JPH05228339A - Deodorant and deodorization method - Google Patents

Deodorant and deodorization method

Info

Publication number
JPH05228339A
JPH05228339A JP4072576A JP7257692A JPH05228339A JP H05228339 A JPH05228339 A JP H05228339A JP 4072576 A JP4072576 A JP 4072576A JP 7257692 A JP7257692 A JP 7257692A JP H05228339 A JPH05228339 A JP H05228339A
Authority
JP
Japan
Prior art keywords
copper
chloride
reaction
deodorant
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4072576A
Other languages
Japanese (ja)
Inventor
Susumu Takada
進 高田
Takayoshi Uematsu
敬禧 上松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP4072576A priority Critical patent/JPH05228339A/en
Publication of JPH05228339A publication Critical patent/JPH05228339A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To provide a deodorant capable of being repeatedly used. CONSTITUTION:This deodorant consists of the fine particles of copper(I) chloride or copper(II) chloride, and the redox reaction between the copper(II) chloride and copper(I) chloride is utilized. A malodorous material is brought into contact with the copper(II) or copper(I) chloride in a gaseous phase, hence the copper(I) chloride is converted into copper(II) chloride or vice versa to deodorize the material, then the copper(II) chloride is converted into copper (I) chloride or vice versa by an oxidizing or reducing material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、脱臭剤および脱臭方法
に関する。
TECHNICAL FIELD The present invention relates to a deodorant and a deodorizing method.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】生鮮
食品の腐敗等により発生し、悪臭の原因となるものに
は、メチルメルカプタン(CH3SH)、硫化水素(H2S)、
アンモニア(NH3)、トリメチルアミン((CH3 )3N)等
の含硫、含窒素化合物が挙げられる。近年、生活レベル
の向上に伴い、生活環境で発生するこれらの臭気物質を
除去する方法の開発が望まれている。
[Prior Art and Problems to be Solved by the Invention] Methyl mercaptan (CH 3 SH), hydrogen sulfide (H 2 S)
Ammonia (NH 3), trimethylamine ((CH 3) 3 N) sulfur-containing, such as, include nitrogen-containing compounds. In recent years, with the improvement of living standards, it has been desired to develop a method for removing these odorous substances generated in the living environment.

【0003】従来、悪臭を除去する方法としては種々の
ものがあるが、その1つに金属酸化物触媒に臭気物質を
接触させて無臭物質に分解する方法がある。この方法に
使用する金属酸化物触媒は、一種または複数の遷移金属
酸化物を、比表面積の大きな担体に担持させる等して用
いられる。遷移金属元素としては、鉄、銅、マンガン、
コバルト、亜鉛、クロム等が用いられ、これらの水溶性
塩類が主として用いられる。すなわち、ハロゲン化物、
硫酸塩、硝酸塩、シュウ酸塩等が用いられる。また、比
表面積の大きな担体としては、アルミナ、シリカ、チタ
ニア、ジルコニア、ゼオライト、活性炭等が用いられ
る。
Conventionally, there are various methods for removing a malodor, one of which is a method of bringing an odorous substance into contact with a metal oxide catalyst to decompose it into an odorless substance. The metal oxide catalyst used in this method is used by supporting one or more transition metal oxides on a carrier having a large specific surface area. The transition metal elements include iron, copper, manganese,
Cobalt, zinc, chromium, etc. are used, and their water-soluble salts are mainly used. That is, a halide,
Sulfates, nitrates, oxalates and the like are used. As the carrier having a large specific surface area, alumina, silica, titania, zirconia, zeolite, activated carbon or the like is used.

【0004】これらの触媒による脱臭機構については明
らかにはなっていないが、触媒表面で臭気物質が吸着さ
れ酸化還元反応あるいは分解重合反応等により、閾値の
濃度の濃い物質に変換し、脱臭するものである。しかし
ながら、吸着した物質の脱離がうまくいかず、表面が被
毒されてしまい寿命となるケースや、触媒自身が酸化あ
るいは還元されてしまい、触媒能のない物質に変換され
てしまうケースがあり、長期にわたって安定した脱臭触
媒としての能力を維持できないことがあった。
Although the deodorizing mechanism by these catalysts has not been clarified, the odorant is adsorbed on the surface of the catalyst and converted into a substance having a high threshold concentration by an oxidation-reduction reaction or a decomposition polymerization reaction to deodorize. Is. However, there are cases in which desorption of adsorbed substances does not go well, the surface is poisoned and the life ends, and there are cases in which the catalyst itself is oxidized or reduced and converted to a substance having no catalytic ability, In some cases, the ability as a deodorizing catalyst that is stable for a long period of time cannot be maintained.

【0005】本発明は、上記問題点に鑑み、脱臭物質を
繰り返し使用できる脱臭剤および脱臭方法を提供するこ
とを目的とする。
In view of the above problems, it is an object of the present invention to provide a deodorant and a deodorizing method that can repeatedly use a deodorizing substance.

【0006】[0006]

【課題を解決するための手段】この目的を達成するた
め、本発明による脱臭剤は、塩化銅(IIまたはI)の微
粒子でなり、塩化銅(II)と塩化銅(I)とのレドック
ス反応を利用するものでなることを特徴とする。
In order to achieve this object, the deodorant according to the present invention comprises fine particles of copper (II or I) chloride, and a redox reaction between copper (II) chloride and copper (I) chloride. It is characterized by being used.

【0007】また、本発明による脱臭方法は、臭気物質
を塩化銅(IIまたはI)に気相で接触させることによ
り、該塩化銅(IIまたはI)を異なる価数の塩化銅(I
またはII)に変化させて臭気物質を酸化または還元によ
り脱臭し、該変化後の塩化銅(IまたはII)を酸化性物
質または還元性物質によりもとの価数の塩化銅(IIまた
はI)に再生し、レドックス反応を起こさせることを特
徴とする。
Further, in the deodorizing method according to the present invention, an odorous substance is brought into contact with copper chloride (II or I) in a vapor phase to cause the copper chloride (II or I) to have a different valence.
Or II) to deodorize an odorous substance by oxidation or reduction, and the copper chloride (I or II) after the change is converted to copper chloride (II or I) having an original valence by an oxidizing or reducing substance. It is characterized by regenerating into redox reaction.

【0008】本発明のより具体的なレドックス反応の態
様としては、臭気物質を塩化銅(II)に気相で接触させ
ることにより、塩化銅(II)を塩化銅(I)に変化させ
て臭気物質を酸化して脱臭し、オゾンにより塩化銅
(I)を塩化銅(II)に再生する方法がある。
In a more specific embodiment of the redox reaction of the present invention, an odor substance is brought into contact with copper (II) chloride in a gas phase to change the copper (II) chloride to copper (I) chloride to give an odor. There is a method in which a substance is oxidized to deodorize and copper (I) chloride is regenerated into copper (II) chloride by ozone.

【0009】また、本発明による前記塩化銅(IIまたは
I)は、担体として通常使用されているアルミナ、シリ
カ、ジルコニア、チタニア等を単体としてまたは複合酸
化物として用いてもよい。担持方法としては、塩化銅の
水溶液中に担体を浸した後乾燥させるか、担体を構成す
る化合物の微粒子を含む水溶液に塩化銅を溶解し、50
0℃〜1200℃で噴霧熱分解して作成してもよい。
The copper chloride (II or I) according to the present invention may be alumina, silica, zirconia, titania, etc., which are commonly used as carriers, as a simple substance or as a complex oxide. As a supporting method, the carrier is immersed in an aqueous solution of copper chloride and then dried, or copper chloride is dissolved in an aqueous solution containing fine particles of a compound constituting the carrier,
It may be prepared by spray pyrolysis at 0 ° C to 1200 ° C.

【0010】これらの化合物を触媒として使用する場
合、その比表面積は大きい方がより好ましいが、本発明
の脱臭剤の場合、反応は表面のみならず、脱臭剤そのも
のも寄与しているため、通常の燒結セラミックス程度の
比表面積(0.1m2/g〜1m2/g)でも充分に脱臭能を発
揮する。
When these compounds are used as a catalyst, it is more preferable that the specific surface area thereof is large. However, in the case of the deodorant of the present invention, not only the reaction but also the deodorant itself contributes, and therefore the deodorant itself usually contributes. even the specific surface area of about sintering ceramics (0.1m 2 / g~1m 2 / g ) to exert a sufficiently deodorizing ability.

【0011】[0011]

【作用】本発明においては、塩化銅(II)はメチルメル
カプタン、トリメチルアミン等の酸化反応により脱臭が
可能な代表的な臭気物質を吸着分解すると同時に、自身
は還元されて塩化銅(I)に変化する。塩化銅(I)を
オゾンに作用させると、塩化銅(I)はオゾンに酸化さ
れて塩化銅(II)に戻る。この脱臭剤は、臭気物質接触
−オゾン接触のサイクルで価数が1価〜2価を繰り返
し、いわゆるレドックス反応を形成する。
In the present invention, copper (II) chloride adsorbs and decomposes a typical odorous substance that can be deodorized by the oxidation reaction of methylmercaptan, trimethylamine, etc., and at the same time, it is reduced to copper (I) chloride. To do. When copper (I) chloride is allowed to act on ozone, copper (I) chloride is oxidized to ozone and returns to copper (II) chloride. This deodorant repeats the valence of 1 to 2 in the cycle of contact with odorous substance-ozone to form a so-called redox reaction.

【0012】なお、上記の場合、臭気物質としてNOX、S
OX、アルデヒド、カルボン酸等の還元反応により脱臭が
可能な臭気物質を吸着する場合には、上記とは逆に塩化
銅(I)に臭気物質を吸着させ、次いで酸化により塩化
銅(II)に変化したものを水素ガス等の還元性物質によ
り塩化銅(I)に戻させることにより、レドックス反応
を形成させることができる。さらに、前記酸化反応によ
り脱臭される臭気物質と還元反応により脱臭される臭気
物質とが混合された臭気に対しては、オゾンや水素を用
いずに、双方の臭気物質を酸化性物質、還元性物質と
し、塩化銅(IまたはII)を酸化、還元させることによ
り、レドックス反応を形成させることもできる。
In the above case, NO X and S are used as odor substances.
When adsorbing an odorous substance that can be deodorized by a reduction reaction of O X , aldehyde, carboxylic acid, etc., contrary to the above, the odorous substance is adsorbed on copper (I) chloride, and then copper (II) chloride is oxidized by oxidation. The redox reaction can be formed by returning the copper chloride (I) converted to copper chloride (I) with a reducing substance such as hydrogen gas. Furthermore, for an odor in which an odorous substance that is deodorized by the oxidation reaction and an odorous substance that is deodorized by the reduction reaction are mixed, both odorous substances are oxidized and reduced without using ozone or hydrogen. A redox reaction can also be formed by oxidizing and reducing copper chloride (I or II) as a substance.

【0013】[0013]

【実施例】[試料と実験設備]噴霧反応法によって脱臭
剤を生成させるに当たり、原料水溶液に溶解させる塩と
して、次のものを用いた。塩化銅(II):CuCl2四塩化
チタン:TiCl4 1になるように調製した。これを図2に示す霧化装置1
(超音波振動子使用の水溶液の霧化装置)に前記水溶液
を入れ、50cc/min の霧化量で霧化した霧を、炉3の
下流に設けた吸引機(図示せず)により吸引しながら、
石英管2より1000℃に保たれた炉3内に導いて焼成
を行い、生成した超微粒子を、炉3の出口側石英管4の
出口に設けたガラスフィルタ5で捕集した。その結果、
粒子径0.4μm〜1.0μmの球状脱臭剤1gを得た。
このものの比表面積は2.92m2/gであった。なお、共
沈法により作成したものの表面積は8.90m2/gであっ
た。
EXAMPLES [Samples and Experimental Equipment] In producing a deodorant by the spray reaction method, the following salts were used as the salts dissolved in the raw material aqueous solution. Copper (II) chloride: CuCl 2 Titanium tetrachloride: TiCl 4 It was prepared to be 1. This is shown in FIG.
(Aqueous solution atomizer using ultrasonic transducer) The above aqueous solution was put in, and the atomized fog with an atomization rate of 50 cc / min was sucked by a suction device (not shown) provided downstream of the furnace 3. While
The ultrafine particles produced were introduced from the quartz tube 2 into the furnace 3 kept at 1000 ° C. for firing, and the generated ultrafine particles were collected by the glass filter 5 provided at the exit of the quartz tube 4 on the exit side of the furnace 3. as a result,
1 g of a spherical deodorant having a particle diameter of 0.4 μm to 1.0 μm was obtained.
The specific surface area of this product was 2.92 m 2 / g. The surface area of the layer prepared by the coprecipitation method was 8.90 m 2 / g.

【0014】[脱臭能の測定]上記実施例で得られた触
媒を用いて代表的な臭気物質であるメチルメルカプタン
の図1(A)の装置を使用して分解反応を行った。図1
(A)の装置は、メチルメルカプタンCH3SHのマスフロ
ーコントローラ−7と、メチルメルカプタンCH3SHに混
合する窒素ガスN2のフロート流量計8と、前処理用ヘリ
ウムHeのフロート流量計9と、脱臭剤とメチルメルカプ
タンとの反応管10A、10Bの流路切り替え用四方コ
ック11と、各反応管10A、10Bの下流に設けたフ
ィルタ12A、12B、ならびに試料ガスのサンプリン
グチャンバー13A、13Bとを有する。
[Measurement of Deodorizing Ability] Using the catalyst obtained in the above Example, a decomposition reaction of methyl mercaptan, which is a typical odor substance, was carried out using the apparatus shown in FIG. 1 (A). Figure 1
Device (A) includes a mass flow controller -7 methyl mercaptan CH 3 SH, a float flow meter 8 of the nitrogen gas N 2 to be mixed into methyl mercaptan CH 3 SH, a float flow meter 9 for preprocessing helium He, It has four-way cocks 11 for switching the flow paths of the deodorant and methyl mercaptan reaction tubes 10A and 10B, filters 12A and 12B provided downstream of the reaction tubes 10A and 10B, and sample gas sampling chambers 13A and 13B. ..

【0015】この装置を利用して、まず一方の反応管1
0Aに塩化銅(II)を0.3g入れ、ヘリウムガスによ
り、300℃の温度で1時間前処理し、他方の反応管1
0B内にはガラスウールのみ入れてまずガラスウールの
みを入れた反応管10Bに前記メチルメルカプタンを2
00ppm 含む窒素ガスを200℃で50cc/min 流れ
るように、マスフローコントローラー7およびフロート
流量計8を調整し、サンプリングチャンバー13Bより
そのガスを0.5mlサンプリングし、メチルメルカプタ
ン濃度をFPDガスクロマトグラフで測定した。
Using this apparatus, first, one reaction tube 1
0.3 g of copper (II) chloride was put in 0 A, pretreated with helium gas at a temperature of 300 ° C. for 1 hour, and the other reaction tube 1
In the reaction tube 10B containing only glass wool, the methyl mercaptan was added to the glass tube 0B.
The mass flow controller 7 and the float flow meter 8 were adjusted so that a nitrogen gas containing 00 ppm could flow at 50 cc / min at 200 ° C., 0.5 ml of the gas was sampled from the sampling chamber 13B, and the methyl mercaptan concentration was measured by an FPD gas chromatograph. ..

【0016】次に、四方コック11を回して前記メチル
メルカプタンを含むガスを、200℃に保持した反応管
10Aに導入し、前記と同様にサンプリングしてガスク
ロマトグラフで測定した。そして、ガスクロマトグラフ
のピークの面積から分解率を計算し、その経時変化をと
った。そして、原料ガスのピーク面積と生成物のピーク
面積との比から生成物への転化率を求めた。
Next, the four-way cock 11 was turned to introduce the gas containing methyl mercaptan into the reaction tube 10A kept at 200 ° C., and sampling was carried out in the same manner as described above, and measurement was carried out by a gas chromatograph. Then, the decomposition rate was calculated from the area of the peak of the gas chromatograph, and the change with time was taken. Then, the conversion rate to the product was obtained from the ratio of the peak area of the raw material gas and the peak area of the product.

【0017】その結果、噴霧反応法、共沈法で調製した
塩化銅(II)は、共にメチルメルカプタンの分解率が3
時間後でも100%近い値を示した。他の触媒と比較す
ると、Ti−Cu系脱臭剤はその脱臭能が優れていた。
As a result, both copper (II) chloride prepared by the spray reaction method and the coprecipitation method had a methyl mercaptan decomposition rate of 3%.
The value was close to 100% even after the lapse of time. Compared with other catalysts, the Ti-Cu-based deodorant was superior in its deodorizing ability.

【0018】[オゾン分解能の測定]図1(B)に示す
ように、サクションポンプ18により吸引される空気流
路に、乾燥機14と、オゾン発生器15と、反応管16
と、オゾン濃度計17とを設け、反応管16は前記流路
内に挿入、分離可能に設置し、反応管16内に塩化銅
(IIまたはI)を0.1gを入れておく。まず、流路内
に反応管16を設置していな 空気を流し、オゾン濃度計でオゾン濃度を測定した。次
に反応管16を流路内にセットして前記同様に反応管1
6内にオゾン含有空気を流し、決められた時間にオゾン
濃度計17の値を読んだ。
[Measurement of Ozone Decomposition] As shown in FIG. 1 (B), a dryer 14, an ozone generator 15, and a reaction tube 16 are provided in an air passage sucked by a suction pump 18.
And an ozone concentration meter 17 are provided, the reaction tube 16 is inserted in the flow path so as to be separable, and 0.1 g of copper chloride (II or I) is placed in the reaction tube 16. First, do not install the reaction tube 16 in the flow path. Air was flowed and the ozone concentration was measured with an ozone concentration meter. Next, the reaction tube 16 is set in the flow path and the reaction tube 1
Ozone-containing air was flown through the sample No. 6, and the value of the ozone concentration meter 17 was read at the determined time.

【0019】図3は前記噴霧反応法により生成させた塩
化銅(II)のTi−Cu酸化物に担持させたものと、共沈法
によるもののオゾン分解反応の経時変化を示す。Ti−Cu
−sp(噴霧反応法によるもの)は、反応初期から10
0%近い分解率であり、約30分後においてもほとんど
低下していない。一方、Ti−Cu−co(共沈法によるも
の)は、反応初期では40%程度の分解率があるが、2
0分後で活性がなくなっている。すなわち、Ti−Cu−s
pはTi−Cu−coに比較して優れた活性を持っている
が、X線回折パターンより、Ti−Cu−spは塩化物であ
り、Ti−Cu−coは酸化物になっているので、この違い
が活性の差につながったと思われる。
FIG. 3 shows changes with time in the ozone decomposition reaction of copper (II) chloride supported on the Ti-Cu oxide produced by the spray reaction method and by the coprecipitation method. Ti-Cu
-Sp (by the spray reaction method) is 10 from the initial stage of the reaction.
The decomposition rate is close to 0%, and there is almost no decrease even after about 30 minutes. On the other hand, Ti-Cu-co (by the coprecipitation method) has a decomposition rate of about 40% at the initial stage of the reaction,
It has become inactive after 0 minutes. That is, Ti-Cu-s
p has excellent activity as compared with Ti-Cu-co, but from the X-ray diffraction pattern, Ti-Cu-sp is a chloride and Ti-Cu-co is an oxide. , It seems that this difference led to a difference in activity.

【0020】[X線回折パターン]図4にTi−Cu−
spの反応前後におけるX線回折パターンを示す。ここ
で、測定は、反応前(a)、メチルメルカプタン酸化分
解反応後(b)、オゾン分解反応後(c)、オゾン分解
をして後にその触媒でメチルメルカプタン酸化分解反応
をしたもの(d)について行った。
[X-ray diffraction pattern] FIG. 4 shows Ti-Cu-
The X-ray-diffraction pattern before and after reaction of sp is shown. Here, the measurement is performed before the reaction (a), after the methyl mercaptan oxidative decomposition reaction (b), after the ozone decomposition reaction (c), and after ozone decomposition and then methyl mercaptan oxidative decomposition reaction (d). I went about.

【0021】反応前では、TiO2(Rutile)、CuCl、CuCl2
ピークが見られる。メチルメルカプタン酸化分解反応後
(b)では、TiO2のピークに変化は現れていないが、Cu
Cl2のピークが消失し、CuClのピーク強度が強くなって
いる。一方、オゾン分解反応後でもTiO2のピークに関し
ては変化はないが、CuClのピークが消失しており、CuCl
2は多少の変動が見られるが残存している。また、オゾ
ン分解−メチルメルカプタン酸化分解反応後(d)で
も、やはりTiO2に変化はない。しかし、オゾン分解後で
は消失していたCuClのピークが現れている。これらのこ
とにより、反応前後においてCuの価数が変動しているこ
とがわかる。つまり、メチルメルカプタン酸化分解反応
により、Cuは還元され、オゾン分解反応により、それは
酸化されたといえる。
Before the reaction, peaks of TiO 2 (Rutile), CuCl and CuCl 2 are seen. After the oxidative decomposition reaction of methyl mercaptan (b), there was no change in the peak of TiO 2 , but Cu
The Cl 2 peak disappeared and the CuCl peak intensity increased. On the other hand, after the ozone decomposition reaction, the TiO 2 peak did not change, but the CuCl peak disappeared.
2 has some fluctuations but remains. Also, after the ozone decomposition-methyl mercaptan oxidative decomposition reaction (d), there is no change in TiO 2 . However, the CuCl peak, which disappeared after ozone decomposition, appeared. From these, it can be seen that the valence of Cu varies before and after the reaction. In other words, it can be said that Cu was reduced by the oxidative decomposition reaction of methyl mercaptan and that it was oxidized by the ozone decomposition reaction.

【0022】[メチルメルカプタン酸化分解能の測定結
果]そして、捕集した生成物やメチルメルカプタンやオ
ゾンとの反応後のCu(2p)の結合エネルギーをX線光電子
分光分析(XPS)で測定することにより、Cuの酸化状
態を確認した。その結果を図5に示す。図5の(a)は
生成物、(b)はメチルメルカプタンとの反応後、
(c)はオゾンとの反応後、(d)はオゾンとの反応後
にメチルメルカプタンを作用させた後のスペクトルを示
す。Cu02p(3/2)の結合エネルギーは932.4(e
V)であり、反応前のもののみ、わずかに肩が見える
が、残りのものはすべてそのピークはみられない。ま
た、ピークは高エネルギー側にシフトしており、それぞ
れI価、II価のエネルギー935.0(eV)、937.
0(eV)付近にみられる。反応前(a)のスペクトルで
はI価とII価のCuが混在し、かつI価の方が多いことが
分かる。メチルメルカプタン酸化分解反応後でもI価と
II価のCuが混在しているが、I価のCuの量が減少してい
る。また、I価、II価のピークは反応前のものに比べて
低エネルギー側にシフトしており、完全にI価とII価の
ものではなく、それぞれについて低酸化状態であると言
える。一方、オゾン分解反応後では、I価のピークが減
少し、オゾン分解−メチルメルカプタン酸化分解反応後
では、ほとんど消失していたI価のピークが現れてい
る。以上のことから、酸化状態の変動が確認され、Ti−
Cu−spが、オゾンを併用したメチルメルカプタン酸化
分解反応を行うと、レドックス反応で脱臭、再生が行え
る。
[Measurement of Methyl Mercaptan Oxidation Decomposition] Then, the binding energy of Cu (2p) after the reaction with the collected product, methyl mercaptan and ozone was measured by X-ray photoelectron spectroscopy (XPS). , The oxidation state of Cu was confirmed. The result is shown in FIG. 5 (a) is the product, (b) is the reaction with methyl mercaptan,
(C) shows a spectrum after reacting with ozone, and (d) shows a spectrum after reacting with methyl mercaptan after reacting with ozone. The binding energy of Cu 0 2p (3/2) is 932.4 (e
V), only the shoulder before the reaction can be seen, but the peaks are not seen in the rest. In addition, the peaks are shifted to the high energy side, and the energies of I valence and II valence are 935.0 (eV) and 937.
It is found near 0 (eV). In the spectrum before the reaction (a), it can be seen that Cu having an I valence and Cu having a II valence are mixed and the I valence is larger. Even after the oxidative decomposition reaction of methyl mercaptan,
Although II-valent Cu is mixed, the amount of I-valent Cu is decreasing. Further, the peaks of I valence and II valence are shifted to the low energy side as compared with those before the reaction, and it can be said that they are not completely I valence and II valence, and that they are in a low oxidation state. On the other hand, after the ozonolysis reaction, the I value peak decreased, and after the ozone decomposition-methylmercaptan oxidative decomposition reaction, the I value peak almost disappeared. From the above, changes in the oxidation state were confirmed, and Ti-
When Cu-sp performs a methyl mercaptan oxidative decomposition reaction in which ozone is also used, deodorization and regeneration can be performed by a redox reaction.

【0023】[活性化エネルギー]Ti−Cu−sp、Ti−
Cu−coのアレニウスプロットを図6に示す。図6の横
軸は反応温度の逆数(K-1)を、縦軸にはメチルメルカ
プタンの分解反応速度定数をプロットし、得られた直線
の勾配から活性化エネルギーkを求めた。ここで、メチ
ルメルカプタンの分解反応速度は、反応次数を一次とし
て近似し、次式により求めた。k=(FV /V)ln
(1−XA )ただし、FA :原料供給速度(ml/min)、
V:脱臭剤体積(ml)XA:基質の変化率図6に示すよ
うに、噴霧反応法で調製したものの方が共沈法により調
製したものに比較して低い値となっており、脱臭剤とし
て優れた性能が示されている。
[Activation energy] Ti-Cu-sp, Ti-
The Cu-co Arrhenius plot is shown in FIG. The reciprocal number (K −1 ) of the reaction temperature was plotted on the horizontal axis of FIG. 6, and the decomposition reaction rate constant of methyl mercaptan was plotted on the vertical axis, and the activation energy k was determined from the gradient of the obtained straight line. Here, the decomposition reaction rate of methyl mercaptan was calculated by the following equation by approximating the reaction order as first order. k = (F V / V) ln
(1-X A ) where F A is the raw material supply rate (ml / min),
V: Deodorant volume (ml) X A : Substrate change rate As shown in FIG. 6, the value prepared by the spray reaction method was lower than that prepared by the coprecipitation method, and the deodorization was performed. Excellent performance as an agent is shown.

【0024】[0024]

【発明の効果】本発明の脱臭方法および脱臭剤によれ
ば、塩化銅(II)と塩化銅(I)との間で脱臭、再生が
なされるので、長期にわたって脱臭作用が行える。
EFFECTS OF THE INVENTION According to the deodorizing method and deodorant of the present invention, since deodorization and regeneration are carried out between copper (II) chloride and copper (I) chloride, the deodorizing action can be carried out for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明の脱臭剤によるメチルメルカプ
タンの分解機能の測定に用いた装置の構成図、(B)は
同じくオゾン分解機能の測定に用いた装置の構成図であ
る。
FIG. 1A is a configuration diagram of an apparatus used for measuring a decomposition function of methyl mercaptan by the deodorant of the present invention, and FIG. 1B is a configuration diagram of an apparatus used for measuring an ozone decomposition function.

【図2】本発明の脱臭剤の製造に用いた装置の構成図で
ある。
FIG. 2 is a configuration diagram of an apparatus used for producing the deodorant of the present invention.

【図3】本発明により得られた脱臭剤のオゾン分解能測
定結果を時間に対する分解率の関係で示す図である。
FIG. 3 is a diagram showing a result of ozone decomposing measurement of a deodorant obtained by the present invention in a relation of decomposition rate with respect to time.

【図4】本発明により得られた脱臭剤のメチルメルカプ
タンおよびオゾンとの反応によるX線回折パターンを示
す図である。
FIG. 4 is a view showing an X-ray diffraction pattern by the reaction of the deodorant obtained by the present invention with methyl mercaptan and ozone.

【図5】本発明により得られた脱臭剤のX線光電子分光
スペクトル図である。
FIG. 5 is an X-ray photoelectron spectroscopy spectrum diagram of the deodorant obtained by the present invention.

【図6】本発明により得られた脱臭剤のアレニウスプロ
ット図である。
FIG. 6 is an Arrhenius plot of the deodorant obtained according to the present invention.

【符号の説明】[Explanation of symbols]

1 霧化装置2、4 石英管3 炉5 ガラスフィルタ
7 マスフロートコントローラー8、9 フロート流量
計10A、10B 反応管11 四方コック12A、1
2B フィルタ13A、13B サンプリングチャンバ
ー14 乾燥機15 オゾン発生器16 反応管17
オゾン濃度計18 サクションポンプ
1 Atomizer 2, 4 Quartz Tube 3 Furnace 5 Glass Filter 7 Mass Float Controller 8, 9 Float Flowmeter 10A, 10B Reaction Tube 11 Four-way Cock 12A, 1
2B Filters 13A, 13B Sampling chamber 14 Dryer 15 Ozone generator 16 Reaction tube 17
Ozone concentration meter 18 Suction pump

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月30日[Submission date] December 30, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Name of item to be amended] Title of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の名称】脱臭剤および脱臭方法Title: Deodorant and deodorizing method

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】塩化銅(IIまたはI)の微粒子でなり、塩
化銅(II)と塩化銅(I)とのレドックス反応を利用す
るものでなることを特徴とする脱臭剤。
1. A deodorant comprising fine particles of copper (II or I) chloride and utilizing a redox reaction between copper (II) chloride and copper (I) chloride.
【請求項2】臭気物質を塩化銅(IIまたはI)に気相で
接触させることにより、該塩化銅(IIまたはI)を異な
る価数の塩化銅(IまたはII)に変化させて臭気物質を
酸化または還元により脱臭し、該変化後の塩化銅(Iま
たはII)を酸化性物質または還元性物質によりもとの価
数の塩化銅(IIまたはI)に再生し、レドックス反応を
起こさせることを特徴とする脱臭方法。
2. An odorant is obtained by bringing an odorant into contact with copper chloride (II or I) in a vapor phase to change the copper chloride (II or I) into copper chloride (I or II) having a different valence. Is deodorized by oxidation or reduction, and copper chloride (I or II) after the change is regenerated to copper chloride (II or I) having the original valence by an oxidizing substance or a reducing substance to cause a redox reaction. A deodorizing method characterized in that
【請求項3】臭気物質を塩化銅(II)に気相で接触させ
ることにより、塩化銅(II)を塩化銅(I)に変化させ
て臭気物質を酸化して脱臭し、オゾンにより塩化銅
(I)を塩化銅(II)に再生し、レドックス反応を起こ
させることを特徴とする脱臭方法。
3. A copper (II) chloride is brought into contact with copper chloride (II) in a gas phase to change the copper (II) chloride to copper (I) chloride to oxidize and deodorize the odorous substance. A deodorizing method characterized in that (I) is regenerated into copper (II) chloride to cause a redox reaction.
JP4072576A 1992-02-21 1992-02-21 Deodorant and deodorization method Withdrawn JPH05228339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4072576A JPH05228339A (en) 1992-02-21 1992-02-21 Deodorant and deodorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4072576A JPH05228339A (en) 1992-02-21 1992-02-21 Deodorant and deodorization method

Publications (1)

Publication Number Publication Date
JPH05228339A true JPH05228339A (en) 1993-09-07

Family

ID=13493349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4072576A Withdrawn JPH05228339A (en) 1992-02-21 1992-02-21 Deodorant and deodorization method

Country Status (1)

Country Link
JP (1) JPH05228339A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529763A (en) * 1994-04-29 1996-06-25 Air Products And Chemicals, Inc. CO adsorbents with hysteresis
JP2011204573A (en) * 2010-03-26 2011-10-13 Nippon Zeon Co Ltd Binder composition for secondary battery negative electrode, slurry composition for secondary battery negative electrode, negative electrode for secondary battery, secondary battery, and manufacturing method of binder composition for secondary battery negative electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529763A (en) * 1994-04-29 1996-06-25 Air Products And Chemicals, Inc. CO adsorbents with hysteresis
US5529970A (en) * 1994-04-29 1996-06-25 Air Products And Chemicals, Inc. CO adsorbents with hysteresis
JP2011204573A (en) * 2010-03-26 2011-10-13 Nippon Zeon Co Ltd Binder composition for secondary battery negative electrode, slurry composition for secondary battery negative electrode, negative electrode for secondary battery, secondary battery, and manufacturing method of binder composition for secondary battery negative electrode

Similar Documents

Publication Publication Date Title
Canela et al. Gas-phase destruction of H2S using TiO2/UV-VIS
KR0148491B1 (en) Deodorants
US20080008639A1 (en) Catalyst for Carbon Monoxide Removal and Method of Removing Carbon Monoxide With the Catalyst
JPH0326341A (en) Oxidation catalyst composition
JP4119974B2 (en) Catalyst composite for removing carbon monoxide and carbon monoxide removing method using the same
KR101762718B1 (en) Porous copper-manganese filter media and the preparation of the same
JP6656866B2 (en) Ozone oxidative decomposition treatment of VOC and / or gas phase inorganic reducing compound in gas
Shin et al. Thermocatalytic oxidation of a binary mixture of formaldehyde and toluene at ambient levels by a titanium dioxide supported platinum catalyst
JPH05228339A (en) Deodorant and deodorization method
JP2000254449A (en) Base material for decomposing harmful or odor gas and device therefor
JP3689754B2 (en) Photocatalyst material and air purification film
US20130022524A1 (en) Catalyst for the photocalytic treatment of gaseous media containing carbon monoxide
KR100529372B1 (en) An Apparatus For Removing Heavy Metals Using Photocatalyst And Method Using Thereof
JPH1071331A (en) Zno-pd complex catalyst and preparation thereof
Hou et al. Novel effects of copper precursors on the adsorption and desorption of elemental mercury over copper-based sulfides: Performance, mechanism, and kinetics
JPH08332384A (en) Catalyst for decomposition of exhaust gas containing noxious organic compound, and exhaust gas treatment
JPH0290923A (en) Deodorizing method
JPH07155611A (en) Catalyst and method for removing malodorous substance
EP0638320B1 (en) Air cleaning agent and production thereof
JPS61135669A (en) Ultraviolet oxidative decomposition deodorizing method
JPH05115748A (en) Removal of malodor
JP7486148B2 (en) Contaminant removing agent, contaminant removing member, and contaminant removing method
JPH04219136A (en) Composition having air purifying power and production thereof
JP2663230B2 (en) Air-purified product and method for producing the same
CN115970672A (en) Catalyst for low-temperature catalytic oxidation of Claus process tail gas and preparation method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518