JPH05230491A - Electroviscous fluid composition - Google Patents

Electroviscous fluid composition

Info

Publication number
JPH05230491A
JPH05230491A JP280392A JP280392A JPH05230491A JP H05230491 A JPH05230491 A JP H05230491A JP 280392 A JP280392 A JP 280392A JP 280392 A JP280392 A JP 280392A JP H05230491 A JPH05230491 A JP H05230491A
Authority
JP
Japan
Prior art keywords
particles
water content
dispersed phase
dispersed
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP280392A
Other languages
Japanese (ja)
Other versions
JP3115672B2 (en
Inventor
Satoru Ono
哲 小野
Ryuji Aizawa
龍司 相澤
Yoshinobu Asako
佳延 浅子
Minoru Kobayashi
稔 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP280392A priority Critical patent/JP3115672B2/en
Publication of JPH05230491A publication Critical patent/JPH05230491A/en
Application granted granted Critical
Publication of JP3115672B2 publication Critical patent/JP3115672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Colloid Chemistry (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To provide the title composition which produces high shear stress and is excellent in electric current characteristics, dielectric strength characteristics, long-term stability and dispersion stability. CONSTITUTION:An electroviscous fluid composition made by dispersing dielectric particles in an electrical insulating liquid, in which the dielectric particles are immersed in a hydrophilic organic solvent and the water in the particles is removed with the evaporation of the solvent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気粘性流体組成物に関
するものである。更に詳しくは、比較的弱い電場を印加
することによっても大きなせん断応力を発生し、その際
に流れる電流密度が小さく、電場を印加した際に絶縁破
壊を起こしにくいという耐電圧特性に優れ、発生したせ
ん断応力および電流密度の経時安定性に優れ、かつ分散
安定性に優れた電気粘性流体組成物に関するものであ
る。
FIELD OF THE INVENTION This invention relates to electrorheological fluid compositions. More specifically, a large shear stress is generated even by applying a relatively weak electric field, the current density flowing at that time is small, and it has excellent withstand voltage characteristics that dielectric breakdown does not easily occur when an electric field is applied. The present invention relates to an electrorheological fluid composition having excellent shear stress and current density stability over time and excellent dispersion stability.

【0002】[0002]

【従来の技術】電気粘性流体とは、例えば電気絶縁性分
散媒中に分散相粒子を分散・懸濁して得られる流体であ
って、そのレオロジー的あるいは流れ性質が電場変化を
加えることにより粘塑性型の性質に変わる流体であり、
一般に外部電場を印加した際に粘度が著しく上昇し大き
いせん断応力を誘起するいわゆるウィンズロー効果を示
す流体として知られている。
2. Description of the Related Art An electrorheological fluid is, for example, a fluid obtained by dispersing and suspending dispersed phase particles in an electrically insulating dispersion medium, and its rheological or flow properties are viscoplastic due to an electric field change. It is a fluid that changes to the nature of the mold,
It is generally known as a fluid exhibiting a so-called Winslow effect in which a viscosity is remarkably increased when an external electric field is applied and a large shear stress is induced.

【0003】このウィンズロー効果は応答性が速いとい
う特徴を有するため、電気粘性流体はクラッチ、ブレー
キ等のトルク伝達用アクチュエータ、エンジンマウン
ト、ダンパー、バルブ等の制御用アクチュエータ、電気
粘性流体インクジェット等への応用が試みられている。
Since the Winslow effect is characterized by a quick response, the electrorheological fluid is applied to torque transmitting actuators such as clutches and brakes, control actuators such as engine mounts, dampers and valves, and electrorheological fluid ink jets. Is being applied.

【0004】電気粘性流体は、シリコンオイル、塩化ジ
フェニル、トランス油等の電気絶縁油中にセルロース、
でんぷん、シリカゲル、イオン交換樹脂、ポリ(メタ)
アクリル酸塩架橋体等の誘電体粒子を分散相粒子として
分散させたものが知られているこれらの誘電体粒子を分
散相粒子として用いた電気粘性流体においては、分散相
粒子中に水が存在することによりウィンズロー効果が効
果的に発現することが知られている。しかしながら、分
散相粒子中の水が必要以上に多くなると、電気粘性流体
の絶縁性が減少するため、電場を印加した際に流れる電
流密度が増大し、発生したせん断応力と電流密度の経時
安定性が非常に悪くなる。そのため分散相粒子中の水
は、適切な量(以下、これを最適含水率という)に調整
する必要がある。
The electrorheological fluid is composed of cellulose in an electrically insulating oil such as silicone oil, diphenyl chloride and transformer oil.
Starch, silica gel, ion exchange resin, poly (meta)
It is known that dielectric particles such as crosslinked acrylate are dispersed as dispersed phase particles.In electrorheological fluids using these dielectric particles as dispersed phase particles, water is present in the dispersed phase particles. It is known that the Winslow effect is effectively exhibited by doing so. However, if the amount of water in the dispersed phase particles is unnecessarily large, the insulating property of the electrorheological fluid will decrease, and the current density that flows when an electric field is applied will increase. Becomes very bad. Therefore, it is necessary to adjust the amount of water in the dispersed phase particles to an appropriate amount (hereinafter referred to as the optimum water content).

【0005】一方、上記の誘電体粒子は、水との親和性
が強いため一般に吸湿性を有しており、誘電体粒子の組
成や形状に応じて特定量の水を含有し周囲の雰囲気と平
衡を保っている。この誘電体粒子が周囲の雰囲気と平衡
を保っている水分量(誘電体粒子の平衡含水率)は、誘
電体粒子を電気粘性流体の分散相粒子として用いる場合
の最適含水率より大きく、誘電体粒子を分散相粒子とし
て用いる場合には、誘電体粒子中の含有水分を除去して
含水率を調整する必要がある。
On the other hand, the above-mentioned dielectric particles generally have hygroscopicity because they have a strong affinity with water, and contain a specific amount of water depending on the composition and shape of the dielectric particles, so that the dielectric particles have a different atmosphere. It is in balance. The water content (equilibrium water content of the dielectric particles) in which the dielectric particles are in equilibrium with the surrounding atmosphere is larger than the optimum water content when the dielectric particles are used as dispersed phase particles of the electrorheological fluid. When the particles are used as dispersed phase particles, it is necessary to remove the water content in the dielectric particles to adjust the water content.

【0006】しかしながら、水分を除く方法として、誘
電体粒子を加熱する等により水分除去した場合には誘電
体粒子が凝集し、得られた分散相粒子を分散媒へ均一に
分散することができなかった。また、得られた電気粘性
流体は、分散安定性(分散相粒子を沈降または浮上させ
ずに電気粘性流体を長時間均一状態に保持できる性能)
に乏しく、また耐電圧特性にも劣るという問題があっ
た。
However, as a method of removing water, when water is removed by heating the dielectric particles, the dielectric particles aggregate, and the obtained dispersed phase particles cannot be uniformly dispersed in the dispersion medium. It was In addition, the obtained electrorheological fluid has dispersion stability (the ability to hold the electrorheological fluid in a uniform state for a long time without causing the dispersed phase particles to settle or float).
However, there is a problem in that it is poor in the withstand voltage characteristic.

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来の誘電
体粒子を分散相粒子として用いた電気粘性流体の上記問
題点を解決するものである。従って、本発明の目的は、
比較的弱い電場を印加することによっても大きなせん断
応力を発生し、その際に流れる電流密度が小さく、強い
電場を印加した際に絶縁破壊を起こしにくいという耐電
圧特性に優れ、発生したせん断応力および電流密度の経
時安定性に優れかつ分散安定性に優れた電気粘性流体組
成物を提供することにある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of conventional electrorheological fluids using dielectric particles as dispersed phase particles. Therefore, the object of the present invention is to
Large shear stress is also generated by applying a relatively weak electric field, the current density flowing at that time is small, and it has excellent withstand voltage characteristics that dielectric breakdown does not easily occur when a strong electric field is applied. An object of the present invention is to provide an electrorheological fluid composition having excellent current density stability over time and dispersion stability.

【0008】[0008]

【課題を解決するための手段】本発明は、大気中におけ
る平衡含水率未満の水分を含有する誘電体粒子(A)か
らなる分散相粒子を電気絶縁性分散媒中に分散させてな
る組成物であって、誘電体粒子(A)が、誘電体粒子を
親水性有機溶媒中に浸漬したのち誘電体粒子中の含有水
分を親水性有機溶媒の留去と共に除去することによって
得られるものである電気粘性流体組成物に関するもので
ある。
DISCLOSURE OF THE INVENTION The present invention is a composition in which dispersed phase particles composed of dielectric particles (A) containing a water content below the equilibrium water content in the atmosphere are dispersed in an electrically insulating dispersion medium. The dielectric particles (A) are obtained by immersing the dielectric particles in a hydrophilic organic solvent and then removing the water content in the dielectric particles together with the distilling of the hydrophilic organic solvent. The present invention relates to an electrorheological fluid composition.

【0009】[0009]

【作用】本発明における誘電体粒子とは、電場を加えた
時に誘電分極する物質の粒子であり、例えば水酸基、ス
ルホン酸基、カルボン酸基、アミノ基、アミド基等の極
性溶媒中で遊離する官能基を有する化合物の粒子を挙げ
ることができる。
The dielectric particles in the present invention are particles of a substance that is dielectrically polarized when an electric field is applied, and are liberated in a polar solvent such as a hydroxyl group, a sulfonic acid group, a carboxylic acid group, an amino group or an amide group. Particles of a compound having a functional group may be mentioned.

【0010】本発明で用いられる分散相粒子は、大気中
における平衡含水率未満のウィンズロー効果発現のため
に適量の水分(最適含水率)を含有している誘電体粒子
(A)でなければならない。なお、本発明でいう大気中
における平衡含水率とは、0.1torr以下の減圧度
で150℃、3時間乾燥させたのち、温度25℃、相対
湿度60%の大気中雰囲気下に24時間放置し平衡を保
たせた時の含水率をいう。
The dispersed phase particles used in the present invention must be dielectric particles (A) that contain an appropriate amount of water (optimum water content) for exhibiting the Winslow effect below the equilibrium water content in the atmosphere. I won't. The equilibrium water content in the atmosphere referred to in the present invention means drying at 150 ° C. for 3 hours at a reduced pressure of 0.1 torr or less, and then leaving it in the atmosphere at 25 ° C. and 60% relative humidity for 24 hours. The water content when equilibrated.

【0011】誘電体粒子(A)としては、例えばデンプ
ン、セルロース、イオン交換樹脂、ポリ(メタ)アクリ
ル酸塩架橋体、スルホン酸基で置換された芳香族環を有
するスルホン化重合体等の遊離基を有する有機誘電体粒
子;シリカゲル、アルミナなどの無機微粒子等が挙げら
れる。中でもスルホン酸基で置換された芳香族環を有す
るスルホン化重合体粒子を分散相粒子として用いること
が、比較的弱い電場の印加で大きなせん断応力を発生し
その際に流れる電流密度が小さいという電流特性に優
れ、かつ発生したせん断応力および電流密度の経時安定
性に優れた電気粘性流体が得られるので好ましい。通
常、上記の誘電体粒子中に存在する水分には、誘電体粒
子中の解離基と相互作用せずに粒子内部や粒子間に存在
する自由水が含まれている。この自由水が存在する場合
には、電気絶縁性分散媒に分散相粒子を分散させたとき
に分散相粒子が凝集し、分散安定性に乏しい電気粘性流
体しか得られず、また電場を印加した際に大きな電流が
流れたり耐電圧特性が低下するという問題点が生じる。
As the dielectric particles (A), for example, starch, cellulose, ion exchange resins, crosslinked poly (meth) acrylic acid salts, sulfonated polymers having an aromatic ring substituted with a sulfonic acid group, etc. are liberated. Organic dielectric particles having a group; silica gel, inorganic fine particles such as alumina, and the like. Among them, the use of sulfonated polymer particles having an aromatic ring substituted with a sulfonic acid group as dispersed phase particles produces a large shear stress under the application of a relatively weak electric field, resulting in a small current density. It is preferable because an electrorheological fluid having excellent properties and excellent stability with time of generated shear stress and current density can be obtained. Usually, the water present in the dielectric particles includes free water existing inside the particles or between the particles without interacting with the dissociative groups in the dielectric particles. In the presence of this free water, when the dispersed phase particles were dispersed in the electrically insulating dispersion medium, the dispersed phase particles aggregated, and only an electrorheological fluid with poor dispersion stability was obtained, and an electric field was applied. At that time, there arises a problem that a large current flows and the withstand voltage characteristic is deteriorated.

【0012】したがって、本発明では、前記したように
誘電体粒子中の含有水分を大気中における平衡含水率未
満の最適含水率とする必要がある。この誘電体粒子の最
適含水率は、用いる誘電体粒子の組成や形状により異な
るが一般に0.1〜10%である。しかし、誘電体粒子
は、乾燥および乾燥後の保管等の水分管理を行わない限
り、大気中における平衡含水率以上の水を含んでおり、
このまま電気粘性流体の分散相粒子とするのは好ましく
ない。そこで誘電体粒子を分散相粒子として用いる場合
には、過剰な水分を除いて用いる必要がある。
Therefore, in the present invention, as described above, it is necessary to set the water content in the dielectric particles to the optimum water content below the equilibrium water content in the atmosphere. The optimum moisture content of the dielectric particles varies depending on the composition and shape of the dielectric particles used, but is generally 0.1 to 10%. However, the dielectric particles contain water having a water content equal to or higher than the equilibrium water content in the atmosphere, unless water management such as drying and storage after drying is performed.
It is not preferable to use the electrorheological fluid as the dispersed phase particles as it is. Therefore, when the dielectric particles are used as the dispersed phase particles, it is necessary to remove excess water before use.

【0013】本発明では、分散相粒子として用いられる
大気中における平衡含水率未満の水分を含有する誘電体
粒子(A)を得るに際し、誘電体粒子から不必要な水分
を除くために誘電体粒子を親水性有機溶媒に浸漬したの
ち誘電体粒子中の含有水分を親水性有機溶媒と共に留去
する。特に留去後の含水率としては0.1〜2%の範囲
とするのが好ましい。
In the present invention, when the dielectric particles (A) containing water having a moisture content less than the equilibrium water content in the atmosphere used as dispersed phase particles are obtained, the dielectric particles are removed in order to remove unnecessary water from the dielectric particles. Is immersed in a hydrophilic organic solvent, and then the water content in the dielectric particles is distilled off together with the hydrophilic organic solvent. In particular, the water content after evaporation is preferably in the range of 0.1 to 2%.

【0014】親水性有機溶媒に浸漬したのち親水性有機
溶媒を留去することで、誘電体粒子中に存在する自由水
が親水性有機溶媒と置換されるため、誘電体粒子間の凝
集力が抑えられる。その結果、得られた誘電体粒子
(A)同士は、その界面において点接合ないしわずかな
面接合をしているだけなので比較的簡単な機構の粉砕機
によって容易に解砕することができ、また解砕後の誘電
体粒子(A)は容易に電気絶縁性分散媒中に分散させる
ことができる。
By dipping the hydrophilic organic solvent after dipping it in the hydrophilic organic solvent, free water existing in the dielectric particles is replaced with the hydrophilic organic solvent, so that the cohesive force between the dielectric particles is increased. It can be suppressed. As a result, the obtained dielectric particles (A) can be easily crushed by a crusher having a relatively simple mechanism, because they have only point bonding or slight surface bonding at their interfaces. The crushed dielectric particles (A) can be easily dispersed in an electrically insulating dispersion medium.

【0015】本発明において得られる誘電体粒子(A)
は大気中における平衡含水率未満、好ましくは前記した
最適含水率の範囲であれば、必要に応じて吸湿操作を行
ってもよく、吸湿後の誘電体粒子(A)でも容易に電気
絶縁性分散媒に分散させることができる。
Dielectric particles (A) obtained in the present invention
Is less than the equilibrium water content in the atmosphere, preferably within the range of the optimum water content described above, and a hygroscopic operation may be carried out as necessary, and the dielectric particles (A) after hygroscopicity can be easily dispersed in an electrically insulating manner. It can be dispersed in a medium.

【0016】本発明による親水性有機溶媒中への浸漬処
理を行わずに直接乾燥する等により水分除去した場合に
は、誘電体粒子の凝集や融着が起こる。その結果、得ら
れた誘電体粒子同士がその界面において強く面接合して
いるため、粉砕機を用いて解砕を行う場合に非常に大き
なエネルギーが必要となる。こうして解砕して得られた
誘電体粒子は、形状が球状に保持されず凝集物も混在し
てくるために、得られた電気粘性流体は電場を印加した
際に流れる電流密度が大きくなったり、分散安定性に乏
しかったり、また耐電圧性に劣るという問題点が生じ
る。本発明に用いられる親水性有機溶媒としては、水と
任意の割合で混合できるものなら特に制限はなく、例え
ばメタノール、エタノール、プロパノール、イソプロパ
ノールなどのアルコール類;テトラヒドロフランなどの
エーテル類;アセトン、メチルエチルケトン等のケトン
類等を挙げることができ、これらの中から一種または二
種以上を用いることができる。
When the water content is removed by direct drying or the like without performing the immersion treatment in the hydrophilic organic solvent according to the present invention, the dielectric particles are agglomerated or fused. As a result, the obtained dielectric particles are strongly surface-bonded to each other at their interfaces, so that a very large amount of energy is required when crushing with a crusher. The dielectric particles obtained by crushing in this way do not maintain a spherical shape, and aggregates are also mixed, so that the obtained electrorheological fluid has a large current density when an electric field is applied. However, there are problems such as poor dispersion stability and poor withstand voltage. The hydrophilic organic solvent used in the present invention is not particularly limited as long as it can be mixed with water at an arbitrary ratio, and examples thereof include alcohols such as methanol, ethanol, propanol and isopropanol; ethers such as tetrahydrofuran; acetone and methyl ethyl ketone. And the like, and one or more of them can be used.

【0017】誘電体粒子から含有水分を親水性有機溶媒
と共に留去する方法としては特に制限はなく、例えば熱
風乾燥方法、真空乾燥方法、放射乾燥方法、伝導乾燥方
法など公知の方法を用いることができる。また、この際
に用いることのできる機器としては特に制限はなく公知
の乾燥器を用いることができる。
The method of distilling the water content from the dielectric particles together with the hydrophilic organic solvent is not particularly limited, and known methods such as hot air drying method, vacuum drying method, radiation drying method and conduction drying method can be used. it can. In addition, the device that can be used at this time is not particularly limited, and a known dryer can be used.

【0018】さらに、誘電体粒子から水分を除去するに
際し、真空下または不活性ガス雰囲気下で親水性有機溶
媒の留去を行うのが好ましい。
Further, when removing water from the dielectric particles, it is preferable to distill off the hydrophilic organic solvent under a vacuum or in an inert gas atmosphere.

【0019】誘電体粒子(A)は必要に応じて、分級し
て分散相粒子として用いられる。
The dielectric particles (A) are used as dispersed phase particles after being classified, if necessary.

【0020】本発明で用いられる分散相粒子の形状は球
状であることが好ましい。分散相粒子の形状が球状以外
の形状の場合には、調製された電気粘性流体組成物に電
場を印加した際に大きなせん断応力が得られないという
問題点や電場を印加し続けた状態での経時安定性が乏し
くなるという問題点が起こることがある。
The shape of the dispersed phase particles used in the present invention is preferably spherical. When the shape of the dispersed phase particles is a shape other than spherical, the problem that a large shear stress cannot be obtained when an electric field is applied to the prepared electrorheological fluid composition and the state in which the electric field is continuously applied There may be a problem that the stability with time becomes poor.

【0021】本発明で用いられる分散相粒子の平均粒子
径は1〜50μmの範囲にあることが好ましい。本発明
の電気粘性流体組成物においては、分散相の粒子径が小
さくなるに従い調製された電気粘性流体組成物に電場を
印加した際に得られるせん断応力が小さくなる傾向にあ
り、分散相粒子の平均粒子径が1μm未満の場合には、
調製された電気粘性流体組成物に電場を印加した際に大
きなせん断応力が得られないという問題点が起こること
がある。また、分散相粒子の平均粒子径が50μmを越
える場合には、調製された電気粘性流体組成物にある一
定の電場を印加した際に得られるせん断応力値が不規則
となり、安定しにくいという問題点が起こることがあ
る。
The average particle size of the dispersed phase particles used in the present invention is preferably in the range of 1 to 50 μm. In the electrorheological fluid composition of the present invention, the shear stress obtained when an electric field is applied to the prepared electrorheological fluid composition tends to decrease as the particle diameter of the dispersed phase decreases, and When the average particle size is less than 1 μm,
There may be a problem that a large shear stress cannot be obtained when an electric field is applied to the prepared electrorheological fluid composition. Further, when the average particle size of the dispersed phase particles exceeds 50 μm, the shear stress value obtained when a certain electric field is applied to the prepared electrorheological fluid composition becomes irregular and difficult to stabilize. Points can occur.

【0022】得られた誘電体粒子(A)からなる分散相
粒子は、電気絶縁性分散媒中に分散して、本発明の電気
粘性流体組成物が製造される。本発明の電気粘性流体組
成物における分散相粒子と電気絶縁性分散媒との比は、
前者100重量部に対して後者50〜500重量部の範
囲であることが好ましい。分散媒の量が500重量部を
越える場合、調製された電気粘性流体組成物に電場を印
加した際に得られるせん断応力が十分大きくならないこ
とがある。また、分散媒の量が50重量部未満の場合、
調製された組成物自体の流動性が低下して、電気粘性流
体としての使用が難しくなることがある。
The dispersed phase particles composed of the obtained dielectric particles (A) are dispersed in an electrically insulating dispersion medium to produce the electrorheological fluid composition of the present invention. The ratio of the dispersed phase particles and the electrically insulating dispersion medium in the electrorheological fluid composition of the present invention is
It is preferable that the former range from 50 to 500 parts by weight relative to the former 100 parts by weight. If the amount of the dispersion medium exceeds 500 parts by weight, the shear stress obtained when an electric field is applied to the prepared electrorheological fluid composition may not be sufficiently high. When the amount of the dispersion medium is less than 50 parts by weight,
The fluidity of the prepared composition itself may be lowered, and it may be difficult to use it as an electrorheological fluid.

【0023】本発明で使用することのできる電気絶縁性
分散媒としては、特に制限はなく、例えばポリジメチル
シロキサン、ポリフェニルメチルシロキサンなどのシリ
コーンオイル;流動パラフィン、デカン、ドデカン、メ
チルナフタレン、ジメチルナフタレン、エチルナフタレ
ン、ビフェニル、デカリン、部分水添されたトリフェニ
ルなどの炭化水素;ビフェニルエーテルなどのエーテル
化合物;クロロベンゼン、ジクロロベンゼン、トリクロ
ロベンゼン、ブロモベンゼン、ジブロモベンゼン、クロ
ロナフタレン、ジクロロナフタレン、ブロモナフタレ
ン、クロロビフェニル、ジクロロビフェニル、トリクロ
ロビフェニル、ブロモビフェニル、クロロジフェニルメ
タン、ジクロロジフェニルメタン、トリクロロジフェニ
ルメタン、ブロモジフェニルメタン、クロロデカン、ジ
クロロデカン、トリクロロデカン、ブロモデカン、クロ
ロドデカン、ジクロロドデカン、ブロモドデカンなどの
ハロゲン化炭化水素;クロロジフェニルエーテル、ジク
ロロジフェニルエーテル、トリクロロジフェニルエーテ
ル、ブロモジフェニルエーテルなどのハロゲン化ジフェ
ニルエーテル化合物;ダイフロイル(ダイキン工業
(株)製)、デムナム(ダイキン工業(株)製)などの
フッ化物;フタル酸ジオクチル、トリメリット酸トリオ
クチル、セバシン酸ジブチルなどのエステル化合物等を
挙げることができ、これらの中から一種または二種以上
用いることができる。
The electrically insulating dispersion medium that can be used in the present invention is not particularly limited, and examples thereof include silicone oils such as polydimethylsiloxane and polyphenylmethylsiloxane; liquid paraffin, decane, dodecane, methylnaphthalene and dimethylnaphthalene. , Hydrocarbons such as ethylnaphthalene, biphenyl, decalin and partially hydrogenated triphenyl; ether compounds such as biphenyl ether; chlorobenzene, dichlorobenzene, trichlorobenzene, bromobenzene, dibromobenzene, chloronaphthalene, dichloronaphthalene, bromonaphthalene, Chlorobiphenyl, dichlorobiphenyl, trichlorobiphenyl, bromobiphenyl, chlorodiphenylmethane, dichlorodiphenylmethane, trichlorodiphenylmethane, bromodiphenyl Halogenated hydrocarbons such as phenylmethane, chlorodecane, dichlorodecane, trichlorodecane, bromodecane, chlorododecane, dichlorododecane, bromododecane; halogenated diphenyl ether compounds such as chlorodiphenyl ether, dichlorodiphenyl ether, trichlorodiphenyl ether, bromodiphenyl ether; Daifloyl (Daikin Industries ( Examples of such compounds include fluorinated compounds (such as manufactured by K.K.), DENNUM (manufactured by Daikin Industries, Ltd.), and ester compounds such as dioctyl phthalate, trioctyl trimellitate, and dibutyl sebacate, and one or two of these compounds. The above can be used.

【0024】本発明では、分散相粒子を電気絶縁性分散
媒へ分散させる際、超音波分散機やホモジナイザー等の
公知の分散機を用いて行うことができる。
In the present invention, when the dispersed phase particles are dispersed in the electrically insulating dispersion medium, a known disperser such as an ultrasonic disperser or a homogenizer can be used.

【0025】また、電気粘性流体組成物の分散安定性を
改良するため、界面活性剤や高分子添加剤等の分散剤を
加えて使用することができる。
Further, in order to improve the dispersion stability of the electrorheological fluid composition, a dispersant such as a surfactant or a polymer additive may be added and used.

【0026】[0026]

【実施例】以下、実施例により本発明を説明するが、本
発明の範囲がこれら実施例のみに限定されるものではな
い。
The present invention will be described below with reference to examples, but the scope of the present invention is not limited to these examples.

【0027】[0027]

【参考例1】シリカゲル粒子であるワコーゲルLC−5
K(和光純薬(株)製、粒子径5μm)50gを150
℃で3時間真空乾燥を行った。このとき含水率は0.2
%であった。乾燥後、この粒子を恒温恒湿器中で25℃
湿度60%RHで24時間放置して平衡含水率を求めた
ところ12%であった。
[Reference Example 1] Wako gel LC-5 which is silica gel particles
K (manufactured by Wako Pure Chemical Industries, Ltd., particle diameter 5 μm) 50 g 150
Vacuum drying was performed at 3 ° C for 3 hours. At this time, the water content is 0.2
%Met. After drying, the particles are placed in a thermo-hygrostat at 25 ° C.
The equilibrium water content was 12% when the equilibrium water content was determined by leaving it at a humidity of 60% RH for 24 hours.

【0028】[0028]

【参考例2】撹拌機、還流冷却機および温度計を備えた
3リットルの四つ口セパラブルフラスコに水1.2リッ
トルを仕込み、クラレポバールPVA−205((株)
クラレ製のポリビニルアルコール)16.0gを添加・
溶解させた後、さらに、アクリル酸エチル280g、工
業用ジビニルベンゼン(和光純薬工業(株)製、ジビニ
ルベンゼン55重量%、エチルスチレン35重量%等の
混合物)20gおよび過酸化ベンゾイル10gからなる
混合物を加えた。その後、5000rpmの撹拌速度で
フラスコ内の内容物を分散させ、75℃で1時間重合し
た。さらに重合温度を95℃まで昇温し4時間加熱し
た。得られた固形物を濾別し、十分に水洗した後、熱風
乾燥器を用いて80℃で12時間乾燥し、球状の重合架
橋体(1)286gを得た。
[Reference Example 2] 1.2 liters of water was charged into a 3 liter four-necked separable flask equipped with a stirrer, a reflux condenser and a thermometer, and Kuraray Poval PVA-205 (Co., Ltd.) was used.
16.0g of polyvinyl alcohol made by Kuraray)
After being dissolved, a mixture of 280 g of ethyl acrylate, 20 g of industrial divinylbenzene (a mixture of Wako Pure Chemical Industries, Ltd., 55% by weight of divinylbenzene, 35% by weight of ethylstyrene, etc.) and 10 g of benzoyl peroxide. Was added. Then, the contents in the flask were dispersed at a stirring speed of 5000 rpm, and polymerization was carried out at 75 ° C for 1 hour. Further, the polymerization temperature was raised to 95 ° C. and heated for 4 hours. The obtained solid matter was separated by filtration, washed thoroughly with water, and then dried at 80 ° C. for 12 hours using a hot air drier to obtain 286 g of a spherical crosslinked polymer (1).

【0029】撹拌機、温度計および滴下ロートを備えた
2リットルの四つ口セパラブルフラスコに重合架橋体
(1)50gを水酸化ナトリウム60gを溶かしたエタ
ノール1リットル中に分散し均一な分散液とした。反応
混合物を還流し6時間加熱・撹拌し、加水分解反応を行
った。その後、反応混合物を0℃の水中に注ぎ、濾別し
た後、水で洗浄した。次いで、真空乾燥機を用いて、8
0℃で10時間乾燥し、42gの球状のポリアクリル酸
ナトリウム粒子を得た。
In a 2-liter four-necked separable flask equipped with a stirrer, a thermometer and a dropping funnel, 50 g of the crosslinked polymer (1) was dispersed in 1 liter of ethanol containing 60 g of sodium hydroxide to obtain a uniform dispersion liquid. And The reaction mixture was refluxed and heated and stirred for 6 hours to carry out a hydrolysis reaction. Then, the reaction mixture was poured into water at 0 ° C., filtered and washed with water. Then, using a vacuum dryer, 8
It was dried at 0 ° C. for 10 hours to obtain 42 g of spherical sodium polyacrylate particles.

【0030】得られたポリアクリル酸ナトリウム粒子の
平均粒子径を粒度分布測定装置((株)島津製作所製、
SALD−1000)を用いて測定したところ、5μm
であった。ポリアクリル酸ナトリウム粒子中のイオン交
換容量を中和滴定法および元素分析法により定量したと
ころ、中和滴定法では9.8mg当量/g元素分析法で
は9.7mg当量/gであった。
The average particle size of the obtained sodium polyacrylate particles was measured by a particle size distribution measuring device (manufactured by Shimadzu Corporation,
When measured using SALD-1000), it is 5 μm.
Met. When the ion exchange capacity in the sodium polyacrylate particles was quantified by the neutralization titration method and the elemental analysis method, it was 9.8 mg equivalent / g in the neutralization titration method and 9.7 mg equivalent / g in the elemental analysis method.

【0031】ポリアクリル酸ナトリウム粒子25gを1
50℃で3時間真空乾燥を行った。このとき含水率は
0.3%であった。乾燥後、この粒子を恒温恒湿器中で
25℃湿度60%RHで24時間放置して平衡含水率を
求めたところ 19%であった。
1 g of 25 g of sodium polyacrylate particles
Vacuum drying was performed at 50 ° C. for 3 hours. At this time, the water content was 0.3%. After drying, the particles were allowed to stand in a thermo-hygrostat at 25 ° C. and 60% RH for 24 hours, and the equilibrium water content was 19%.

【0032】[0032]

【参考例3】強酸型カチオン交換樹脂であるMCIゲル
CK08C(三菱化成(株)製、粒子径18μm,Na
型)50gを150℃で3時間真空乾燥を行った。この
とき含水率は、0.5%であった。乾燥後、この粒子を
恒温恒湿器中で25℃湿度60%RHで24時間放置し
て平衡含水率を求めたところ25%であった。
[Reference Example 3] MCI gel CK08C (manufactured by Mitsubishi Kasei Co., Ltd., particle size 18 μm, Na, which is a strong acid type cation exchange resin)
50 g of mold) was vacuum dried at 150 ° C. for 3 hours. At this time, the water content was 0.5%. After drying, the particles were allowed to stand in a thermo-hygrostat at 25 ° C. and 60% RH for 24 hours, and the equilibrium water content was calculated to be 25%.

【0033】[0033]

【参考例4】撹拌機、還流冷却機および温度計を備えた
3リットルの四つ口セパラブルフラスコに水1.2リッ
トルを仕込み、クラレポバールPVA−205((株)
クラレ製のポリビニルアルコール)16.0gを添加・
溶解させた後、更に、スチレン260g、工業用ジビニ
ルベンゼン(和光純薬工業(株)製、ジビニルベンゼン
55重量%、エチルスチレン35重量%等の混合物)4
0gおよび過酸化ベンゾイル10gからなる混合物を加
えた。その後、8000rpmの撹拌速度でフラスコ内
の内容物を分散させ、75℃で1時間重合した。さらに
重合温度を95℃まで昇温し4時間加熱した。得られた
固形物を濾別し、十分に水洗した後、熱風乾燥器を用い
て80℃で12時間乾燥し、球状の重合架橋体(2)2
86gを得た。
[Reference Example 4] 1.2 liters of water was charged into a 3 liter four-necked separable flask equipped with a stirrer, a reflux condenser and a thermometer, and Kuraray Poval PVA-205 (Co., Ltd.)
16.0g of polyvinyl alcohol made by Kuraray)
After being dissolved, 260 g of styrene and divinylbenzene for industrial use (mixture of 55% by weight of divinylbenzene, 35% by weight of ethylstyrene, manufactured by Wako Pure Chemical Industries, Ltd.) 4
A mixture consisting of 0 g and 10 g of benzoyl peroxide was added. Then, the contents in the flask were dispersed at a stirring speed of 8000 rpm, and polymerization was carried out at 75 ° C for 1 hour. Further, the polymerization temperature was raised to 95 ° C. and heated for 4 hours. The solid matter obtained was filtered off, washed thoroughly with water, and then dried at 80 ° C. for 12 hours using a hot air drier to give a spherical polymerized crosslinked product (2) 2
86 g was obtained.

【0034】撹拌機、温度計および滴下ロートを備えた
2リットルの四つ口セパラブルフラスコに重合架橋体
(2)50gを仕込み、98重量%濃硫酸500gを加
え、均一な分散液とした。反応混合物の温度を80℃に
上げた後、同温度で24時間加熱・撹拌し、スルホン化
反応を行った。その後、反応混合物を0℃の水中に注
ぎ、濾別した後、水・アセトンで洗浄した。得られた固
形物を10重量%水酸化ナトリウム水溶液330mlで
中和した後、水で十分に洗浄した。次いで、真空乾燥機
を用いて、80℃で10時間乾燥し、120gの球状の
スルホン化重合体粒子を得た。
A 2 liter four-necked separable flask equipped with a stirrer, a thermometer and a dropping funnel was charged with 50 g of the crosslinked polymer (2), and 500 g of 98% by weight concentrated sulfuric acid was added to obtain a uniform dispersion liquid. After raising the temperature of the reaction mixture to 80 ° C., the mixture was heated and stirred at the same temperature for 24 hours to carry out a sulfonation reaction. Then, the reaction mixture was poured into water at 0 ° C., filtered and washed with water / acetone. The obtained solid matter was neutralized with 330 ml of a 10 wt% sodium hydroxide aqueous solution and then thoroughly washed with water. Then, using a vacuum dryer, it was dried at 80 ° C. for 10 hours to obtain 120 g of spherical sulfonated polymer particles.

【0035】得られたスルホン化重合体粒子の平均粒子
径を粒度分布測定装置((株)島津製作所製、SALD
−1000)を用いて測定したところ、5μmであっ
た。スルホン化重合体粒子中のスルホン酸基の数を中和
滴定法および元素分析法により定量したところ、中和滴
定法ではスルホン化重合体中の芳香族環数100に対し
て155、元素分析法ではスルホン化重合体中の芳香族
環数100に対して156であった。
The average particle diameter of the obtained sulfonated polymer particles was measured by a particle size distribution measuring device (manufactured by Shimadzu Corporation, SALD).
-1000), it was 5 micrometers. The number of sulfonic acid groups in the sulfonated polymer particles was quantified by the neutralization titration method and the elemental analysis method. In the neutralization titration method, 155 per 100 aromatic rings in the sulfonated polymer, the elemental analysis method was used. Was 156 with respect to 100 aromatic rings in the sulfonated polymer.

【0036】スルホン化重合体粒子50gを150℃で
3時間真空乾燥を行った。このとき含水率は1.5%で
あった。乾燥後、この粒子を恒温恒湿器中で25℃湿度
60%RHで24時間放置して平衡含水率を求めたとこ
ろ39%であった。
50 g of the sulfonated polymer particles were vacuum dried at 150 ° C. for 3 hours. At this time, the water content was 1.5%. After drying, the particles were allowed to stand in a thermo-hygrostat at 25 ° C. and 60% RH for 24 hours, and the equilibrium water content was 39%.

【0037】[0037]

【参考例5】トルエン30g、メトキシポリエチレング
リコールメタクリレート(新中村化学工業(株)製のN
KエステルM−230G、エチレングリコールの単位数
は23個)5g,p−メトキシスチレン13およびラウ
リルメタクリレート12g、開始剤としてアゾビスイソ
ブチロニトリル0.1gを加え室温で30分間撹拌し
た。その後65℃で24時間加熱撹拌した後さらに90
℃で2時間加熱することにより重合を行った。得られた
重合体のトルエン溶液(以下、これを重合体溶液(1)
という。)の固形分含有率を測定したところ51重量%
であった。
[Reference Example 5] 30 g of toluene, methoxy polyethylene glycol methacrylate (N produced by Shin-Nakamura Chemical Co., Ltd.)
5 g of K ester M-230G and 23 units of ethylene glycol), 13 g of p-methoxystyrene and 12 g of lauryl methacrylate, and 0.1 g of azobisisobutyronitrile as an initiator were added, and the mixture was stirred at room temperature for 30 minutes. Then, after heating and stirring at 65 ° C. for 24 hours, further 90
Polymerization was carried out by heating at 0 ° C for 2 hours. Toluene solution of the obtained polymer (hereinafter referred to as polymer solution (1)
Say. ), The solid content was measured to be 51% by weight.
Met.

【0038】[0038]

【実施例1】参考例1で得られた平衡含水率12%のシ
リカゲル粒子10gをテトラヒドロフラン100ミリリ
ットル中に分散させ30分間撹拌したのち濾過した。得
られた固形分を真空乾燥器を用いて150℃で3時間で
テトラヒドロフランおよび水分の除去を行った。水分除
去終了後含水率は0.2%であった。この粒子を恒温恒
湿器中で吸湿させ含水率5.5%にして分散相粒子
(1)を調製した。
Example 1 10 g of silica gel particles having an equilibrium water content of 12% obtained in Reference Example 1 was dispersed in 100 ml of tetrahydrofuran, stirred for 30 minutes and then filtered. Tetrahydrofuran and water were removed from the obtained solid content by using a vacuum dryer at 150 ° C. for 3 hours. After the removal of water, the water content was 0.2%. The particles were made to absorb moisture in a thermo-hygrostat to have a water content of 5.5% to prepare dispersed phase particles (1).

【0039】得られた分散相粒子(1)5gを、変性シ
リコーンオイルKF869(信越化学工業(株)製のア
ミノシリコーンオイル)0.2gを信越シリコーンオイ
ルKF96−20CS(信越化学工業(株)製のジメチ
ルシリコンオイル)12g中に添加して得られた分散媒
中に均一にバイオミキサーBM−1型((株)日本精機
製作所製)を用いて混合・分散させ、本発明の電気粘性
流体組成物{以下、これを流体(1)という。}を得
た。
5 g of the obtained dispersed phase particles (1) was added with 0.2 g of modified silicone oil KF869 (amino silicone oil manufactured by Shin-Etsu Chemical Co., Ltd.) and Shin-Etsu silicone oil KF96-20CS (manufactured by Shin-Etsu Chemical Co., Ltd.). Dimethyl silicone oil) of 12 g, and uniformly mixed and dispersed in a dispersion medium obtained by adding Biomixer BM-1 type (manufactured by Nippon Seiki Co., Ltd.) to obtain an electrorheological fluid composition of the present invention. Object {Hereafter, this is referred to as fluid (1). } Was obtained.

【0040】[0040]

【実施例2】参考例2で得られた平衡含水率19%のポ
リアクリル酸ナトリウム粒子10gをアセトン100ミ
リリットル中に分散させ30分間撹拌したのち濾過し
た。得られた固形分を真空乾燥器を用いて150℃で3
時間でアセトンおよび水分の除去を行った。水分除去終
了後含水率は0.2%であった。この粒子を恒温恒湿器
中で吸湿させ含水率7%にして分散相粒子(2)を調製
した。
Example 2 10 g of sodium polyacrylate particles having an equilibrium water content of 19% obtained in Reference Example 2 was dispersed in 100 ml of acetone, stirred for 30 minutes and then filtered. The obtained solid content was dried at 150 ° C for 3 times using a vacuum dryer.
Acetone and water were removed over time. After the removal of water, the water content was 0.2%. The particles were made to absorb moisture in a thermo-hygrostat to have a water content of 7% to prepare dispersed phase particles (2).

【0041】得られた分散相粒子(2)5gを、参考例
5で得られた重合体溶液(1)0.5gをサームエス9
00(新日鉄化学(株)製の部分水添された水素化トリ
フェニル)12gに添加して得られた分散媒中に均一に
バイオミキサーBM−1型を用いて混合・分散させ、本
発明の電気粘性流体組成物{以下、これを流体(2)と
いう。}を得た。
5 g of the obtained dispersed phase particles (2) was added to 0.5 g of the polymer solution (1) obtained in Reference Example 5 in Therm S 9
00 (partially hydrogenated triphenyl hydride manufactured by Nippon Steel Chemical Co., Ltd.) was uniformly mixed and dispersed in a dispersion medium obtained by using Biomixer BM-1 type, and Electrorheological fluid composition {hereinafter referred to as fluid (2). } Was obtained.

【0042】[0042]

【実施例3】撹拌機、温度計および滴下ロートを備えた
2リットルの四つ口セパラブルフラスコに参考例2で得
られた重合架橋体(1)50gを水酸化ナトリウム60
gを溶かしたエタノール1リットル中に分散し均一な分
散液とした。反応混合物を還流し6時間加熱・撹拌し、
加水分解反応を行った。その後、反応混合物を0℃の水
中に注ぎ、濾別した後、水で洗浄した。洗浄後、濾別し
たポリアクリル酸ナトリウム粒子をアセトン1リットル
中に分散させ30分間撹拌したのち濾別した。この操作
をもう一度繰り返した。次いで、真空乾燥機を用いて、
80℃で10時間乾燥し、42gの球状のポリアクリル
酸ナトリウム粒子を得た。
Example 3 In a 2 liter four-necked separable flask equipped with a stirrer, a thermometer and a dropping funnel, 50 g of the polymerized crosslinked product (1) obtained in Reference Example 2 was added with 60% sodium hydroxide.
g was dissolved in 1 liter of dissolved ethanol to give a uniform dispersion. The reaction mixture is refluxed and heated and stirred for 6 hours,
A hydrolysis reaction was performed. Then, the reaction mixture was poured into water at 0 ° C., filtered and washed with water. After washing, the filtered sodium polyacrylate particles were dispersed in 1 liter of acetone, stirred for 30 minutes, and then filtered. This operation was repeated once. Then, using a vacuum dryer,
After drying at 80 ° C. for 10 hours, 42 g of spherical sodium polyacrylate particles were obtained.

【0043】得られたポリアクリル酸ナトリウム粒子の
平均粒子径を粒度分布測定装置((株)島津製作所製、
SALD−1000)を用いて測定したところ、5μm
であった。ポリアクリル酸ナトリウム粒子中のイオン交
換容量を中和滴定法および元素分析法により定量したと
ころ、中和滴定法では9.8mg当量/g元素分析法で
は9.7mg当量/gであった。
The average particle size of the obtained sodium polyacrylate particles was measured by a particle size distribution measuring device (manufactured by Shimadzu Corporation,
When measured using SALD-1000), it is 5 μm.
Met. When the ion exchange capacity in the sodium polyacrylate particles was quantified by the neutralization titration method and the elemental analysis method, it was 9.8 mg equivalent / g in the neutralization titration method and 9.7 mg equivalent / g in the elemental analysis method.

【0044】得られたポリアクリル酸ナトリウム粒子
を、150℃で3時間真空乾燥を行った。このとき含水
率は0.3%であった。この粒子を恒温恒湿器中で吸湿
させ含水率7%にして分散相粒子(3)を調製した。
The obtained sodium polyacrylate particles were vacuum dried at 150 ° C. for 3 hours. At this time, the water content was 0.3%. The particles were made to absorb moisture in a thermo-hygrostat to adjust the water content to 7% to prepare dispersed phase particles (3).

【0045】得られた分散相粒子(3)5gを、参考例
5で得られた重合体溶液(1)0.5gをサームエス9
00(新日鉄化学(株)製の部分水添された水素化トリ
フェニル)12gに添加して得られた分散媒中に均一に
バイオミキサーBM−1型を用いて混合・分散させ、本
発明の電気粘性流体組成物(以下、これを流体(3)と
いう。}を得た。
5 g of the dispersed phase particles (3) thus obtained were mixed with 0.5 g of the polymer solution (1) obtained in Reference Example 5 by Therm S9.
00 (partially hydrogenated triphenyl hydride manufactured by Nippon Steel Chemical Co., Ltd.) was uniformly mixed and dispersed in a dispersion medium obtained by using Biomixer BM-1 type, and An electrorheological fluid composition (hereinafter referred to as fluid (3)) was obtained.

【0046】[0046]

【実施例4】参考例3で得られた平衡含水率25%の強
酸型カチオン交換樹脂粒子10gをイソプロピルアルコ
ール100ミリリットルに分散させ30分間撹拌したの
ち濾過した。得られた固形分を真空乾燥器を用いて15
0℃で3時間でイソプロピルアルコールおよび水分の除
去を行った。水分の除去終了後含水率は0.5%であっ
た。この粒子を恒温恒湿器中で吸湿させ含水率2.0%
にして分散相粒子(4)を調製した。
Example 4 10 g of strong acid type cation exchange resin particles having an equilibrium water content of 25% obtained in Reference Example 3 were dispersed in 100 ml of isopropyl alcohol, stirred for 30 minutes and then filtered. The obtained solid content is removed by using a vacuum dryer.
Isopropyl alcohol and water were removed at 0 ° C. for 3 hours. After the removal of water, the water content was 0.5%. Moisture content of these particles in a thermo-hygrostat is 2.0%
To prepare dispersed phase particles (4).

【0047】得られた分散相粒子(4)30gを、参考
例5で得られた重合体溶液(1)0.5gをサームエス
900(新日鉄化学(株)製の部分水添された水素化ト
リフェニル)12gに添加して得られた分散媒中に均一
にバイオミキサーBM−1型を用いて混合・分散させ、
本発明の電気粘性流体組成物{以下、これを流体(4)
という。}を得た。
30 g of the obtained dispersed phase particles (4) and 0.5 g of the polymer solution (1) obtained in Reference Example 5 were therms 900 (a partially hydrogenated trihydrogenated product of Nippon Steel Chemical Co., Ltd.). (Phenyl) 12 g, and uniformly mixed and dispersed in a dispersion medium obtained by using Biomixer BM-1 type,
The electrorheological fluid composition of the present invention {hereinafter referred to as fluid (4)
Say. } Was obtained.

【0048】[0048]

【実施例5】参考例4で得られた平衡含水率39%のス
ルホン化重合体粒子10gをメタノール100ミリリッ
トル中に分散させ30分間撹拌したのち濾過した。得ら
れた固形分を真空乾燥器を用いて150℃で3時間でメ
タノールおよび水分の除去を行った。水分の除去終了後
含水率は1.5%であった。この粒子を恒温恒湿器中で
吸湿させ含水率2.0%にして分散相粒子(5)を調製
した。
Example 5 10 g of the sulfonated polymer particles having an equilibrium water content of 39% obtained in Reference Example 4 were dispersed in 100 ml of methanol, stirred for 30 minutes and then filtered. The solid content thus obtained was removed of methanol and water by using a vacuum dryer at 150 ° C. for 3 hours. After the removal of water was completed, the water content was 1.5%. The particles were made to absorb moisture in a thermo-hygrostat to adjust the water content to 2.0% to prepare dispersed phase particles (5).

【0049】得られた分散相粒子(5)5gを、参考例
5で得られた重合体溶液(1)0.5gをサームエス9
00(新日鉄化学(株)製の部分水添された水素化トリ
フェニル)12gに添加して得られた分散媒中に均一に
バイオミキサーBM−1型を用いて混合・分散させ、本
発明の電気粘性流体組成物{以下、これを流体(5)と
いう。}を得た。
5 g of the obtained dispersed phase particles (5) were added to 0.5 g of the polymer solution (1) obtained in Reference Example 5 in Therm S9.
00 (partially hydrogenated triphenyl hydride manufactured by Nippon Steel Chemical Co., Ltd.) was uniformly mixed and dispersed in a dispersion medium obtained by using Biomixer BM-1 type, and Electrorheological fluid composition {hereinafter referred to as fluid (5). } Was obtained.

【0050】[0050]

【実施例6】参考例4において150℃で3時間真空乾
燥して得られた含水率1.5%のスルホン化重合体粒子
10gをメタノール100ミリリットル中に分散させ3
0分間撹拌したのち濾過した。得られた固形分を真空乾
燥器を用いて150℃で3時間でメタノールおよび水の
除去を行った。水分除去後の含水率は1.1%であっ
た。この粒子を恒温恒湿器中で吸湿させ含水率2.0%
にして分散相粒子(6)を調製した。
Example 6 10 g of sulfonated polymer particles having a water content of 1.5% obtained by vacuum drying at 150 ° C. for 3 hours in Reference Example 4 were dispersed in 100 ml of methanol.
After stirring for 0 minutes, it was filtered. The obtained solid content was subjected to removal of methanol and water by using a vacuum dryer at 150 ° C. for 3 hours. The water content after removal of water was 1.1%. Moisture content of these particles in a thermo-hygrostat is 2.0%
To prepare dispersed phase particles (6).

【0051】得られた分散相粒子(6)5gを、参考例
5で得られた重合体溶液(1)0.5gをサームエス9
00(新日鉄化学(株)製の部分水添された水素化トリ
フェニル)12gに添加して得られた分散媒中に均一に
バイオミキサーBM−1型を用いて混合・分散させ、本
発明の電気粘性流体組成物{以下、これを流体(6)と
いう。}を得た。
5 g of the dispersed phase particles (6) thus obtained were mixed with 0.5 g of the polymer solution (1) obtained in Reference Example 5 by Therm S9.
00 (partially hydrogenated triphenyl hydride manufactured by Nippon Steel Chemical Co., Ltd.) was uniformly mixed and dispersed in a dispersion medium obtained by using Biomixer BM-1 type, and Electrorheological fluid composition {hereinafter referred to as fluid (6). } Was obtained.

【0052】[0052]

【比較例1】参考例1で得られた平衡含水率12%のシ
リカゲル粒子10gをそのまま150℃で3時間真空乾
燥を行った。乾燥終了後含水率は0.3%であった。こ
の粒子を恒温恒湿器中で吸湿させ含水率5.5%にして
比較分散相粒子(1)を調製した。
Comparative Example 1 10 g of silica gel particles having an equilibrium water content of 12% obtained in Reference Example 1 was vacuum dried at 150 ° C. for 3 hours as it was. After the completion of drying, the water content was 0.3%. The particles were absorbed in a thermo-hygrostat to have a water content of 5.5% to prepare comparative dispersed phase particles (1).

【0053】得られた比較分散相粒子(1)5gを、変
性シリコーンオイルKF869(信越化学工業(株)製
のアミノシリコーンオイル)0.2gを信越シリコーン
オイルKF96−20CS(信越化学工業(株)製のジ
メチルシリコンオイル)12g中に均一にバイオミキサ
ーBM−1型を用いて混合・分散させ、比較用の電気粘
性流体組成物{以下、これを比較流体(1)という。}
を得た。
5 g of the obtained comparative dispersed phase particles (1), 0.2 g of modified silicone oil KF869 (amino silicone oil manufactured by Shin-Etsu Chemical Co., Ltd.) and Shin-Etsu silicone oil KF96-20CS (Shin-Etsu Chemical Co., Ltd.) (Dimethyl silicone oil manufactured by K.K.) was uniformly mixed and dispersed by using Biomixer BM-1 type, and an electrorheological fluid composition for comparison {hereinafter, referred to as comparative fluid (1). }
Got

【0054】[0054]

【比較例2】参考例2で得られた平衡含水率19%のポ
リアクリル酸ナトリウム粒子10gをそのまま150℃
で3時間真空乾燥を行った。乾燥終了後含水率は0.2
%であった。この粒子を恒温恒湿器中で吸湿させ含水率
7.0%にして比較分散相粒子(2)を調製した。
Comparative Example 2 10 g of sodium polyacrylate particles having an equilibrium water content of 19% obtained in Reference Example 2 was directly used at 150 ° C.
It was vacuum dried for 3 hours. Moisture content after drying is 0.2
%Met. The particles were absorbed in a thermo-hygrostat to have a water content of 7.0% to prepare comparative dispersed phase particles (2).

【0055】得られた比較分散相粒子(2)5gを、参
考例5で得られた重合体溶液(1)0.5gをサームエ
ス900(新日鉄化学(株)製の部分水添された水素化
トリフェニル)12gに添加して得られた分散媒中に均
一にバイオミキサーBM−1型を用いて混合・分散さ
せ、比較用の電気粘性流体組成物{以下、これを比較流
体(2)という。}を得た。
5 g of the obtained comparative dispersed phase particles (2) and 0.5 g of the polymer solution (1) obtained in Reference Example 5 were partially hydrogenated by Therm S 900 (manufactured by Nippon Steel Chemical Co., Ltd.). Triphenyl) 12 g, and uniformly mixed and dispersed in a dispersion medium obtained by using Biomixer BM-1 type, and an electrorheological fluid composition for comparison {hereinafter, referred to as comparative fluid (2). .. } Was obtained.

【0056】[0056]

【比較例3】参考例3で得られた平衡含水率25%の強
酸性カチオン交換樹脂粒子10gをそのまま150℃で
3時間真空乾燥を行った。乾燥終了後含水率は0.8%
であった。この粒子を恒温恒湿器中で吸湿させ含水率
2.0%にして比較分散相粒子(3)を調製した。
Comparative Example 3 10 g of strongly acidic cation exchange resin particles having an equilibrium water content of 25% obtained in Reference Example 3 were vacuum dried at 150 ° C. for 3 hours as they were. Water content is 0.8% after drying
Met. The particles were absorbed in a thermo-hygrostat to adjust the water content to 2.0% to prepare comparative dispersed phase particles (3).

【0057】得られた比較分散相粒子(3)5gを、参
考例5で得られた重合体溶液(1)0.5gをサームエ
ス900(新日鉄化学(株)製の部分水添された水素化
トリフェニル)12gに添加して得られた分散媒中に均
一にバイオミキサーBM−1型を用いて混合・分散さ
せ、比較用の電気粘性流体組成物{以下、これを比較流
体(3)という。}を得た。
5 g of the obtained comparative dispersed phase particles (3) and 0.5 g of the polymer solution (1) obtained in Reference Example 5 were partially hydrogenated by Therm S 900 (manufactured by Nippon Steel Chemical Co., Ltd.). Triphenyl) 12 g, and uniformly mixed and dispersed in a dispersion medium obtained by using a biomixer BM-1 type, and a comparative electrorheological fluid composition {hereinafter, referred to as comparative fluid (3). .. } Was obtained.

【0058】[0058]

【比較例4】参考例4で得られた平衡含水率39%のス
ルホン化重合体粒子10gをそのまま150℃で3時間
真空乾燥を行った。乾燥終了後含水率は1.5%であっ
た。この粒子を恒温恒湿器中で吸湿させ含水率2.0%
にして比較分散相粒子(4)を調製した。
Comparative Example 4 10 g of the sulfonated polymer particles having an equilibrium water content of 39% obtained in Reference Example 4 was vacuum dried at 150 ° C. for 3 hours as it was. After the completion of drying, the water content was 1.5%. Moisture content of these particles in a thermo-hygrostat is 2.0%
The comparative dispersed phase particles (4) were prepared.

【0059】得られた比較分散相粒子(4)5gを、参
考例5で得られた重合体溶液(1)0.5gをサームエ
ス900(新日鉄化学(株)製の部分水添された水素化
トリフェニル)12gに添加して得られた分散媒中に均
一にバイオミキサーBM−1型を用いて混合・分散さ
せ、比較用の電気粘性流体組成物{以下、これを比較流
体(4)という。}を得た。
5 g of the obtained comparative dispersed phase particles (4) and 0.5 g of the polymer solution (1) obtained in Reference Example 5 were partially hydrogenated by Therm S 900 (manufactured by Nippon Steel Chemical Co., Ltd.). Triphenyl) 12 g, and uniformly mixed and dispersed in a dispersion medium obtained by using Biomixer BM-1 type, and an electrorheological fluid composition for comparison {hereinafter, referred to as comparative fluid (4). .. } Was obtained.

【0060】[0060]

【実施例5】実施例1〜6および比較例1〜4で得られ
た本発明の電気粘性流体(1)〜(6)および比較流体
(1)〜(4)の各々を高さ150mm、直径15mmの試
験管の底から100mmのところまで充填して密閉した。
その後3日間静置して、分散相粒子の沈降の程度を観察
し、電気粘性流体の分散安定性を調べた。その結果を表
1に示す。
Fifth Embodiment Each of the electrorheological fluids (1) to (6) and the comparative fluids (1) to (4) of the present invention obtained in Examples 1 to 6 and Comparative Examples 1 to 4 is 150 mm in height, A test tube having a diameter of 15 mm was filled up to 100 mm from the bottom and sealed.
Then, the mixture was allowed to stand for 3 days, the degree of sedimentation of dispersed phase particles was observed, and the dispersion stability of the electrorheological fluid was examined. The results are shown in Table 1.

【0061】また、電気粘性流体組成物の各々を共軸電
場付二重円筒型回転粘度計に入れ、内/外筒間隙1.0
mm、せん断速度400s~1、温度25℃の条件で交流外
部電場4kV/mm(周波数:50Hz)を印加したとき
のせん断応力値(初期値)およびその際に流れる電流密
度(初期値)を測定した。さらに4kV/mm(周波数:
50Hz)の外部電場を印加した状態で粘度計を25℃
にて3日間連続運転した後のせん断応力値(3日後の
値)および電流密度(3日後の値)を測定し、電気粘性
流体の経時安定性を調べた。結果を表1に示す。また、
内/外筒間隙1.0mm、せん断速度400s~1、温度2
5℃の条件で交流外部電場0〜10kV/mm(周波数:
50Hz)の範囲内で印加安定性試験を行った。印加安
定性の維持できる最大印加電圧を表1に示す。
Further, each of the electrorheological fluid compositions was placed in a double cylinder type rotational viscometer with a coaxial electric field, and the inner / outer tube gap was 1.0.
mm, shear rate 400 s ~ 1 , temperature 25 ° C, shear stress value (initial value) and current density (initial value) when applying an external AC electric field of 4 kV / mm (frequency: 50 Hz) did. 4kV / mm (frequency:
Viscometer at 25 ° C with an external electric field of 50 Hz applied
The shear stress value (value after 3 days) and the current density (value after 3 days) after continuous operation for 3 days were measured to examine the stability of the electrorheological fluid with time. The results are shown in Table 1. Also,
Inner / outer tube gap 1.0mm, shear rate 400s ~ 1 , temperature 2
AC external electric field 0 to 10 kV / mm (frequency:
The application stability test was performed within the range of 50 Hz. Table 1 shows the maximum applied voltage that can maintain the applied stability.

【0062】[0062]

【表1】 [Table 1]

【0063】表1から明らかなように、本発明の電気粘
性流体(1)〜(6)は、分散安定性に優れた流体であ
った。また、印加安定性においても本発明の電気粘性流
体(1)〜(6)は最大印加電圧が高かった。特に本発
明の電気粘性流体(4)〜(6)は10kV/mmにおい
ても印加可能であり優れた印加安定性を示した。
As is clear from Table 1, the electrorheological fluids (1) to (6) of the present invention were fluids having excellent dispersion stability. Also, in terms of application stability, the electrorheological fluids (1) to (6) of the present invention had high maximum applied voltages. In particular, the electrorheological fluids (4) to (6) of the present invention can be applied even at 10 kV / mm, and showed excellent application stability.

【0064】一方、比較流体(1)〜(4)は、分散安
定性において本発明の電気粘性流体に比べて劣ってい
た。また、印加安定性においても、本発明の電気粘性流
体に比べて劣っていた。
On the other hand, the comparative fluids (1) to (4) were inferior in dispersion stability to the electrorheological fluid of the present invention. Also, the application stability was inferior to the electrorheological fluid of the present invention.

【0065】[0065]

【発明の効果】本発明は、比較的弱い電場を印加した時
にでも大きなせん断応力が得られ且つ発生したせん断応
力を長期にわたって維持するという経時安定性、さらに
耐電圧特性、分散安定性に優れた電気粘性流体を容易に
製造する方法を提供するものであり、こうして製造され
た電気粘性流体は、クラッチ、ダンパー、ブレーキ、シ
ョックアブソーバー等へ有効に利用できる。
INDUSTRIAL APPLICABILITY The present invention has excellent stability over time that a large shear stress can be obtained even when a relatively weak electric field is applied and that the generated shear stress is maintained for a long period of time, and further has excellent withstand voltage characteristics and dispersion stability. The present invention provides a method for easily producing an electrorheological fluid, and the electrorheological fluid thus produced can be effectively used for a clutch, a damper, a brake, a shock absorber and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C10N 60:10 70:00 (72)発明者 小林 稔 茨城県つくば市観音台1丁目25番地12 株 式会社日本触媒筑波研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location C10N 60:10 70:00 (72) Minor Kobayashi 1-25 25 Kannondai, Tsukuba-shi, Ibaraki 12 Incorporated company Nippon Shokubai Tsukuba Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 大気中における平衡含水率未満の水分を
含有する誘電体粒子(A)からなる分散相粒子を電気絶
縁性分散媒中に分散させてなる組成物であって、誘電体
粒子(A)が、誘電体粒子を親水性有機溶媒中に浸漬し
たのち誘電体粒子中の含有水分を親水性有機溶媒の留去
と共に除去することによって得られるものである電気粘
性流体組成物。
1. A composition in which dispersed phase particles composed of dielectric particles (A) containing water having a water content less than the equilibrium water content in the atmosphere are dispersed in an electrically insulating dispersion medium. A) is an electrorheological fluid composition obtained by immersing dielectric particles in a hydrophilic organic solvent, and then removing the water content in the dielectric particles together with distilling off the hydrophilic organic solvent.
【請求項2】 誘電体粒子(A)がスルホン酸基で置換
された芳香族環を有するスルホン化重合体粒子である請
求項1記載の電気粘性流体組成物。
2. The electrorheological fluid composition according to claim 1, wherein the dielectric particles (A) are sulfonated polymer particles having an aromatic ring substituted with a sulfonic acid group.
JP280392A 1992-01-10 1992-01-10 Manufacturing method of electrorheological fluid composition Expired - Fee Related JP3115672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP280392A JP3115672B2 (en) 1992-01-10 1992-01-10 Manufacturing method of electrorheological fluid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP280392A JP3115672B2 (en) 1992-01-10 1992-01-10 Manufacturing method of electrorheological fluid composition

Publications (2)

Publication Number Publication Date
JPH05230491A true JPH05230491A (en) 1993-09-07
JP3115672B2 JP3115672B2 (en) 2000-12-11

Family

ID=11539541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP280392A Expired - Fee Related JP3115672B2 (en) 1992-01-10 1992-01-10 Manufacturing method of electrorheological fluid composition

Country Status (1)

Country Link
JP (1) JP3115672B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017074556A (en) * 2015-10-14 2017-04-20 永嶋 良一 Decomposition method of aggregation structure, and manufacturing method of primary particles or/and fine aggregates constituted of primary particles including the decomposition method as process
WO2017094894A1 (en) * 2015-12-04 2017-06-08 旭化成株式会社 Electrorheological fluid and electric device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017074556A (en) * 2015-10-14 2017-04-20 永嶋 良一 Decomposition method of aggregation structure, and manufacturing method of primary particles or/and fine aggregates constituted of primary particles including the decomposition method as process
WO2017094894A1 (en) * 2015-12-04 2017-06-08 旭化成株式会社 Electrorheological fluid and electric device
JPWO2017094894A1 (en) * 2015-12-04 2018-07-12 旭化成株式会社 Electrorheological fluids and electrical devices
CN108473906A (en) * 2015-12-04 2018-08-31 旭化成株式会社 ER fluid and electric equipment
JP2019070447A (en) * 2015-12-04 2019-05-09 旭化成株式会社 Electroviscous fluid and electric device
JP2019070163A (en) * 2015-12-04 2019-05-09 旭化成株式会社 Electroviscous fluid and electric device
JP2021042858A (en) * 2015-12-04 2021-03-18 旭化成株式会社 Force presentation system
US10961482B2 (en) 2015-12-04 2021-03-30 Asahi Kasei Kabushiki Kaisha Electrorheological fluid and electric device

Also Published As

Publication number Publication date
JP3115672B2 (en) 2000-12-11

Similar Documents

Publication Publication Date Title
JPH0853689A (en) Electrorheological fluid containing electrorheological particle coated with carbonate
WO1993022409A1 (en) Polymeric salts as dispersed particles in electrorheological fluids
US5106521A (en) Electrorheological fluids comprising carbonaceous particulates dispersed in electrical insulating oily medium containing a compound having specific functional groups
US5558803A (en) Electrorheological fluid with improved properties comprising composite polymer
JP3115672B2 (en) Manufacturing method of electrorheological fluid composition
US5910269A (en) Electrorheological fluid composition including hydrocarbon compound having at least one unsaturated bond
JPH07108989B2 (en) Electrorheological fluid
US5925288A (en) Electrorheological fluid containing silica particles esterified by an alcohol-modified silicone oil
JP3710494B2 (en) Electrorheological fluid
US2746922A (en) Estersil-thickened lubricating composition modified with hydrogen-bonding donor compound, and process of making
JP2971909B2 (en) Electrorheological fluid
JPH04164996A (en) Electroviscous fluid
JPH05279687A (en) Electrically viscous fluid composition
JP2933674B2 (en) Electrorheological fluid
JP3115674B2 (en) Method for producing electrorheological fluid composition
JPH0333010A (en) Functional fluid
JP3093831B2 (en) Electrorheological fluid
JP3091778B2 (en) Electrorheological fluid composition
EP0636683B1 (en) Electrorheological fluid
JP2598845B2 (en) Electrorheological fluid composition
JPH03215597A (en) Electroviscous fluid composition
JP2875911B2 (en) Electrorheological fluid composition
EP0529166A1 (en) Electrorheological fluids
JP3231420B2 (en) Electrorheological fluid
JPH04275398A (en) Electroviscous fluid

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000919

LAPS Cancellation because of no payment of annual fees