図FIG. 1 is a side sectional view showing an embodiment of the present invention.

【図2】他の実施例を示す側断面図FIG. 2 is a side sectional view showing another embodiment.

【図3】従来例を示す側断面図FIG. 3 is a side sectional view showing a conventional example.

【図4】フロリナートの温度−蒸気圧特性のグラフFIG. 4 is a graph of temperature-vapor pressure characteristics of Fluorinert.

【符号の説明】[Explanation of symbols]

1 シリンダ 2 吸気口 3 排気口 4 吸気弁 5 排気弁 6 ピストン 7 軸受 8 クランク軸 9 ロッド 10 モータ 11 出力軸 12 コントローラ 13 空気室 14、22 チューブ 15 容器 16 冷媒液 17 冷媒蒸気 18 発熱体 19 冷却器 20 コントローラ 21 蛇腹 1 Cylinder 2 Inlet port 3 Exhaust port 4 Intake valve 5 Exhaust valve 6 Piston 7 Bearing 8 Crankshaft 9 Rod 10 Motor 11 Output shaft 12 Controller 13 Air chamber 14, 22 Tube 15 Container 16 Refrigerant liquid 17 Refrigerant vapor 18 Heating element 19 Cooling Vessel 20 controller 21 bellows

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 吸気弁と排気弁を設けたシリンダとシリ
ンダ内壁に沿って摺動するピストンとを供えたピストン
ポンプにおいて、前記ピストンの端部に固定した、一部
に蛇腹を設け、内部に揮発性の強い冷媒液とその蒸気を
気密に収納したチューブと、前記チューブの他端に通気
自在に接続した冷媒液とその蒸気および発熱体を収納し
た容器と、前記チューブの外周に装着した冷却器と、前
記発熱体のon・offと発熱体の発熱量および冷却器
の冷却能力を制御するコントローラよりなることを特徴
とするピストンポンプ。
1. A piston pump provided with a cylinder provided with an intake valve and an exhaust valve and a piston sliding along an inner wall of the cylinder, wherein a bellows is partially provided and fixed to an end of the piston A tube containing a highly volatile refrigerant liquid and its vapor in an airtight manner, a container containing the refrigerant liquid, its vapor and a heating element, which is connected to the other end of the tube in a ventilated manner, and a cooling attached to the outer circumference of the tube. A piston pump comprising a heater and a controller that controls the on / off of the heating element, the amount of heat generated by the heating element, and the cooling capacity of the cooler.
【請求項2】 前記発熱体を前記容器の外部に装着した
請求項1記載のピストンポンプ。
2. The piston pump according to claim 1, wherein the heating element is mounted outside the container.
JP7543792A 1992-02-25 1992-02-25 Piston pump Pending JPH05231302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7543792A JPH05231302A (en) 1992-02-25 1992-02-25 Piston pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7543792A JPH05231302A (en) 1992-02-25 1992-02-25 Piston pump

Publications (1)

Publication Number Publication Date
JPH05231302A true JPH05231302A (en) 1993-09-07

Family

ID=13576214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7543792A Pending JPH05231302A (en) 1992-02-25 1992-02-25 Piston pump

Country Status (1)

Country Link
JP (1) JPH05231302A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531937A (en) * 2005-02-26 2008-08-14 アーベー エスコーエフ apparatus
JP2010507450A (en) * 2006-10-26 2010-03-11 マリンクロット インコーポレイテッド Medical fluid syringe with thermomechanical drive
KR101669765B1 (en) * 2015-07-24 2016-10-26 이창건 Cooling media producing apparatus using steam generated in nuclear power plant and method for cooling thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531937A (en) * 2005-02-26 2008-08-14 アーベー エスコーエフ apparatus
US8397871B2 (en) 2005-02-26 2013-03-19 Ab Skf Bearing lubrication device
KR101312158B1 (en) * 2005-02-26 2013-09-26 아크티에볼라겟 에스케이에프 Spindle unit device
KR101363729B1 (en) * 2005-02-26 2014-02-14 아크티에볼라겟 에스케이에프 Spindle unit device
JP2010507450A (en) * 2006-10-26 2010-03-11 マリンクロット インコーポレイテッド Medical fluid syringe with thermomechanical drive
US8486008B2 (en) 2006-10-26 2013-07-16 Mallinckrodt Llc Medical fluid injector having a thermo-mechanical drive
KR101669765B1 (en) * 2015-07-24 2016-10-26 이창건 Cooling media producing apparatus using steam generated in nuclear power plant and method for cooling thereof
WO2017018643A1 (en) * 2015-07-24 2017-02-02 이창건 Cooling medium generating apparatus using steam of nuclear power plant and cooling method therefor
US10557627B2 (en) 2015-07-24 2020-02-11 Chang Kun LEE Cooling medium generating apparatus using steam of nuclear power plant and cooling method therefor

Similar Documents

Publication Publication Date Title
KR100341670B1 (en) Reciprocating pump with linear motor driver
US3604821A (en) Stirling cycle amplifying machine
US5370504A (en) Ambulant reciprocating compressor having plural pressure collection chambers
JPH05231302A (en) Piston pump
JP6554428B2 (en) Stirling engine output adjustment device
CN206694223U (en) A kind of piston type oilless air compressor exhaust apparatus
JPH05187356A (en) Refrigerant compressor
US2907169A (en) Hot fluid engine with movable regenerator
JPH04128578A (en) Vacuum pump
JPH04265419A (en) Vaporization cooling internal combustion engine
US4372123A (en) Thermal-gravity engine
JPH0463225B2 (en)
US3788092A (en) Thermodynamic cycles
JP2011038508A (en) Stirling engine
US601031A (en) Hot-air air-compressor
JPH0257215B2 (en)
JP2022011262A (en) Working machine
JP2002098045A (en) Pump
RU2244161C2 (en) Piston compressor
JPH06173763A (en) Hot gas engine
JP2770384B2 (en) Stirling engine compressor
JPH08189468A (en) Oscillation type compressor
JPH0518623A (en) Vuilleumier cycle device
JPH01244253A (en) Low temperature side heat exchanger for stirling cycle engine
US579670A (en) Hot-air engine