JPH05229822A - Production of oxide superconducting film - Google Patents

Production of oxide superconducting film

Info

Publication number
JPH05229822A
JPH05229822A JP3087566A JP8756691A JPH05229822A JP H05229822 A JPH05229822 A JP H05229822A JP 3087566 A JP3087566 A JP 3087566A JP 8756691 A JP8756691 A JP 8756691A JP H05229822 A JPH05229822 A JP H05229822A
Authority
JP
Japan
Prior art keywords
layer
superconducting film
substrate
solution
gel layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3087566A
Other languages
Japanese (ja)
Inventor
Yoshinori Takada
善典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP3087566A priority Critical patent/JPH05229822A/en
Publication of JPH05229822A publication Critical patent/JPH05229822A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To prevent the generation of foam in a superconducting film by forming a raw material solution layer for a superconducting film on a substrate, drying to obtain a gel layer and irradiating with infrared pulses, thereby effecting stepwise thermal degradation from the surface of the gel layer toward the inner layers. CONSTITUTION:Organometallic compounds to be used as raw materials such as yttrium acetate, barium acetate and copper acetate, etc., are dissolved in an organic solvent (e.g. hot propionic acid) at molar ratios corresponding to the composition of an oxide superconductor such as Re-Ba-Cu-0 superconductor (Re is rare earth element). A substrate such as a polycrystalline MgO is immersed in the solvent solution and pulled out of the solution to form a solution layer on the substrate. The layer is dried in vacuum and the obtained gel layer is irradiated with a prescribed number of infrared pulses to effect the stepwise thermal degradation of the gel layer from the surface toward the inner layer at 200-900 deg.C. The generation of gas in the layer is suppressed by this process. The decomposed product is sintered at 800-960 deg.C in O2 atmosphere and annealed at 300-600 deg.C to obtain an oxide superconducting film having excellent superconducting characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化物超電導膜の製造法
に関し、更に詳しくはゾル−ゲル法による酸化物超電導
膜の製造法に関する。酸化物系超電導体の製法の一つに
所謂ゾル−ゲル法と呼ばれる方法がある。この方法の基
本は酸化物系超電導体を形成すべき原料、有機金属化合
物のゾルをゲル化し、得られるゲルを加熱して有機金属
化合物を熱分解して所定の超電導体組成となすものであ
る。そしてゾル−ゲル法による酸化物超電導膜の製造方
法は一般にPVD法やCVD法に比べて簡便である、膜
組成が分子レベルにおいて均一なものができやすい、或
いは均一な膜厚で大面積の成膜が可能である、等の利点
がある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconducting film, and more particularly to a method for producing an oxide superconducting film by a sol-gel method. There is a so-called sol-gel method as one of the manufacturing methods of the oxide superconductor. The basis of this method is to gel the sol of a raw material, an organometallic compound, which is to form an oxide superconductor, and heat the resulting gel to thermally decompose the organometallic compound to obtain a predetermined superconductor composition. .. The method for producing an oxide superconducting film by the sol-gel method is generally simpler than the PVD method or the CVD method, and the film composition is likely to be uniform at the molecular level, or a uniform film thickness and a large area are formed. There are advantages such as possible film formation.

【0002】ゾル−ゲル法による酸化物超電導膜の製造
方法として従来下記の方法が知られている。 (1) 酸化物超電導膜を構成する元素(但し酸素を除
く。酸素を除くかかる元素を以下において単に構成元素
と称す。)の有機カルボン酸塩のカルボン酸溶液を使用
する方法、(2) 構成元素のアルコキシドの有機溶媒
溶液を使用する方法、(3) 構成元素の水溶性キレー
ト溶液を使用する方法、である。いずれの方法において
も上記各溶液を基材に施与し、乾燥及び加熱して熱分解
せしめ、焼結するものである。
The following methods are conventionally known as methods for producing an oxide superconducting film by the sol-gel method. (1) A method of using a carboxylic acid solution of an organic carboxylic acid salt of an element forming an oxide superconducting film (excluding oxygen. Such an element except oxygen is simply referred to as a constituent element below), (2) Structure A method of using an organic solvent solution of an alkoxide of an element, and (3) a method of using a water-soluble chelate solution of constituent elements. In any of the methods, each of the above-mentioned solutions is applied to a substrate, dried and heated to cause thermal decomposition, and then sintered.

【0003】しかしながらこれらの方法においては溶液
を基材に施与乾燥後加熱する際発泡することが多く、特
に溶液を厚膜で施与した場合に発泡しやすく、超電導特
性に悪影響を与えるばかりでなく、均質な焼結体が得難
いという難点がある。この発泡は加熱を急激に行うと益
々顕著に発生する傾向があり、加熱操作の制御上にも問
題がある。
However, in these methods, when the solution is applied to the substrate and dried and then heated, foaming often occurs, and particularly when the solution is applied as a thick film, the foaming tends to occur, which not only adversely affects the superconducting properties. However, it is difficult to obtain a homogeneous sintered body. This foaming tends to occur more markedly when the heating is rapidly performed, and there is a problem in controlling the heating operation.

【0004】[0004]

【発明が解決しようとする課題】本発明が解決しようと
する課題はゾル−ゲル法による酸化物超電導膜の製造法
における上記従来の難点を解消することであり、これを
換言すればゲル層形成後の加熱時における発泡を減少又
は実質的に無くすことである。
The problem to be solved by the present invention is to solve the above-mentioned conventional problems in the method for producing an oxide superconducting film by the sol-gel method, in other words, to form a gel layer. To reduce or substantially eliminate foaming during subsequent heating.

【0005】[0005]

【課題を解決するための手段】この課題は上記ゾル−ゲ
ル法就中上記(1)及び(3)の方法において加熱する
際の手段として赤外線照射により加熱すること、更に好
ましくは該赤外線をパルス状に照射して基材上に施与さ
れたゲル層の表面層から徐々に内部に向かって熱分解せ
しめることにより解決される。
This object is to heat by irradiating infrared rays as a means for heating in the above-mentioned methods (1) and (3), more preferably by pulsing the infrared rays. It is solved by irradiating the particles in a uniform manner and gradually causing thermal decomposition toward the inside from the surface layer of the gel layer applied on the substrate.

【0006】[0006]

【発明の作用並びに構成】本発明においては加熱手段と
して特に赤外線照射という手段を採用し、就中その照射
をパルス的に一定の間隔を設けて行うことにより形成さ
れたゲル層の表面層から順次内層に向かって熱分解が行
えるため発泡を未然に防止することができる。
In the present invention, a means of infrared irradiation is particularly adopted as the heating means, and the irradiation is carried out in order from the surface layer of the gel layer formed by arranging the irradiation at a constant pulse interval. Since thermal decomposition can be performed toward the inner layer, foaming can be prevented in advance.

【0007】本発明者の研究によればこの種ゾル−ゲル
法による酸化物超電導膜を製造する方法において基材に
施与して形成したゲル層を乾燥及び加熱して熱分解せし
め、これを焼結するとゲル層の内部から熱分解に基づく
ガス例えばCO2 や炭化水素等が発生し、一方表面部分
は加熱により成膜化され、ガスが外部に揮散し難く、こ
のために発泡が生じることが見いだされた。またこの際
ゲル層の膜厚が厚くなればなるほど急激に加熱すればす
るほど発泡が生じやすいことも併せ見いだされた。
According to the research by the present inventor, in the method for producing an oxide superconducting film by this kind of sol-gel method, the gel layer formed by applying it to the substrate is dried and heated to be thermally decomposed. When sintered, a gas due to thermal decomposition, such as CO 2 or hydrocarbon, is generated from the inside of the gel layer, while the surface portion is heated to form a film, and it is difficult for the gas to volatilize to the outside, which causes foaming. Was found. It was also found that the thicker the gel layer, the more likely it is that foaming will occur as the gel layer is heated more rapidly.

【0008】これに対し本発明においてはゲル層の表面
に赤外線を照射し、表面部分のみを先ず加熱してこの部
分の熱分解を完了せしめた後、次いで次の層のみを同様
に加熱し、これを順次内層に向かって赤外線をパルス的
に照射するため、熱分解により発生するガスはその赤外
線が照射された部分だけとなり、内部からのガスの発生
を防止することができ、最終的には層全体がうまく発泡
することなく熱分解されることとなる。
On the other hand, in the present invention, the surface of the gel layer is irradiated with infrared rays, and only the surface portion is first heated to complete the thermal decomposition of this portion, and then only the next layer is similarly heated, Since this is sequentially irradiated with infrared rays in a pulsed manner toward the inner layer, the gas generated by thermal decomposition is only the part irradiated with the infrared rays, and it is possible to prevent the generation of gas from the inside, and finally The entire layer will be pyrolyzed without successful foaming.

【0009】本発明において赤外線パルス的に照射する
間隔は例えば図1に示す通り加熱分解中の層l2の加熱
中は未分解層l3が加熱されないようなパルス間隔に調
整する。なお図1は便宜上ゲル層をl1、l2、l3の三
つに分けて赤外線を順次パルス的に照射して熱分解を行
う場合を例示したものであり、図1中の(b)ではl1
は熱分解が既に終了した層を示す。従ってパルス間隔は
ゲル層の厚みとこの層を何層に分割するかということに
よって変化し、適宜に未分解層が実質的に加熱されない
間隔を選択すればよい。ただし図1中(a)は熱分解
前、(b)は1回目のパルス後(l1のみ熱分解)、
(c)は2回目のパルス後(l1及びl2のみ熱分解)を
示し、(1)はゲル膜、(2)は基板を示す。
In the present invention, the interval of infrared pulse irradiation is adjusted, for example, as shown in FIG. 1, so that the undecomposed layer l 3 is not heated during heating of the layer l 2 during thermal decomposition. Note that FIG. 1 exemplifies a case where the gel layer is divided into three layers of l 1 , l 2 , and l 3 for the sake of convenience and infrared rays are sequentially irradiated in a pulsed manner to perform thermal decomposition. Then l 1
Indicates a layer whose thermal decomposition has already been completed. Therefore, the pulse interval varies depending on the thickness of the gel layer and how many layers the layer is divided into, and the interval may be appropriately selected so that the undecomposed layer is not substantially heated. However, in FIG. 1, (a) is before pyrolysis, (b) is after the first pulse (only l 1 is pyrolyzed),
(C) shows after the second pulse (only 1 and l 2 are thermally decomposed), (1) shows the gel film, and (2) shows the substrate.

【0010】赤外線としては赤外線と通常称される範囲
の波長のものでもよく、また照射手段もこれをパルス的
に照射できる手段であればよい。赤外線の出力もゲル層
を所定の部分で熱分解できる限り特に限定されるもので
はない。
The infrared ray may be one having a wavelength in the range usually called infrared ray, and the irradiation means may be any means capable of irradiating the infrared light in a pulsed manner. The output of infrared rays is not particularly limited as long as the gel layer can be thermally decomposed at a predetermined portion.

【0011】本発明においてはペロプスカイト型結晶構
造をとりえ、且つ超電導特性を示す酸化物超電導体、例
えばRe−Ba−Cu−O(ここにReは稀土類元素を
示し、その1種又は2種以上が用いられる。稀土類元素
のうち、特にイットリウム、ランタン、ネオジム、サマ
リウム、ユーロピウム、ガドリニウム、ジスプロシウ
ム、ホルミウム、エルピウム、ツリウム、イッテルピウ
ム、ルテシウムが好ましい。)、Bi−Pb−Sr−C
a−Cu−O、Tl−Ba−Ca−Cu−O等が製造対
象とされる。それら超電導体の構成元素は有機カルボン
酸塩のカルボン酸溶液、その元素のアルコキシドの有機
溶媒溶液又はその元素のキレート水溶液として、即ち上
記(1)〜(3)のいずれかの方法に従って使用され
る。これらいずれの場合も従来から知られているものが
広く本発明でも使用できる。特に本発明においては構成
元素が有機金属化合物、即ち有機カルボン酸塩の場合が
好ましい。
In the present invention, an oxide superconductor having a perovskite type crystal structure and exhibiting superconducting properties, for example, Re-Ba-Cu-O (wherein Re represents a rare earth element, one or two thereof). Among the rare earth elements, yttrium, lanthanum, neodymium, samarium, europium, gadolinium, dysprosium, holmium, erpium, thulium, ytterpium, and lutecium are preferable.), Bi-Pb-Sr-C.
A-Cu-O, Tl-Ba-Ca-Cu-O, etc. are targeted for production. The constituent elements of those superconductors are used as a carboxylic acid solution of an organic carboxylic acid salt, an organic solvent solution of an alkoxide of the element, or a chelate aqueous solution of the element, that is, according to any one of the above methods (1) to (3). .. In any of these cases, those conventionally known can be widely used in the present invention. Particularly in the present invention, the case where the constituent element is an organic metal compound, that is, an organic carboxylate is preferable.

【0012】本発明においては後記する通り構成元素の
溶液を基材に施与し、好ましい態様においては次いで乾
燥し、 200〜 600℃程度の温度で熱分解し、最後に焼結
する。更に詳しくは基材に施与されたゲル層は常温乃至
軽度の加熱下での乾燥工程、次いで 200〜 900℃、特に
350〜 800℃で10分〜2時間程度、好ましくは20分
〜1時間程度の熱分解工程を経てから焼結することが好
ましい。更に乾燥工程は真空乾燥を伴うことが好まし
く、また焼結工程は酸素雰囲気下で 800〜 960℃で行う
ことが好ましい。また更に焼結工程の後 300〜 600℃で
30分〜10時間程度アニールすることが好ましい。
In the present invention, a solution of the constituent elements is applied to the base material as described below, and in a preferred embodiment, it is dried, pyrolyzed at a temperature of about 200 to 600 ° C., and finally sintered. More specifically, the gel layer applied to the substrate is subjected to a drying step under normal temperature to mild heating, then 200 to 900 ° C., particularly
It is preferable to perform a thermal decomposition step at 350 to 800 ° C. for about 10 minutes to 2 hours, preferably about 20 minutes to 1 hour before sintering. Further, the drying step is preferably accompanied by vacuum drying, and the sintering step is preferably performed in an oxygen atmosphere at 800 to 960 ° C. Further, it is preferable to anneal at 300 to 600 ° C. for about 30 minutes to 10 hours after the sintering step.

【0013】各構成元素の塩を所定の溶媒中に溶解する
量比については、構成元素間のモル比と一致するように
するとよい。例えばY1Ba2Cu3Yを製造する場合、
溶媒中に溶存するY:Ba:Cuのモル比が1:2:3
となるように塩の量比を計量溶解する。各構成元素の塩
が溶媒に良好に溶解する限りその濃度は特に制限はない
が、溶媒 100mlあたり10-3〜10-1モル、特に10-2
〜10-1モル程度が好ましい。
The amount ratio of the salt of each constituent element to be dissolved in a predetermined solvent may be the same as the molar ratio between constituent elements. For example, when producing Y 1 Ba 2 Cu 3 O Y ,
The molar ratio of Y: Ba: Cu dissolved in the solvent is 1: 2: 3.
The amount ratio of salt is measured and dissolved so that The concentration of each of the constituent elements is not particularly limited as long as it dissolves well in the solvent, but 10 -3 to 10 -1 mol, especially 10 -2 mol, per 100 ml of the solvent.
It is preferably about 10 -1 mol.

【0014】本発明において溶液を施与する基材として
は、超電導膜の焼結温度を耐え得る耐熱材料からなる各
種形状のものが使用される。例えばMgO、SrTiO
3等のセラミック、及び銀及び銀合金の板、線、テープ
等である。有機モノカルボン酸溶液はかかる基材の表面
にディップコート、スピンコート、刷毛塗り、アプリケ
ータ塗布等各種の方法で施与することができる。
As the base material to which the solution is applied in the present invention, various shapes made of a heat-resistant material capable of withstanding the sintering temperature of the superconducting film are used. For example, MgO, SrTiO
Ceramics such as 3 and silver and silver alloy plates, wires, tapes, etc. The organic monocarboxylic acid solution can be applied to the surface of such a substrate by various methods such as dip coating, spin coating, brush coating, and applicator coating.

【0015】[0015]

【実施例】以下に実施例を示して本発明を一層詳細に説
明する。 実施例1 80℃に加温したプロピオン酸 100mlに0.05モルの酢酸
イットリウム、 0.1モルの酢酸バリウム、及び0.15モル
の酢酸銅を夫々溶解し、室温まで冷却して均一なプロピ
オン酸塩の溶液を得た。この溶液に20mm角、厚さ 0.5
mmのMgO多結晶基板をディップし、 0.2m/秒の速度
で引き上げて該基板上に溶液を塗布した。塗膜を1時間
自然乾燥し、 0.1Torr、150℃の条件で1時間真空加
熱乾燥した。乾燥膜厚は10μmであった。この塗膜を
10回に分けてl1〜 l10、l3層として赤外線(波長
0.7〜4μm)を夫々10秒間パルス的に出力 100Wで
照射した。なお各照射間の間隔は60秒であった。この
間l1に照射している間はl2〜 l10も同様に行え、全
体として発泡なく熱分解を行うことができた。上記のデ
ィップコート、乾燥、熱分解処理を終了した後、酸素雰
囲気下 950℃で120分間加熱し、次いで 400℃で5時
間加熱を行いY1Ba2Cu3Yの単一相からなる厚さ
3.1μmの超電導膜をMgO多結晶基板の表面に形成し
た。室温から60Kまでの温度域において4端子法によ
る膜の電気抵抗を測定した結果、Tc(on set)は91
K、Tc (end)は82Kであった。
The present invention will be described in more detail with reference to the following examples. Example 1 0.05 mol of yttrium acetate, 0.1 mol of barium acetate, and 0.15 mol of copper acetate were dissolved in 100 ml of propionic acid heated to 80 ° C., and cooled to room temperature to obtain a uniform solution of propionate. It was This solution is 20mm square, thickness 0.5
A MgO polycrystalline substrate of mm was dipped, and the solution was applied onto the substrate by pulling it up at a speed of 0.2 m / sec. The coating film was naturally dried for 1 hour, and vacuum-dried for 1 hour at 0.1 Torr and 150 ° C. The dry film thickness was 10 μm. This coating film was divided into 10 times, and infrared rays (wavelength: l 1 to l 10 , l 3 layers)
0.7 to 4 μm) was irradiated for 10 seconds in a pulsed manner with an output of 100 W. The interval between irradiations was 60 seconds. During this time, while irradiating l 1 , l 2 to l 10 could be similarly performed, and thermal decomposition could be performed as a whole without foaming. After completion of the above dip coating, drying and thermal decomposition treatment, heating at 950 ° C. for 120 minutes in an oxygen atmosphere and then at 400 ° C. for 5 hours is performed to form a single phase of Y 1 Ba 2 Cu 3 O Y. It
A 3.1 μm superconducting film was formed on the surface of the MgO polycrystalline substrate. As a result of measuring the electric resistance of the film by the 4-terminal method in the temperature range from room temperature to 60 K, Tc (on set) was 91.
The K and Tc (end) were 82K.

【0016】実施例2 0.05モルの酢酸イットリウムに代えて、0.05モルの酢酸
ホルミウムを使用した以外は実施例1と同様の方法でH
1Ba2Cu3Yの単一相からなる厚さ 3.5μmの超電
導膜をMgO多結晶基板の表面に形成した。室温から6
0Kまでの温度域において4端子法による膜の電気抵抗
を測定した結果、Tc(on set)は91K、Tc (end)は
83Kであった。
Example 2 H 2 was prepared in the same manner as in Example 1 except that 0.05 mol of holmium acetate was used instead of 0.05 mol of yttrium acetate.
A 3.5 μm-thick superconducting film composed of a single phase of o 1 Ba 2 Cu 3 O Y was formed on the surface of the MgO polycrystalline substrate. From room temperature to 6
As a result of measuring the electric resistance of the film by the 4-terminal method in the temperature range up to 0 K, Tc (on set) was 91 K and Tc (end) was 83 K.

【0017】実施例3 0.05モルの水酸化イットリウムに代えて0.05モルの水酸
化ホルミウムを使用した以外は実施例2と同様の方法で
Ho1Ba2Cu3Yの単一相からなる厚さ 3.7μmの超
電導膜をMgO多結晶基板の表面に形成した。室温から
60Kまでの温度域において4端子法による膜の電気抵
抗を測定した結果、Tc(on set)は91K、Tc (end)
は83Kであった。
Example 3 A single-phase thickness of Ho 1 Ba 2 Cu 3 O Y was prepared in the same manner as in Example 2 except that 0.05 mol of holmium hydroxide was used instead of 0.05 mol of yttrium hydroxide. A 3.7 μm superconducting film was formed on the surface of the MgO polycrystalline substrate. As a result of measuring the electric resistance of the film by the four-terminal method in the temperature range from room temperature to 60K, Tc (on set) was 91K, Tc (end)
Was 83K.

【0018】比較例1〜3 上記実施例1〜3の夫々において熱分解工程を 500℃×
30分の条件で加熱し、その他はすべて実施例1〜3と
同様に処理した。得られた超電導膜には発泡が認められ
夫々の特性は次の通りであった。
Comparative Examples 1 to 3 In each of the above Examples 1 to 3, the thermal decomposition step was carried out at 500 ° C.
It heated on the condition of 30 minutes, and everything else was processed like Example 1-3. Foaming was recognized in the obtained superconducting film, and the respective characteristics were as follows.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例4 上記実施例1においてカルボン酸塩に代えてY、Ba、
Cuの硝酸塩を使用し、これをトリエタノール水溶液に
溶解しキレート溶液となし、その他は実施例1と同様に
処理した。発泡なく良好な超電導膜が収得できた。Tc
(on set)は90K、Tc (end)は82Kであった。
Example 4 Instead of the carboxylate in Example 1, Y, Ba,
A nitrate of Cu was used, and this was dissolved in an aqueous solution of triethanol to form a chelate solution, and otherwise the same as in Example 1. A good superconducting film could be obtained without foaming. Tc
(on set) was 90K and Tc (end) was 82K.

【0021】実施例5 実施例1において赤外線の照射を下記の条件となし、そ
の他は実施例1と同様に処理した。発泡なく良好な超電
導膜が収得できた。 (赤外線照射の条件) 間隔:10秒 膜厚:20μm パルス間隔数:20秒
Example 5 The same procedure as in Example 1 was carried out except that the irradiation of infrared rays was carried out under the following conditions in Example 1. A good superconducting film could be obtained without foaming. (Infrared irradiation condition) Interval: 10 seconds Film thickness: 20 μm Number of pulse intervals: 20 seconds

【0022】[0022]

【発明の効果】本発明法によれば簡単な操作でゾル−ゲ
ル法に基づく超電導膜を何らの発泡なく容易に製造で
き、ひいては超電導特性の優れた超電導膜を工業的有利
に製造することができ、産業上の効果は極めて大きい。
According to the method of the present invention, a superconducting film based on the sol-gel method can be easily produced by a simple operation without any foaming, and a superconducting film having excellent superconducting properties can be industrially advantageously produced. It is possible, and the industrial effect is extremely large.

【0023】[0023]

【図面の簡単な説明】[Brief description of drawings]

図1は本発明法を適用する場合の模擬的な説明図であ
る。
FIG. 1 is a schematic explanatory diagram when the method of the present invention is applied.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ゾル−ゲル法による超電導膜の製造法にお
いて、超電導膜を形成すべき原料有機又は無機金属化合
物の溶媒溶液を基材に施与して溶媒溶液層を基材上に形
成せしめ、これを乾燥によりゲル層とした後に、加熱し
て上記化合物を熱分解するに際し、この熱分解を赤外線
をパルス的に照射して該ゲル層の表面から順次内層に向
かって段階的に熱分解を行うことを特徴とする酸化物超
電導膜の製法。
1. A method for producing a superconducting film by a sol-gel method, wherein a solvent solution of a raw material organic or inorganic metal compound for forming a superconducting film is applied to a substrate to form a solvent solution layer on the substrate. When the above-mentioned compound is pyrolyzed by heating it after forming a gel layer by drying, the pyrolysis is radiated with infrared rays in a pulsed manner and the pyrolysis step by step from the surface of the gel layer toward the inner layer. A method for producing an oxide superconducting film, which comprises:
JP3087566A 1991-03-26 1991-03-26 Production of oxide superconducting film Pending JPH05229822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087566A JPH05229822A (en) 1991-03-26 1991-03-26 Production of oxide superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087566A JPH05229822A (en) 1991-03-26 1991-03-26 Production of oxide superconducting film

Publications (1)

Publication Number Publication Date
JPH05229822A true JPH05229822A (en) 1993-09-07

Family

ID=13918542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087566A Pending JPH05229822A (en) 1991-03-26 1991-03-26 Production of oxide superconducting film

Country Status (1)

Country Link
JP (1) JPH05229822A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326434B2 (en) 2000-10-23 2008-02-05 American Superconductor Corporation Precursor solutions and methods of using same
WO2010092722A1 (en) * 2009-02-10 2010-08-19 コニカミノルタオプト株式会社 Optical element and process for producing same
CN104795180A (en) * 2015-04-07 2015-07-22 上海大学 Method for rapidly preparing REBCO superconducting film by extremely-low-fluorine MOD (metal organic deposition) method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326434B2 (en) 2000-10-23 2008-02-05 American Superconductor Corporation Precursor solutions and methods of using same
US7939126B2 (en) 2000-10-23 2011-05-10 American Superconductor Corporation Precursor solutions and methods of using same
WO2010092722A1 (en) * 2009-02-10 2010-08-19 コニカミノルタオプト株式会社 Optical element and process for producing same
CN104795180A (en) * 2015-04-07 2015-07-22 上海大学 Method for rapidly preparing REBCO superconducting film by extremely-low-fluorine MOD (metal organic deposition) method

Similar Documents

Publication Publication Date Title
JP5219109B2 (en) Manufacturing method of superconducting material
US4952556A (en) Patterning thin film superconductors using focused beam techniques
JP5445982B2 (en) Rare earth superconducting film forming solution and method for producing the same
EP2945918B1 (en) Rapid solid-state reaction of oxides with ultraviolet radiation
JP4729766B2 (en) Method for producing superconducting oxide material
US8716189B2 (en) Method of producing superconductive oxide material
US5021399A (en) Spray pyrolysis process for preparing superconductive films
JP2003327496A (en) Method for producing superconductor
JPH05229822A (en) Production of oxide superconducting film
US5141918A (en) Method of forming an oxide superconducting thin film of a single phase having no carbonate
Li et al. Conductive metallic LaNiO3 films from metallo-organic precursors
JPH07106905B2 (en) Method for manufacturing superconductor and superconductor
JPH0710732B2 (en) Superconductor manufacturing method
JPH07118012A (en) Oxide superconductor and its production
JPH02263709A (en) Production of oxide superconductor
JPH01157408A (en) Formation of film superconductor by cohesion of organic metal compound
JP2564600B2 (en) Processing method of oxide superconductor
JPH0214827A (en) Production of superconductive oxide layer
JP3206924B2 (en) Method and apparatus for producing oxide superconducting wire
JPH0315119A (en) Manufacture of oxide superconductor wire
JP2822328B2 (en) Superconductor manufacturing method
JPH06162843A (en) Manufacture of bi oxide superconductor
JPH03271157A (en) Production of dense oxide superconductor
JPH04342474A (en) Production of oxide superconducting film
JPH03275513A (en) Production of lnba2cu4oy-based superconductor