JPH05229894A - Method for growing crystal - Google Patents

Method for growing crystal

Info

Publication number
JPH05229894A
JPH05229894A JP3458892A JP3458892A JPH05229894A JP H05229894 A JPH05229894 A JP H05229894A JP 3458892 A JP3458892 A JP 3458892A JP 3458892 A JP3458892 A JP 3458892A JP H05229894 A JPH05229894 A JP H05229894A
Authority
JP
Japan
Prior art keywords
group
crystal
group iii
crystal layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3458892A
Other languages
Japanese (ja)
Other versions
JP2858058B2 (en
Inventor
Shigeo Goshima
滋雄 五島
Yoshitaka Morishita
義隆 森下
Yasuhiko Nomura
康彦 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoelectronics Technology Research Laboratory
Original Assignee
Optoelectronics Technology Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoelectronics Technology Research Laboratory filed Critical Optoelectronics Technology Research Laboratory
Priority to JP3458892A priority Critical patent/JP2858058B2/en
Publication of JPH05229894A publication Critical patent/JPH05229894A/en
Application granted granted Critical
Publication of JP2858058B2 publication Critical patent/JP2858058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the distribution and reproducibility of the film thickness by irradiating a substrate with prescribed molecular beams after the initial step for crystal growth and removing an excessively grown part in alternately growing plural crystal layers composed of different elements on the substrate. CONSTITUTION:The top surface of a substrate 11 is irradiated with molecular beams of a group V raw material to grow a group V crystal layer 12. The top surface of the crystal layer 12 is then irradiated with molecular beams 13 of a group III raw material to grow a group III crystal layer13'. In the process, an excessively grown part 14 growing over one atomic layer on the crystal layer 13' is irradiated with accelerated molecular beams 15 to remove the excessively grown part 14. The accelerated molecular beams 15 are composed of elements different from the group III element and have larger bond energy than that between the group III crystal layer 13' and the excessively grown part 14 and smaller kinetic energy than the bond energy of the group V crystal layer 12 to the group TV crystal layer 13'. The top surface of the one atomic layer 13' composed of the group III element in the absenpe of the excessively grown part 14 is subsequently irradiated with group V molecular beams to perform the atomic layer epitaxy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体の結晶成
長方法に関し、特に膜厚制御性の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal growth method for compound semiconductors, and more particularly to improvement of film thickness controllability.

【0002】[0002]

【従来の技術】現在、化合物半導体結晶の作製には、分
子線エピタキシー法(MBE法)及び、有機金属気相成
長法(MOCVD法)が主に用いられている。
2. Description of the Related Art At present, a molecular beam epitaxy method (MBE method) and a metal organic chemical vapor deposition method (MOCVD method) are mainly used for producing a compound semiconductor crystal.

【0003】これらの方法において、膜厚の制御(分布
及び再現性)は、MBE法の場合は分子線強度の制御、
MOMBE法の場合はガス流の制御により行なわれてい
た。しかしながら、これらの制御には技術的限界が存在
するため、原理的に1原子層の成長を制御する方法、即
ち、原子層エピタキシー法(ALE法)が提案されてき
た。
In these methods, the control of the film thickness (distribution and reproducibility) is performed by controlling the molecular beam intensity in the case of the MBE method,
In the case of the MONBE method, it was performed by controlling the gas flow. However, since there is a technical limit to these controls, a method for controlling the growth of one atomic layer, that is, an atomic layer epitaxy method (ALE method) has been proposed in principle.

【0004】ALEを実現する方法としては、MOCV
D及びMBEを基本的に用いた報告がある。まず、MO
CVDを用いた例としては、アプライド、フィジックス
・レター53巻、1509〜1511頁(1988年)
に報告されているように、トリメチルガリウムとアルシ
ンを交互供給することにより、ほぼ1原子層単位の成長
が可能となっている。他方、MBE法を用いた例におい
ては、ジャパニーズ・オブ・アプライド・フィジックス
28巻、L1446−L1448頁に示されている如
く、分子線による交互供給法で過剰に供給したIII 族原
料の過剰分を熱により再蒸発させる方法で擬原子層エピ
タキシーを行なう方法が提案されている。
MOCV is a method for realizing ALE.
There are reports that basically use D and MBE. First, MO
As an example using CVD, Applied, Physics Letter, Vol. 53, pp. 1509-1511 (1988)
As reported in the above, by alternately supplying trimethylgallium and arsine, it is possible to grow almost one atomic layer unit. On the other hand, in the example using the MBE method, as shown in Japanese of Applied Physics, Vol. A method of performing pseudo-atomic layer epitaxy by a method of re-evaporation by heat has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、MOC
VDを用いるALE法においては、極めて毒性の高いア
ルシンを用いている点、および、有機金属から炭素が結
晶中に取込まれ高純度結晶を得難いという問題点があ
る。
However, the MOC
In the ALE method using VD, there are problems that extremely highly toxic arsine is used and that it is difficult to obtain a high-purity crystal because carbon is incorporated into the crystal from an organic metal.

【0006】また、MBEを用いるALE法において
は、基板温度が700℃と高いため、下地の不純物拡散
やV族空孔生成という問題点があり、実用が困難であっ
た。
Further, in the ALE method using MBE, since the substrate temperature is as high as 700 ° C., there are problems such as diffusion of impurities in the underlying layer and formation of group V vacancies, which makes practical use difficult.

【0007】本発明の課題は、基本的にMBE法に依る
ことによりMOCVDの問題点を除去し、かつ、低温で
ALEを実現することである。
An object of the present invention is to eliminate the problems of MOCVD by basically relying on the MBE method and to realize ALE at low temperature.

【0008】[0008]

【課題を解決するための手段】本発明によれば、基板上
に、異なる元素から成る少なくとも2つの結晶層を交互
に結晶成長させる結晶成長方法において、1つの前記結
晶層の結晶成長工程後に、該結晶層の1原子層を越えて
成長した過剰成長部に、前記元素とは異なる元素から成
る分子線を照射して該過剰成長部を除去する除去工程を
有することを特徴とする結晶成長方法が得られる。
According to the present invention, in a crystal growth method for alternately growing crystals of at least two crystal layers made of different elements on a substrate, after the crystal growth step of one of the crystal layers, A crystal growth method, comprising: a removal step of irradiating a molecular beam made of an element different from the element to an overgrown portion grown over one atomic layer of the crystal layer to remove the overgrown portion. Is obtained.

【0009】本発明によればさらに、基板上に、V族元
素から成るV族原料の分子線を照射してV族結晶層を結
晶成長させるV族結晶成長工程と、V族結晶層上に、II
I 族元素から成るIII 族原料の分子線を照射してIII 族
結晶層を結晶成長させるIII族結晶成長工程と、前記III
族結晶層の1原子層を越えて成長した過剰成長部に、
前記III 族元素とは異なる元素から成り、前記III 族結
晶層と該過剰成長部間の結合エネルギより大きくかつ前
記V族結晶層と該III 族結晶層間の結合エネルギより小
さい運動エネルギを有する分子線を照射して該過剰成長
部を除去する除去工程とを有することを特徴とする結晶
成長方法が得られる。
According to the present invention, further, a group V crystal growth step of crystal-growing a group V crystal layer by irradiating a substrate with a molecular beam of a group V raw material composed of a group V element, and a group V crystal layer on the substrate. , II
A group III crystal growth step of irradiating a molecular beam of a group III raw material composed of a group I element to grow a group III crystal layer;
In the overgrowth part grown over one atomic layer of the group crystal layer,
A molecular beam composed of an element different from the group III element and having a kinetic energy larger than the bond energy between the group III crystal layer and the overgrown portion and smaller than the bond energy between the group V crystal layer and the group III crystal layer. And a removing step of removing the excessively grown portion by irradiating the crystal growth method.

【0010】即ち、本発明によれば、III 族分子線とV
族分子線を交互に供給しIII −V族化合物結晶を作製す
る結晶成長方法において、1原子層分以上のIII 族分子
線を供給したのち、V族分子線を照射する前に構成元素
とは異種の加速された分子線を照射することにより1原
子層毎の成長が生ずる結晶成長が得られる。
That is, according to the present invention, a group III molecular beam and a V
In the crystal growth method for producing group III-V compound crystals by alternately supplying group molecular beams, after supplying group III molecular beams of one atomic layer or more, the constituent elements before irradiation with group V molecular beams are By irradiating different kinds of accelerated molecular beams, crystal growth in which the growth of each atomic layer occurs can be obtained.

【0011】[0011]

【作用】III 族分子線とV族分子線を交互に供給するII
I −V族化合物結晶の成長方法において、V族面上に照
射された1原子層分より多いIII 族原子は、その1原子
層分でV族表面を被覆しIII 族表面を形成し、残りのII
I 族原子はIII 族表面上でドロップレットを形成する。
この時III 族原子の蒸発に要するエネルギは、V族原子
と結合している表面のIII 族原子に比して、ドロップレ
ットを形成しているIII 族原子の方が小さい。次に上記
表面にドロップレットを形成しているIII族原子の蒸発
エネルギ程度の運動エネルギを有する分子線を照射す
る。この工程で前記ドロップレットは蒸発するが、III
族表面を形成しているIII 族原子はV族原子と結合して
いるため、蒸発することがない。これにより、結晶表面
はドロップレットの存在しないIII 族1原子層の面とな
る。続いてV族分子線を照射することにより原子層エピ
タキシーが行なわれる。
[Function] Alternate supply of group III and group V molecular beams II
In the method for growing a group IV compound crystal, the group III atoms irradiated on the group V surface in excess of one atomic layer cover the group V surface with the one atomic layer and form the group III surface. II
Group I atoms form droplets on the Group III surface.
At this time, the energy required for the vaporization of the group III atom is smaller in the group III atom forming the droplet than in the surface group III atom bonded to the group V atom. Next, the surface is irradiated with a molecular beam having a kinetic energy of about the evaporation energy of group III atoms forming droplets. In this process, the droplets evaporate, but III
Since the group III atom forming the group surface is bonded to the group V atom, it does not evaporate. As a result, the crystal surface becomes a group III monoatomic layer surface without droplets. Then, atomic layer epitaxy is performed by irradiating the group V molecular beam.

【0012】[0012]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0013】図1(a)〜(d)は、本実施例による結
晶成長方法の工程フローを示す図である。また、図2
は、本実施例に用いた分子線エピタキシー装置、即ち、
結晶成長装置の概略断面図である。
FIGS. 1 (a) to 1 (d) are views showing a process flow of a crystal growth method according to this embodiment. Also, FIG.
Is a molecular beam epitaxy apparatus used in this example, that is,
It is a schematic sectional drawing of a crystal growth apparatus.

【0014】本実施例では、GaAs基板上へGaAs
結晶を成長する場合について説明する。以下、成長工程
を図2を参照して説明する。
In this embodiment, GaAs is formed on the GaAs substrate.
The case of growing a crystal will be described. The growth process will be described below with reference to FIG.

【0015】GaAs単結晶基板(厚さ500μm )
11をH2 SO4 系エッチング液により表面層を除去し
た後、ロードロック室(図示せず)からゲートバルブ1
7を介して真空槽16に導入し、ホルダ20に固定す
る。
GaAs single crystal substrate (thickness 500 μm)
After removing the surface layer by 11 to H 2 SO 4 etchant, the gate valve 1 from the load lock chamber (not shown)
It is introduced into the vacuum chamber 16 via 7 and fixed to the holder 20.

【0016】分子線セル22の前方に設けたシャッタ
23を開いて、分子線セル22よりAs4 分子線を基板
11の表面に照射しながら、ヒータ19により基板11
を加熱して基板表面の酸化膜を除去する。この時の基板
温度は600℃とした。
The shutter 23 provided in front of the molecular beam cell 22 is opened, and the surface of the substrate 11 is irradiated with As 4 molecular beam from the molecular beam cell 22, while the heater 19 is used to irradiate the substrate 11.
Is heated to remove the oxide film on the substrate surface. The substrate temperature at this time was 600 ° C.

【0017】基板温度を580℃に設定し、真空槽1
6に設けた電子銃27より電子線を基板11に照射し蛍
光スクリーン28上に現われた回析パターンがAs安定
化面である(2×4)の表面再配列構造である(As1
2から成る層が形成された)ことを確認した後、As4
分子線の供給を停止し、Gaセル(図には示していな
い)のシャッタを開き成長を開始する。
The substrate temperature is set to 580 ° C. and the vacuum chamber 1
The substrate 11 is irradiated with an electron beam from the electron gun 27 provided in FIG. 6 and the diffraction pattern appearing on the fluorescent screen 28 is a (2 × 4) surface rearrangement structure that is an As stabilization surface (As1).
2) and then As 4
The supply of the molecular beam is stopped, the shutter of the Ga cell (not shown) is opened, and the growth is started.

【0018】Gaの原料は金属Ga、トリメチルガリウ
ム、トリエチルガリウムのいずれを用いても良いが、本
実施例においては、金属Gaを用いた場合について説明
する。Gaの分子線強度は、反射高速電子回析(RHE
ED)振動よりGaAsの結晶成長速度に換算して0.
4原子層/毎秒(ML/sec)とした。
Although any of Ga, trimethylgallium, and triethylgallium may be used as a Ga raw material, in this embodiment, the case of using Ga will be described. The molecular beam intensity of Ga is determined by reflection high-speed electron diffraction (RHE
ED) vibration was converted into a GaAs crystal growth rate of 0.
It was 4 atomic layers / second (ML / sec).

【0019】以下、図1を併せ参照して説明する。A description will be given below with reference to FIG.

【0020】図1(a)において、Gaセル用シャッ
タを3秒間開きGa13を1.2ML分基板に照射す
る。この時0.5ML分の過剰Gaは、凝集して過剰成
長部であるドロップレット14を形成する。
In FIG. 1A, the Ga cell shutter is opened for 3 seconds, and Ga13 is irradiated onto the substrate for 1.2 ML. At this time, 0.5 ML of excess Ga aggregates to form droplets 14, which are overgrown portions.

【0021】図1(b)において、Gaシャッタを閉
じ、バルブ25を開いてH2 ガスを導入する。ガス種は
他にHe、Ne、Arでも良い。H2 ガスは、プラズマ
セル24により放電し、クラッキングされて2.5〜
4.5eVに加速される。尚、プラズマセル24として
は、電子サイクロトロン共鳴プラズマを用いる方法と、
CW−CO2 レーザで放電しノズルを通して照射する方
法を用いたが、いずれの場合でも良く、分子線15のエ
ネルギを2.5〜4.5eVの範囲に入れることが肝要で
ある。
In FIG. 1B, the Ga shutter is closed and the valve 25 is opened to introduce H 2 gas. Other gas species may be He, Ne and Ar. The H 2 gas is discharged by the plasma cell 24 and is cracked to 2.5-
Accelerated to 4.5 eV. In addition, as the plasma cell 24, a method using electron cyclotron resonance plasma,
A method of discharging with a CW-CO 2 laser and irradiating through a nozzle was used, but in any case, it is important to put the energy of the molecular beam 15 in the range of 2.5 to 4.5 eV.

【0022】前述エネルギの分子線15により、蒸発活
性化エネルギが3eV以下であるドロップレット14中の
Ga原子は蒸発するが、下地のAs12と結合したGa
13′の蒸発には5eV以上のエネルギを要するため、蒸
発することがない。こうして、ドロップレット14のみ
が消失し、図1(c)に示す如く、表面はGa原子1原
子層で完全に覆われている。
By the molecular beam 15 of the above-mentioned energy, the Ga atom in the droplet 14 having the activation energy of evaporation of 3 eV or less is vaporized, but the Ga atom bound to the underlying As12 is Ga.
The evaporation of 13 'requires more than 5 eV of energy, so it does not evaporate. In this way, only the droplet 14 disappears, and the surface is completely covered with one atomic layer of Ga atoms as shown in FIG. 1 (c).

【0023】図1(d)において、バルブ25を閉じ
た後、As4 分子線12を照射しGa13´面上にAs
12面が形成される。
In FIG. 1 (d), after closing the valve 25, the As 4 molecular beam 12 is radiated to expose the As 13 on the Ga 13 ′ surface.
Twelve sides are formed.

【0024】以下、図1に示す工程を繰返すと、Ga
面、As面が交互に形成され、所謂原子層エピタキシー
(ALE)が実現した。
When the process shown in FIG. 1 is repeated, Ga
Planes and As planes were formed alternately, and so-called atomic layer epitaxy (ALE) was realized.

【0025】以上のようにして成長された化合物半導体
結晶において、面内(2インチ径)の膜厚の分布は、従
来のMBEで成長した場合±3%であったものに対し、
±1%以下であった。また、膜厚の再現性は、従来のM
BEでは±5%であったものが、±1%以下となった。
さらに、基板温度は、従来の固体原料を用いたMBEに
よるALEでは700℃程度であったものが、580℃
まで低温化できた。
In the compound semiconductor crystal grown as described above, the in-plane (2 inch diameter) film thickness distribution was ± 3% when grown by the conventional MBE.
It was ± 1% or less. In addition, the reproducibility of the film thickness is
What was ± 5% in BE became ± 1% or less.
Further, the substrate temperature was about 580 ° C. when it was about 700 ° C. by ALE by MBE using a conventional solid raw material.
I was able to lower the temperature.

【0026】[0026]

【発明の効果】本発明による結晶成長方法は、1つの前
記結晶層の結晶成長工程後に、該結晶層の1原子層を越
えて成長した過剰成長部に、前記元素とは異なる元素か
ら成る分子線を照射して該過剰成長部を除去する工程を
有するため、膜厚の分布および膜厚の再現性が良好な高
純度結晶が得られる。
According to the crystal growth method of the present invention, after the crystal growth step of one of the crystal layers, a molecule composed of an element different from the above element is present in the overgrown portion grown over one atomic layer of the crystal layer. Since the method has a step of irradiating a line to remove the excessively grown portion, a high-purity crystal having a favorable film thickness distribution and film thickness reproducibility can be obtained.

【0027】また、基板温度を比較的低温化できるた
め、下地の不純物拡散やV族空孔生成が防止できる。
Further, since the substrate temperature can be made relatively low, it is possible to prevent the diffusion of impurities in the base and the formation of V group vacancies.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による結晶成長方法の工程フ
ローを示す図である。
FIG. 1 is a diagram showing a process flow of a crystal growth method according to an embodiment of the present invention.

【図2】図1に示す結晶成長方法に用いた結晶成長装置
を示す概略断面図である。
FIG. 2 is a schematic sectional view showing a crystal growth apparatus used in the crystal growth method shown in FIG.

【符号の説明】[Explanation of symbols]

11 基板 12 As 13、13′ Ga 14 ドロップレット 15 加速分子線 16 真空槽 17 ゲートバルブ 18 基板マンプレータ 19 ヒータ 20 ホルダ 22 分子線セル 23 シャッタ 24 プラズマセル 25 バルブ 26 液体窒素シュラウド 27 電子銃 28 蛍光スクリーン 11 Substrate 12 As 13, 13 'Ga 14 Droplet 15 Accelerating Molecular Beam 16 Vacuum Chamber 17 Gate Valve 18 Substrate Manipulator 19 Heater 20 Holder 22 Molecular Beam Cell 23 Shutter 24 Plasma Cell 25 Valve 26 Liquid Nitrogen Shroud 27 Electron Gun 28 Fluorescent Screen

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、異なる元素から成る少なくと
も2つの結晶層を交互に結晶成長させる結晶成長方法に
おいて、1つの前記結晶層の結晶成長工程後に、該結晶
層の1原子層を越えて成長した過剰成長部に、前記元素
とは異なる元素から成る分子線を照射して該過剰成長部
を除去する除去工程を有することを特徴とする結晶成長
方法。
1. A crystal growth method in which at least two crystal layers made of different elements are alternately grown on a substrate, and after the crystal growth step of one crystal layer, one atomic layer of the crystal layer is exceeded. A crystal growth method comprising a removal step of irradiating the grown overgrown portion with a molecular beam made of an element different from the above element to remove the overgrown portion.
【請求項2】 基板上に、V族元素から成るV族原料の
分子線を照射してV族結晶層を結晶成長させるV族結晶
成長工程と、V族結晶層上に、III 族元素から成るIII
族原料の分子線を照射してIII 族結晶層を結晶成長させ
るIII 族結晶成長工程と、前記III 族結晶層の1原子層
を越えて成長した過剰成長部に、前記III 族元素とは異
なる元素から成り、前記III 族結晶層と該過剰成長部間
の結合エネルギより大きくかつ前記V族結晶層と該III
族結晶層間の結合エネルギより小さい運動エネルギを有
する分子線を照射して該過剰成長部を除去する除去工程
とを有することを特徴とする結晶成長方法。
2. A group V crystal growth step of crystal-growing a group V crystal layer by irradiating a substrate with a molecular beam of a group V raw material composed of a group V element, and a group III element from the group III element on the group V crystal layer. Composed III
The Group III crystal growth process of irradiating the group III crystal layer with the molecular beam of the Group III raw material and the overgrowth portion of the Group III crystal layer grown over one atomic layer are different from the Group III element. An element, which is larger than the binding energy between the group III crystal layer and the overgrown portion and is larger than the group V crystal layer and the group III crystal layer.
A removal step of irradiating a molecular beam having a kinetic energy smaller than the binding energy between the group crystal layers to remove the excessively grown portion.
JP3458892A 1992-02-21 1992-02-21 Crystal growth method Expired - Lifetime JP2858058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3458892A JP2858058B2 (en) 1992-02-21 1992-02-21 Crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3458892A JP2858058B2 (en) 1992-02-21 1992-02-21 Crystal growth method

Publications (2)

Publication Number Publication Date
JPH05229894A true JPH05229894A (en) 1993-09-07
JP2858058B2 JP2858058B2 (en) 1999-02-17

Family

ID=12418489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3458892A Expired - Lifetime JP2858058B2 (en) 1992-02-21 1992-02-21 Crystal growth method

Country Status (1)

Country Link
JP (1) JP2858058B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817559A (en) * 1994-05-16 1998-10-06 Matsushita Electric Industrial Co., Ltd. Production method for a semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817559A (en) * 1994-05-16 1998-10-06 Matsushita Electric Industrial Co., Ltd. Production method for a semiconductor device
US6169004B1 (en) 1994-05-16 2001-01-02 Matsushita Electric Industrial Co., Ltd. Production method for a semiconductor device

Also Published As

Publication number Publication date
JP2858058B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
JP3098773B2 (en) Preparation and doping method of highly insulating single crystal gallium nitride thin film
RU2007135977A (en) METHOD, INSTALLATION FOR EPITAXIAL GROWING OF SEMICONDUCTORS, DEVICE FOR GENERATION OF LOW-TEMPERATURE PLASMA OF HIGH DENSITY, EPITAXIAL LAYER OF METAL NITRIDE, EPITAXIAL HETEROLITERIDE DIETHLENE
JP2858058B2 (en) Crystal growth method
JPS5957416A (en) Formation of compound semiconductor layer
JP2000087227A (en) Formation of nitride by gaseous nitrogen compound cluster ion beam
US5132247A (en) Quantum effective device and process for its production
US5134091A (en) Quantum effective device and process for its production
JPH04122020A (en) Vapor phase epitaxy method
Kim et al. Growth and characterization of GaN on sapphire (0001) using plasma‐assisted ionized source beam epitaxy
JPH05238880A (en) Method for epitaxial growth
JP3577880B2 (en) Method for manufacturing group 3-5 compound semiconductor
JPS59148325A (en) Method and device for growing single crystal thin film of compound semiconductor
JPS6225249B2 (en)
JPH0431391A (en) Epitaxial growth
JPH05186295A (en) Method for growing crystal
JP3335671B2 (en) Method of forming quantum wires and quantum boxes by atomic layer growth
JP3047523B2 (en) Selective epitaxial growth method
JP2721683B2 (en) Method for growing compound semiconductor thin film crystal
JPH06112124A (en) Organometallic molecular-beam epitaxial growth method
Nag Heterostructure Growth
JPH04254499A (en) Production of compound semiconductor crystal
JPH05291132A (en) Growth method of compound semiconductor having quantum-mechanical fine structure
JPH05206028A (en) Method of growing semiconductor crystal
JP2000049104A (en) Crystal growth method of compound semiconductor and compound semiconductor device
JPH09306840A (en) Forming fine deposit of compound semiconductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981014